CS 4803 / 7643: Deep Learning

Topics:

- Regularization
 Neural Networks

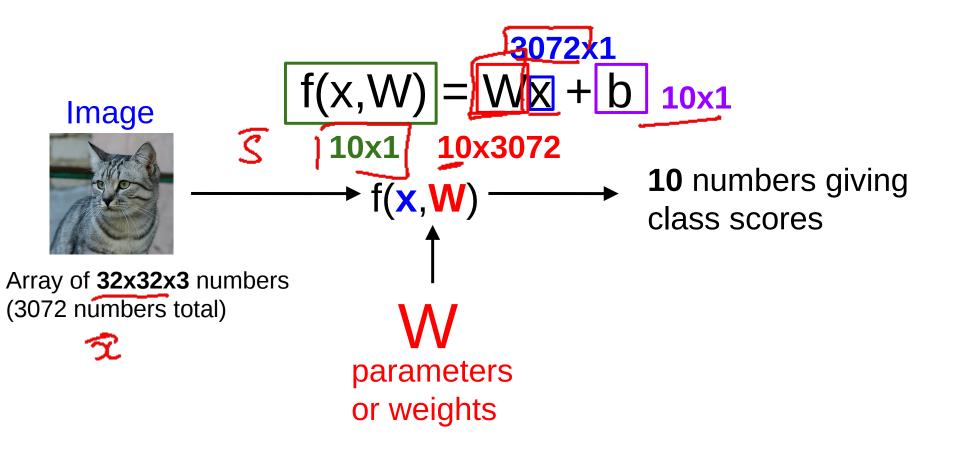
Dhruv Batra Georgia Tech

Administrativia

- PS1/HW1 out
 - Due: 09/09, 11:59pm
 - Asks about topics being covered now
 - Caveat: one more (extra credit) problem to be added
 - Please please please please start early
 - More details next class

Recap from last time

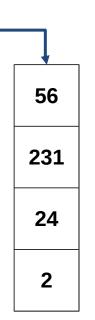
Parametric Approach: Linear Classifier



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

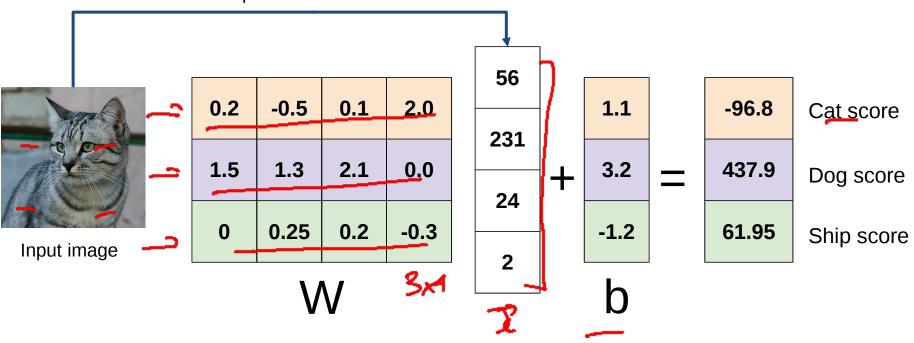
Stretch pixels into column

Input image

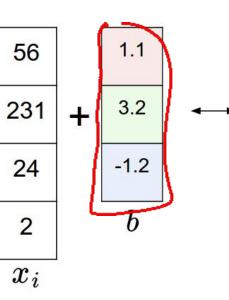


Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column



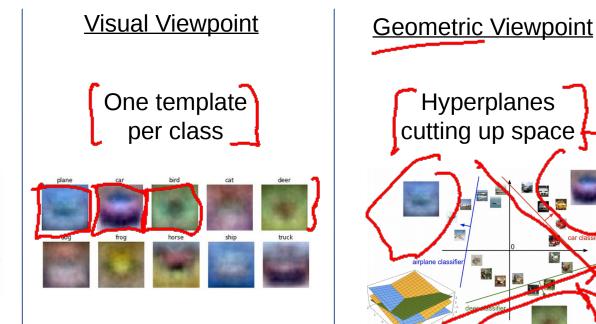
0.2	-0.5	0.1	2.0			
1.5	1.3	2.1	0.0			
0	0.25	0.2	-0.3			
W						



0.2	-0.5	0.1	2.0	1.1		
1.5	1.3	2.1	0.0	3.2		
0	0.25	0.2	-0.3	-1.2		
W b						
new, single W						

Linear Classifier: Three Viewpoints

Algebraic Viewpoint f(x,W) =Wx Stretch pixels into column 56 2.0 -0.5 0.1 1.1 -96.8 Cat score 231 3.2 = 1.5 1.3 2.1 0.0 437.9 + Dog score 24 0.25 0.2 -0.3 0 -1.2 61.95 Ship score nput imag 2 W b



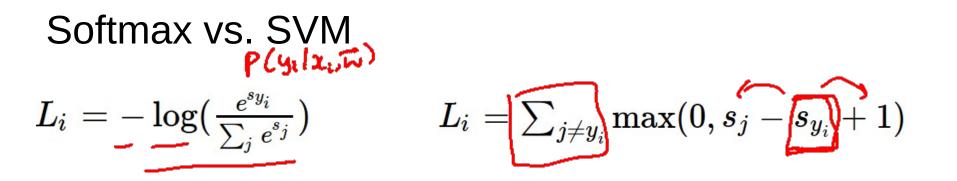
Recall from last time: Linear Classifier

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)



Multiclass SVM loss: With some W the scores f(x, W) = Wx are: "Hinge loss" s_{y_i} s_j 1.3 2.2 3.2 cat $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1\\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 5.1 4.9 car $=\sum \max(0, s_j - s_{y_i} + 1)$ -1.7 2.0 -3.1 frog $j \neq y_i$ delta score scores for other classes. score for conrect class Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Suppose: 3 training examples, 3 classes.

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$

Softmax Function

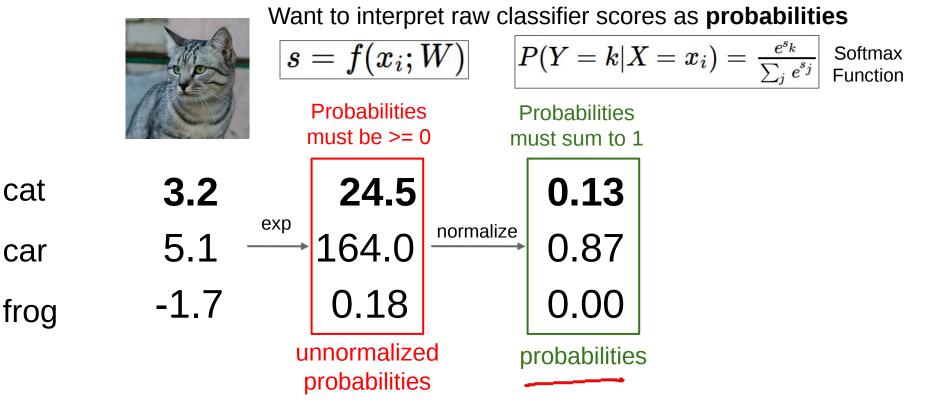
cat **3.2** car 5.1 frog -1.7

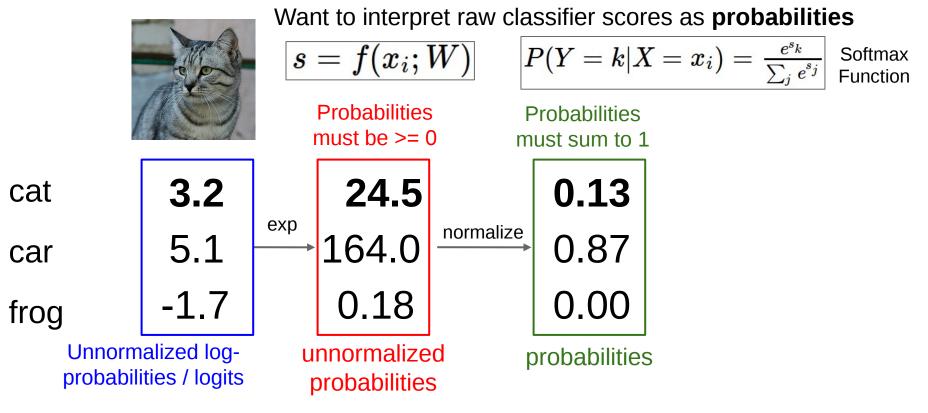
Probabilities must be >= 0

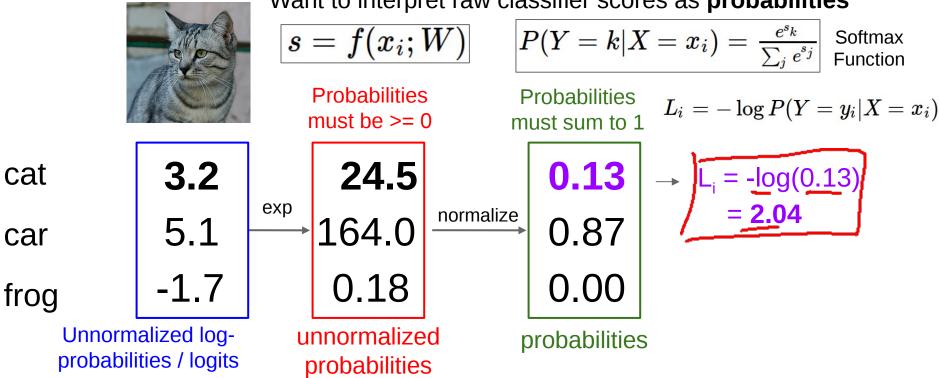
Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = \frac{1}{2}$

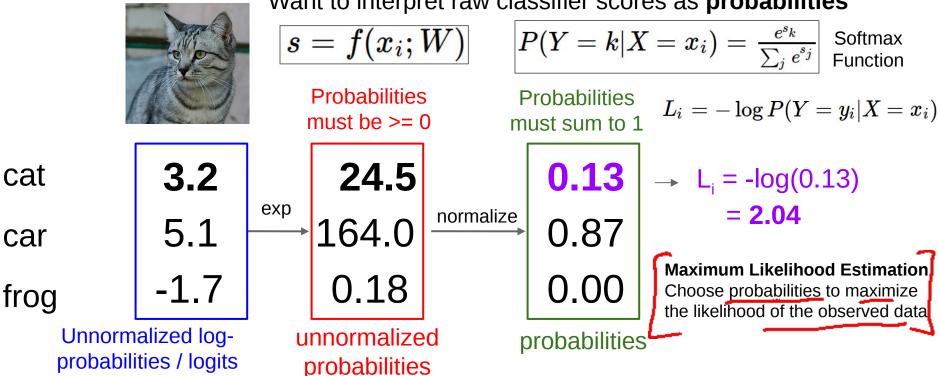
Softmax Function



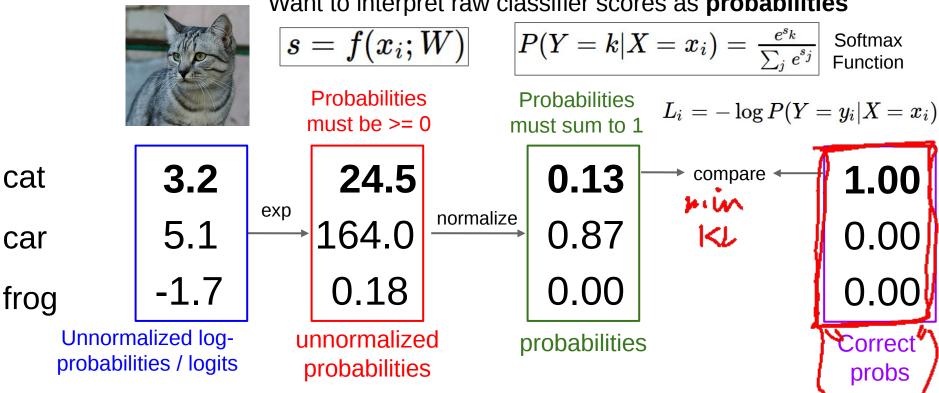




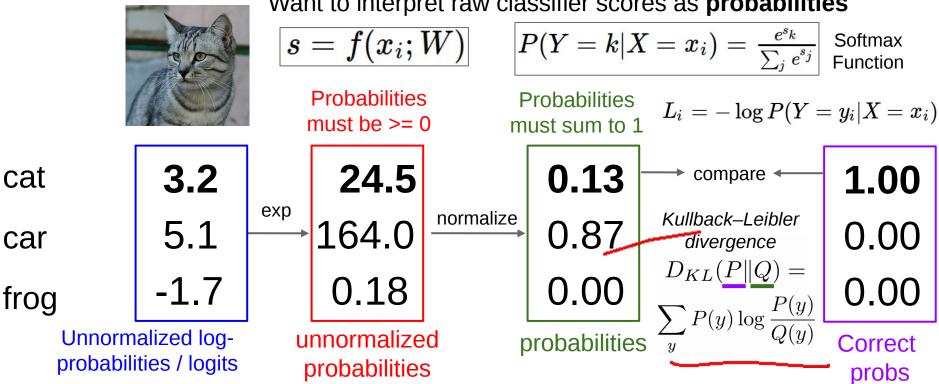
Want to interpret raw classifier scores as **probabilities**



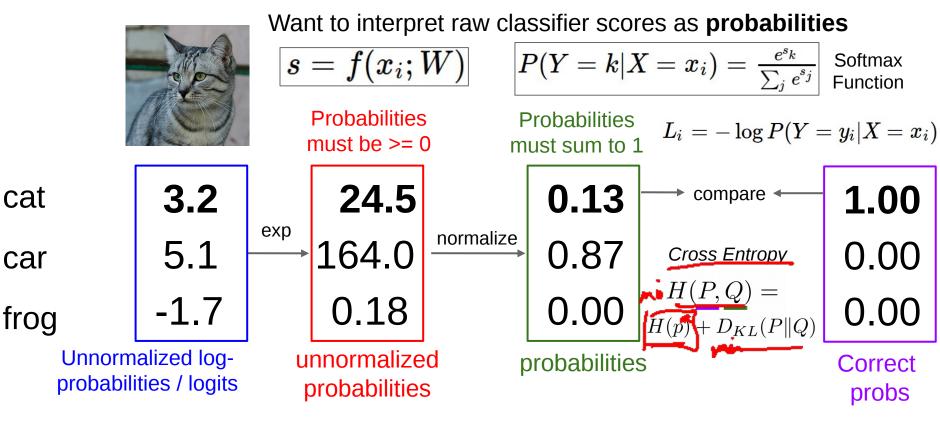
Want to interpret raw classifier scores as **probabilities**

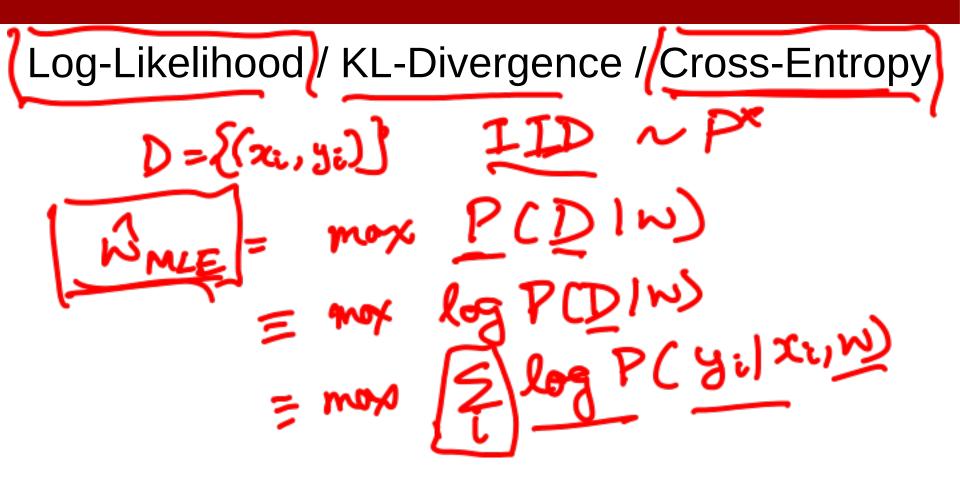


Want to interpret raw classifier scores as probabilities



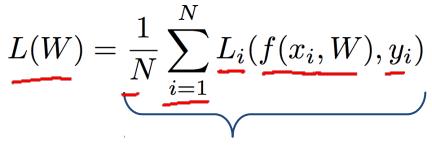
Want to interpret raw classifier scores as **probabilities**



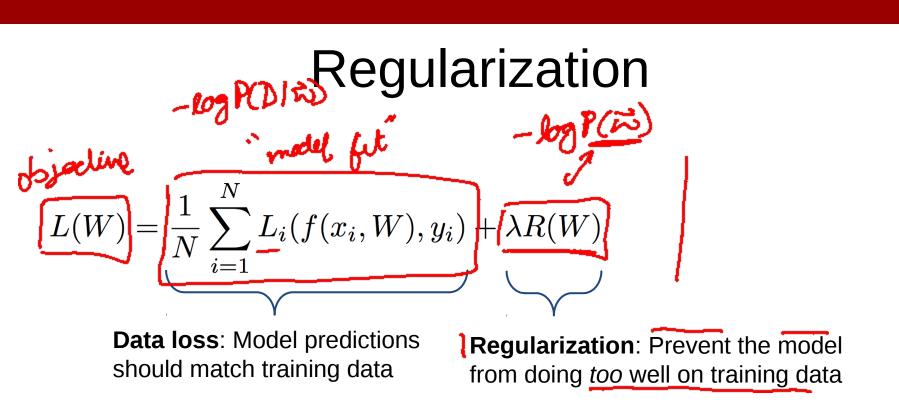


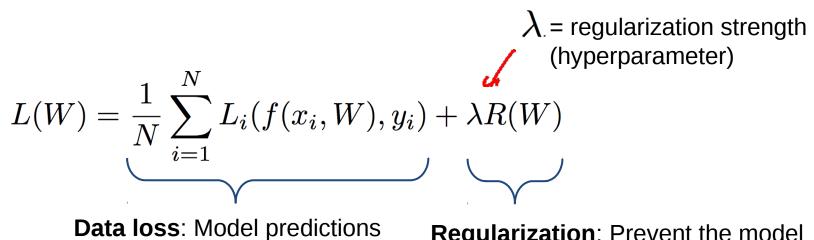
Plan for Today

- RegularizationNeural Networks



Data loss: Model predictions should match training data

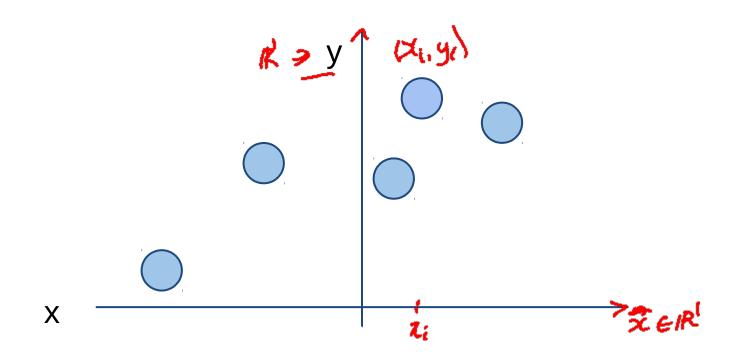




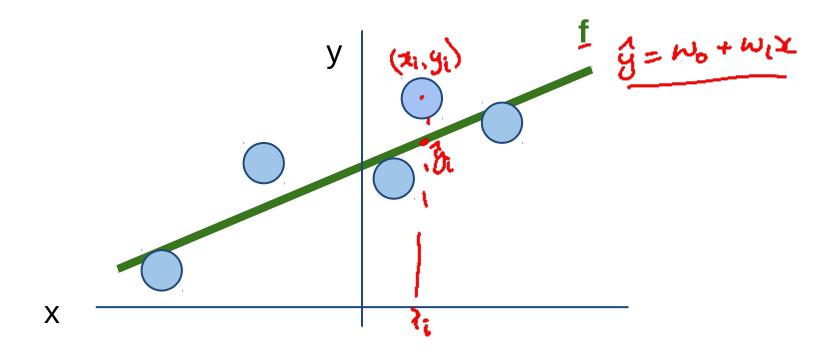
should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization Intuition in Polynomial Regression



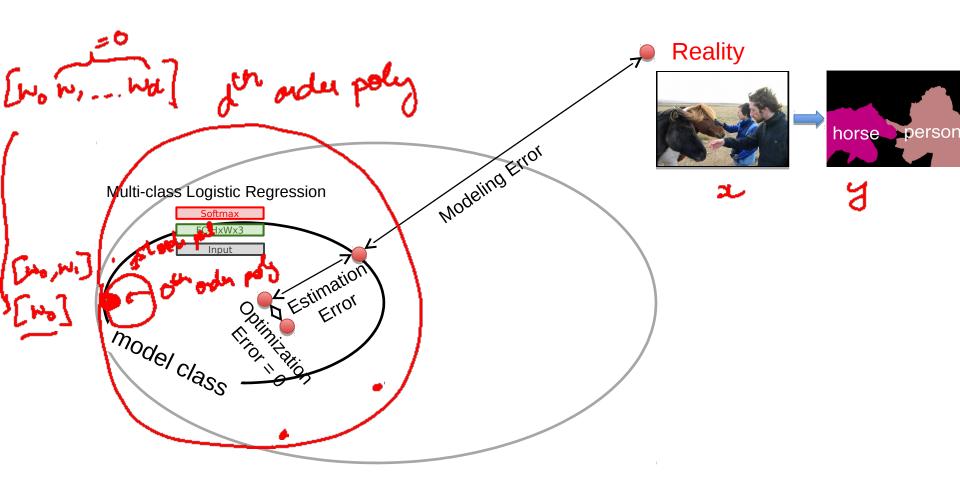
Polynomial Regression



Polynomial Regression ÿ= e^{ch} Naz min L(w, b)- ジネネ hineog ing D も \leq

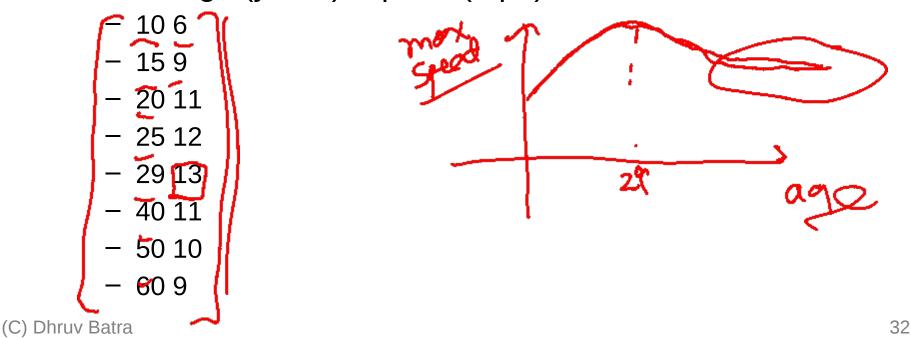
Polynomial Regression

Error Decomposition

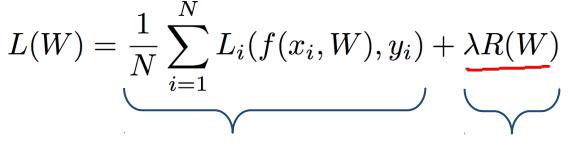


Polynomial Regression

- Demo: <u>https://arachnoid.com/polysolve/</u>
- You are a scientist studying runners.
 - You measure average speeds of the best runners at different ages.
- Data: Age (years), Speed (mph)



 $\lambda_{.}$ = regularization strength (hyperparameter)



Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

 $\lambda_{.}$ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^{2}$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$

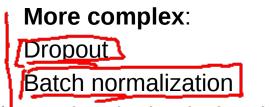
 $\lambda_{\rm c}$ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examplesMore ofL2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ DropotL1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Batch rElastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Stochar



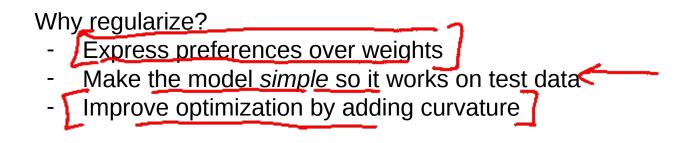
Stochastic depth, fractional pooling, etc

 $\lambda_{.}$ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

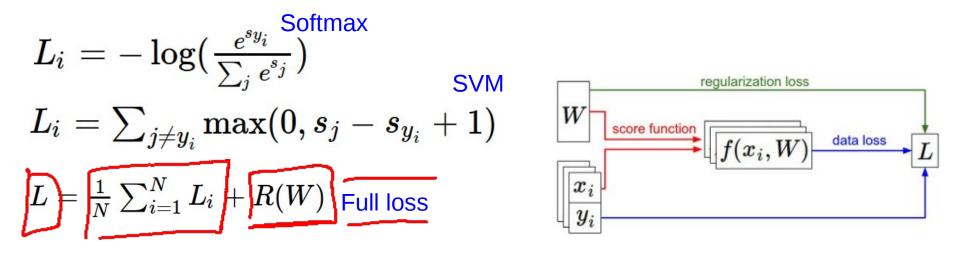


Recap

- We have some dataset of (x,y)
- We have a **score function**: *s*

$$s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$$

- We have a loss function:



Recap

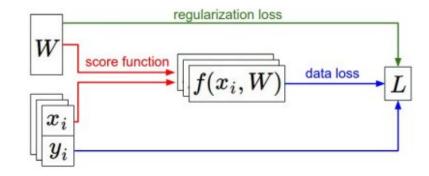
How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function**:

$$s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$$

- We have a loss function:

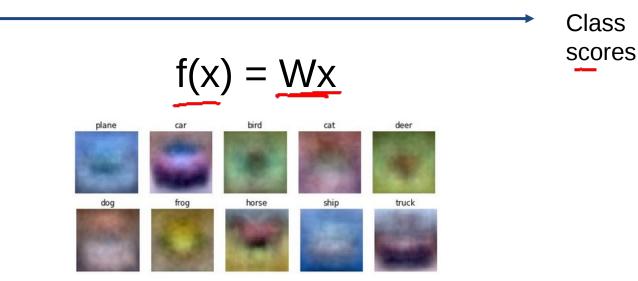
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss



Next: Neural Networks

So far: Linear Classifiers

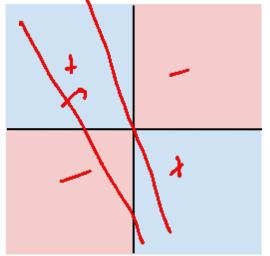
"Row Inpud"



Hard cases for a linear classifier

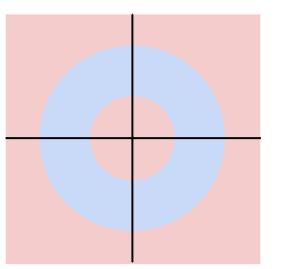
Class 1: First and third quadrants

Class 2: Second and fourth quadrants



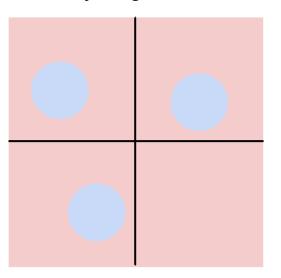
Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

Class 2: Everything else



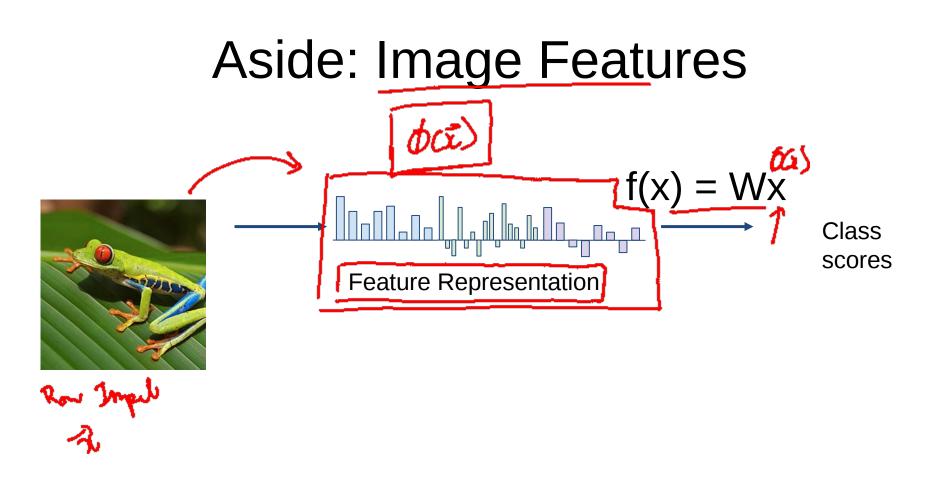
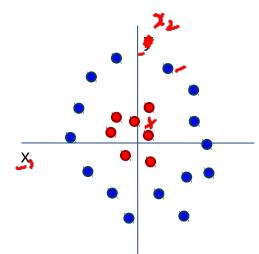


Image Features: Motivation



Cannot separate red and blue points with linear classifier

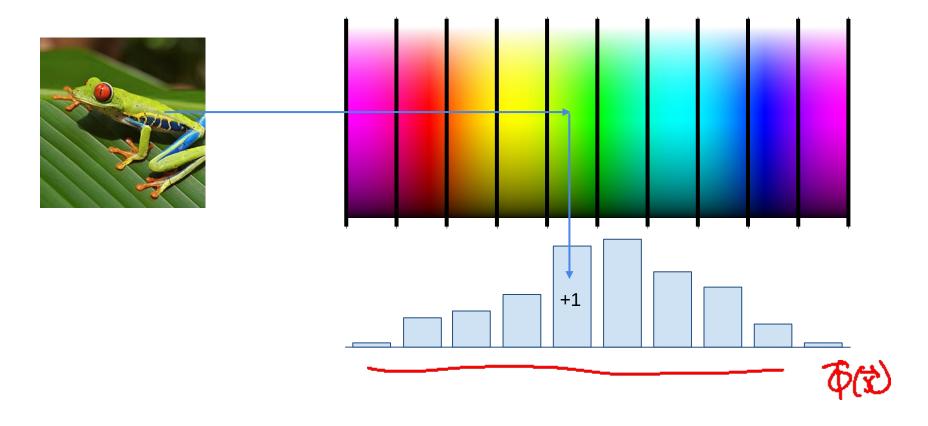
Image Features: Motivation r $f(x, y) = (r(x, y), \theta(x, y))$

Cannot separate red and blue points with linear classifier

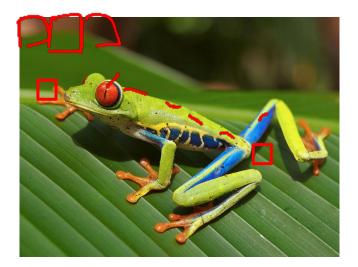
Х

After applying feature transform, points can be separated by linear classifier

Example: Color Histogram

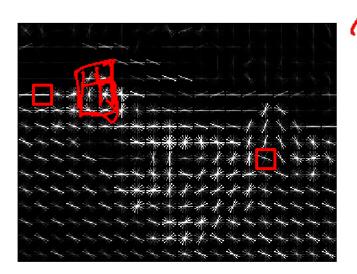


Example: Histogram of Oriented Gradients (HoG)

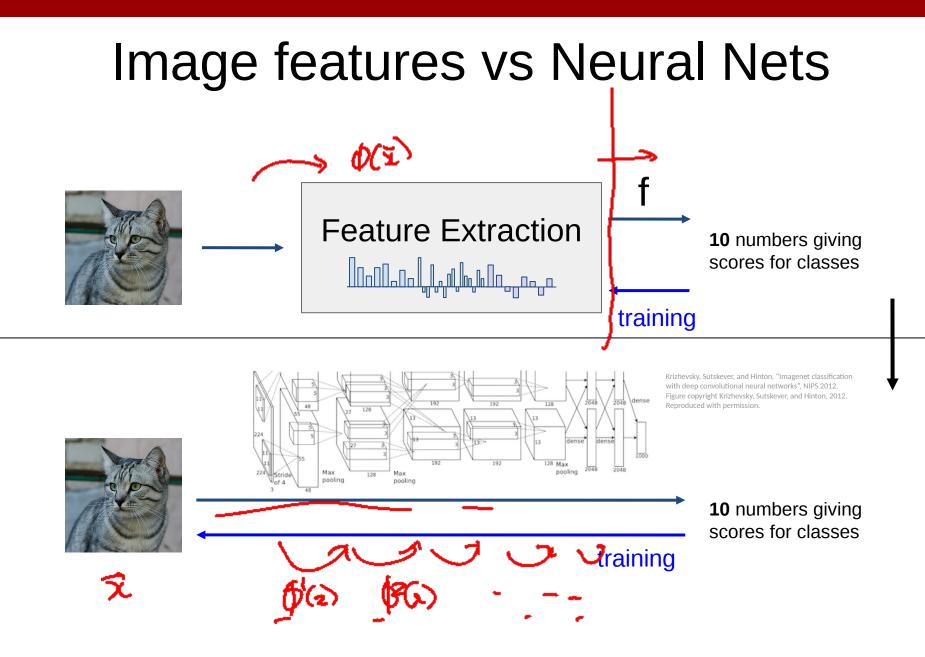


Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

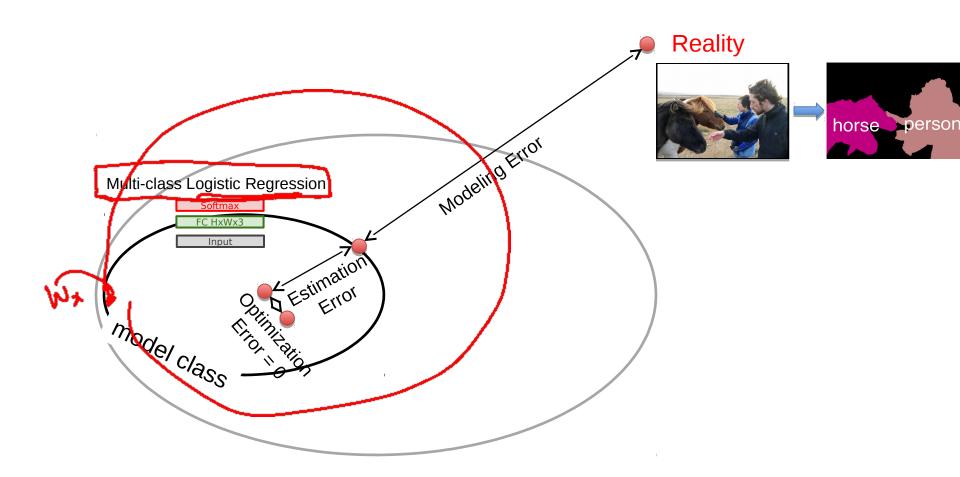
Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

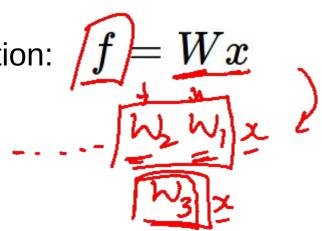


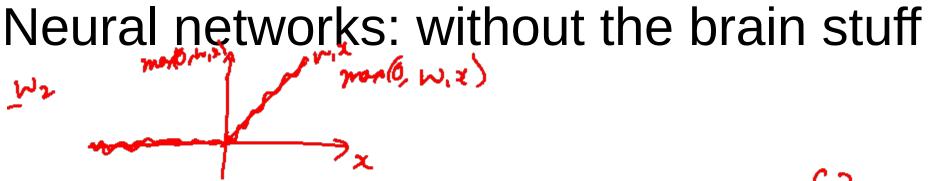
Error Decomposition



Neural networks: without the brain stuff $\mathcal{M} = \{h: X \rightarrow Y\}$

(**Before**) Linear score function:



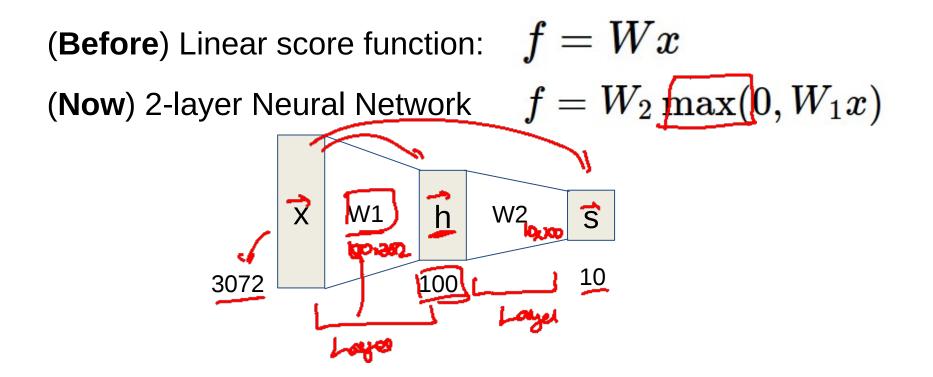


(**Before**) Linear score function:

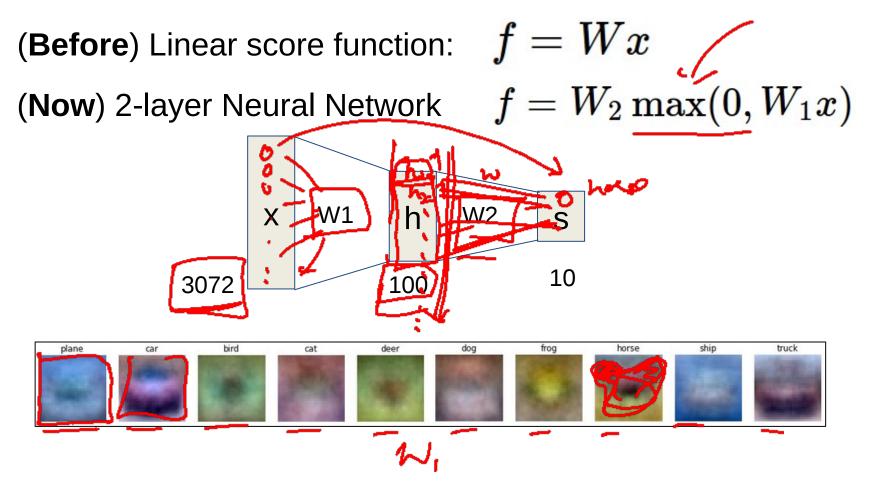
(Now) 2-layer Neural Network

max

Neural networks: without the brain stuff



Neural networks: without the brain stuff

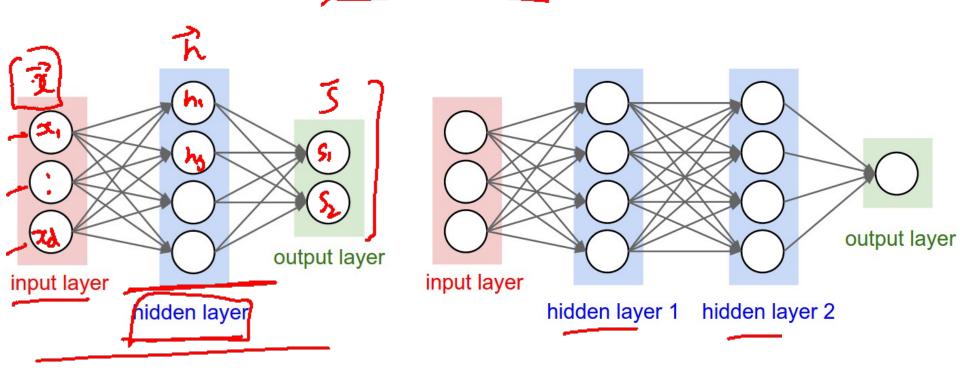


Neural networks: without the brain stuff $\mathcal{L}(\mathcal{W}, \mathcal{W}, \mathcal{Y}, \mathcal{Y}) = \mathcal{L}(\mathcal{W}, \mathcal{Y})$

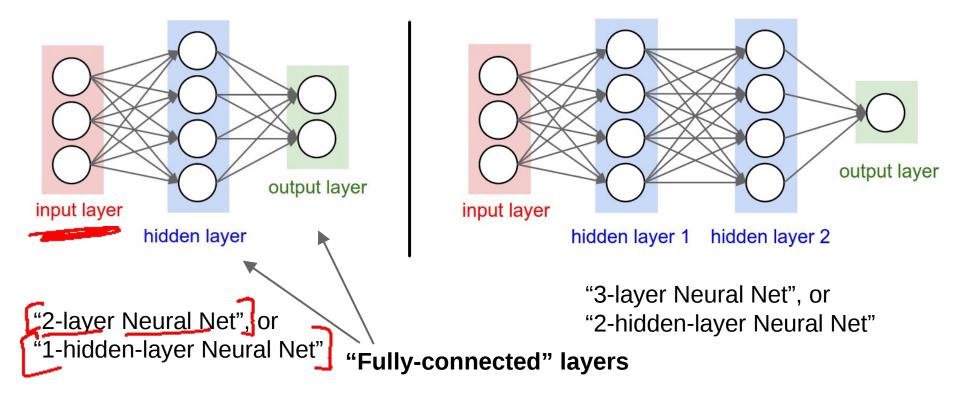
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1x))$ $\overrightarrow{s} = W_3 \max(0, W_2 \max(0, W_1x))$

Multilayer Networks

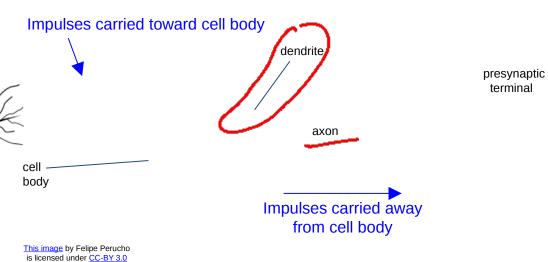
- Cascaded "neurons"
- The output from one layer is the input to the next
- Each layer has its own sets of weights

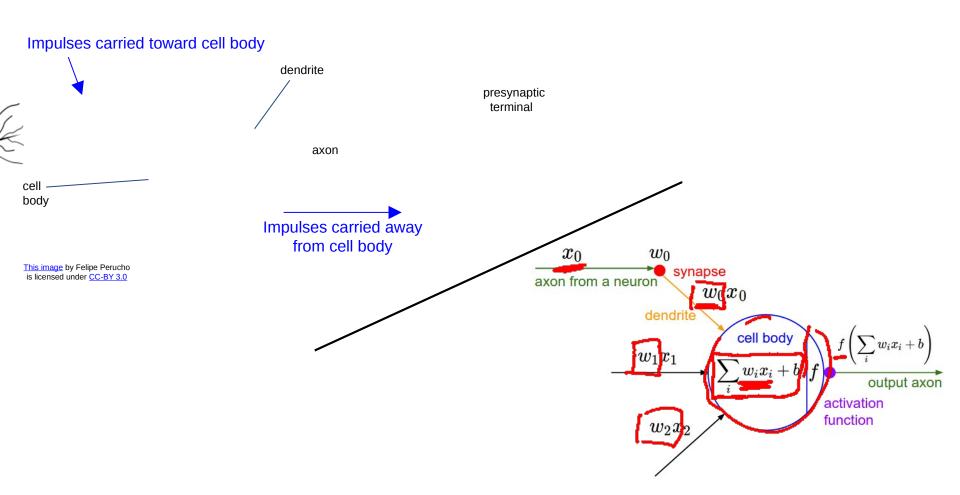


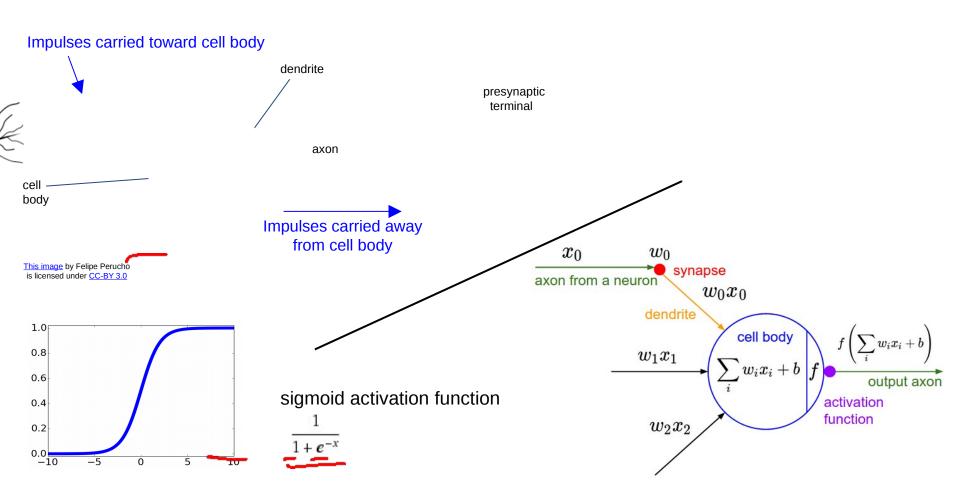
Neural networks: Architectures



This image by Fotis Bobolas is licensed under CC-BY 2.0







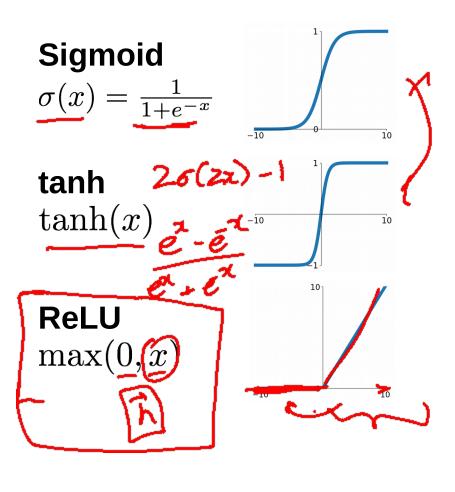
Be very careful with your brain analogies!

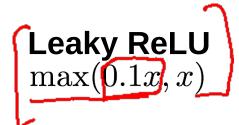
Biological Neurons:

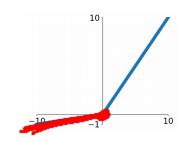
- Many different types
 - Dendrites can perform complex non-linear computations
 - Synapses are not a single weight but a complex non-linear dynamical system
 - Rate code may not be adequate

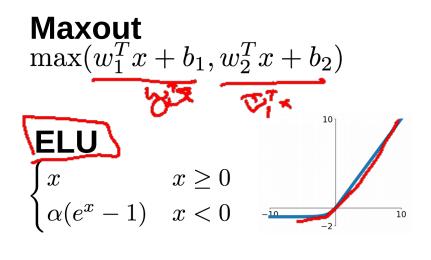
[Dendritic Computation. London and Hausser]

Activation functions



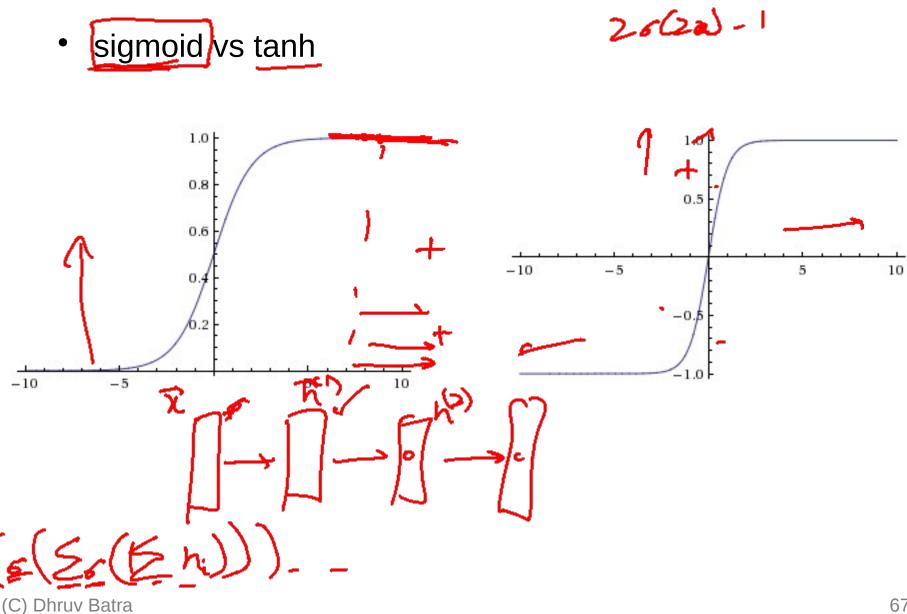






S

Activation Functions



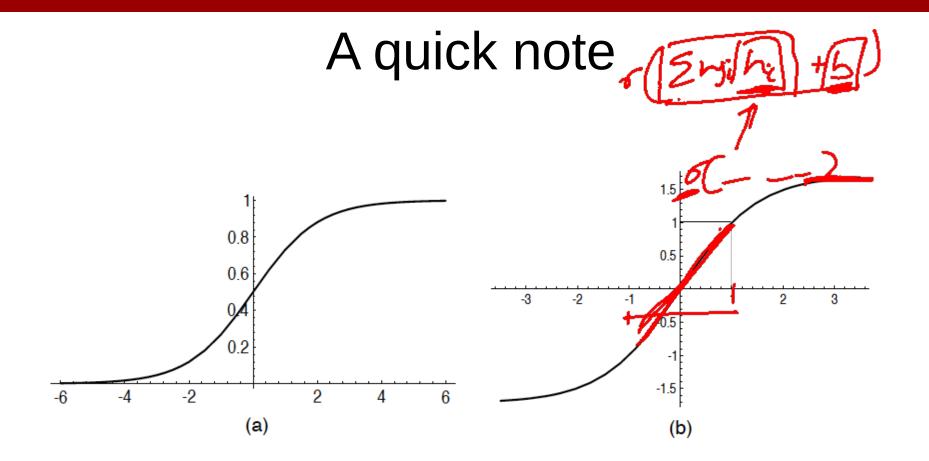
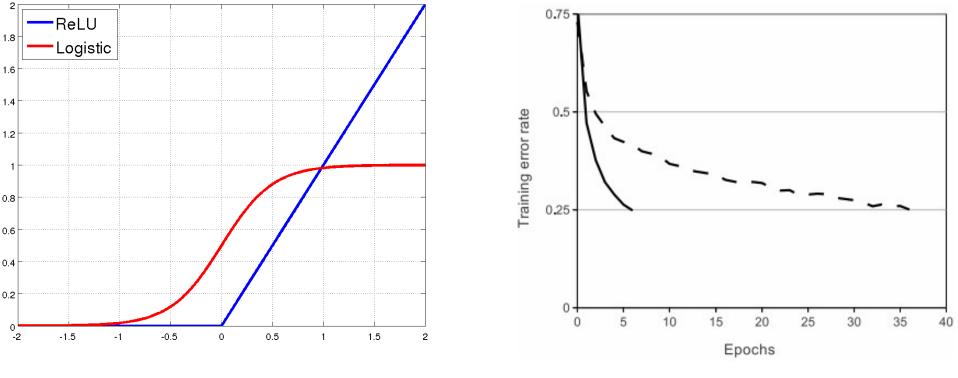


Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)



[Krizhevsky et al., NIPS12]

Demo Time

<u>https://playground.tensorflow.org</u>