CS 4803 / 7643: Deep Learning

Topics:

\author{

- Optimization
 - Computing Gradients
}

Dhruv Batra
Georgia Tech

Administrativia

$\left[\begin{array}{l}\text { HW1 Reminder } \\ \text { - Due: 09/09, 11:59pm }\end{array}\right]$

Recap from last time

(C) Dhruv Batra

Regularization

λ = regularization strength
(hyperparameter)

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)+\lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Occam's Razor:
"Among competing hypotheses, the simplest is the best"
William of Ockham, 1285-1347

Regularization

$\lambda=$ regularization strength
(hyperparameter)

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization: $R(W)=\left[\sum_{k} \sum_{l} W_{k, l}^{2}\right]$
L1 regularization: $\left.R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|\right]$
Elastic net (L1 + L2): $R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$ Stochastic depth, fractional pooling, etc

So far: Linear Classifiers

Hard cases for a linear classifier

Class 1:
First and third quadrants
Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2
Class 2:
Everything else

Class 1:
Three modes
Class 2:
Everything else

Image features vs Neural Nets

Neural networks: without the brain stuff

(Before) Linear score function: $f=\underbrace{W x}$

Neural networks: without the brain stuff

$\begin{array}{ll}\text { (Before) Linear score function: } & f=\bar{W} x \\ \text { (Now) 2-layer Neural Network } & f=W_{2} \max \left(0, \underline{W}_{1} x\right)\end{array}$

Neural networks: without the brain stuff

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: without the brain stuff

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: without the brain stuff

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
\left.f=\underline{W_{3} \max }\left(0, W_{2} \underline{\max (0}, W_{1} x\right)\right)
$$

Multilayer Networks

- Cascaded "neurons"
- The output from one layer is the input to the next
- Each layer has its own sets of weights

Activation functions

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

Leaky ReLU
$\max (0.1 x, x)$

Maxout
$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Plan for Today

[- Optimization

- Computing Gradients

Optimization

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
- f: X \triangle Y (the "true" mapping / reality)
- Data
- $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}\right)$
- Model / Hypothesis Class
- $\{\mathrm{h}: \mathrm{X} \boldsymbol{\mathrm { Y }}$ \}
- e.g. $y=h(x)=\operatorname{sign}\left(w^{\top} x\right)$
- Loss Function
- How good is a model wrt my data D?

- Find best h in model class.

Demo Time

- https://playground.tensorflow.org

$$
\min _{\vec{\omega}} L(\omega)
$$

Strategy: Follow the slope
Gradient
Dosont

What is slope?

- In 1-dimension the derivative of a function:

$$
\left.\left[\frac{d f(x)}{d x}\right]=\lim _{h \rightarrow 0} \frac{f(x+\underline{h})-f(x)}{\underline{h}}\right)
$$

What is slope?
$L(\vec{\omega})$

- In d-dimension, recall partial derivatives:

$$
\begin{aligned}
& \Rightarrow \quad f: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad f(\vec{x}) \quad \underset{x}{ } \in \mathbb{R}^{d} \\
& \frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}-x_{i}+h_{n}\right.}{\left.-\cdots x_{d}\right)-f\left(x_{1} \ldots x_{d}\right)}{ }_{h}^{\text {and }}
\end{aligned}
$$

What is slope?

- The gradient is the vector of (partial derivatives) along each dimension

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

 with the gradient
http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
\qquad
while True:
weights_grad = evaluate_gradient(loss fun, data, weights)

$$
\vec{n}^{(0)}=\text { Initialise }
$$

fo a $t=1,2, \ldots$, exhausted

Gradient Descent has a problem

$$
\begin{gathered}
L(W)=\frac{\square}{\frac{1}{N}} \sum_{i=1}^{N} L_{i}\left(x_{i}, \underline{y_{i}}, \underline{W}\right)+\underline{\lambda R(W)} \\
\nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{gathered}
$$

Full sum expensive
when N is large!

(Stochastic) Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!
[Approximate sum] using a minibatch of examples
32 / 64 / 128 common

\# Vanilla Minibatch Gradient Descent

while True:
data_batch $=$ sample_training_data(data, 256) \# sample 256 examples
5 weights grad = evaluate_gradient(loss_fun, data_batch, weights)
Gweights += - step_size * weights_grad \# perform parameter update

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W)= & \frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right) \\
& =\text { mean-oves- } N\left(\nabla_{w} L_{i}\right)_{i c t} \\
& \approx \text { mean-oree-B }(.)
\end{aligned}
$$

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
{ }_{V} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


How do we compute gradients?

- [Analytic or "Manual" Differentiation] "pen erapes"
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
- Forward mode AD
- Reverse mode AD

How do we compute gradients?

Analytic or "Manual" Differentiation
[. Symbolic Differentiation
[- Numerical Differentiation

- Automatic Differentiation
- Forward mode AD
- Reverse mode AD
- aka "backprop"

(C) Dhruv Batra

current W:	$\underline{\mathbf{W}}+\underline{\mathbf{h}}$ (first dim):	gradient dW:
[0.34,	$\rightarrow[0.34+0.0001$	[?,
-1.11,	-1.11,	?
0.78,	0.78,	?,
0.12,	0.12,	?
0.55,	0.55,	?
2.81,	2.81,	
-3.1,	-3.1,	?
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$ $\text { loss } 1.25322$?,...]
	$\frac{0 \text { oss } 1.25322}{L\left(x_{1}-1, n_{2}\right.}$	

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,
-1.11,	-1.11,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25322

gradient dW:

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient $\mathbf{d W}$:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?$,
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25353	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
[0.34,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	$\mathbf{0}, 6$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$
0.55,	0.55,	$(1.25353-1.25347) / 0.0001$
2.81,	2.81,	$=0.6$
-3.1,	-3.1,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current $\mathbf{W}:$	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient $\mathbf{d W}$:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W: $\quad \mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55 ,
2.81,
-3.1,
-1.5,
$0.33, \ldots$]
loss 1.25347 loss 1.25347
$[0.34$,
-1.11,
$0.78+0.0001,-$
$0.12, r$
$0.55,-$
2.81,
-3.1,
-1.5,
$0.33, \ldots$]

gradient dW:

$$
L(\vec{\omega}) \quad \frac{\vec{\omega} \in \mathbb{R}^{d}}{d=I B}
$$

Numerical vs Analytic Gradients

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) [Analytic gradient Fast :) exact :) error-prone :(]

In practice: Derive analytic gradient, check your implementation with numerical gradient.
This is called a gradient check.

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation

- Numerical Differentiation

Automatic Differentiation

- Forward mode AD
- Reverse mode AD
- aka "backprop"

