
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– Analytical Gradients
– Automatic Differentiation

– Computational Graphs
– Forward mode vs Reverse mode AD



Administrativia
• HW1 Reminder

– Due: 09/09, 11:59pm
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Recap from last time
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Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient. 
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



Plan for Today
• Analytical Gradients

• Automatic Differentiation
– Computational Graphs
– Forward mode vs Reverse mode AD

(C) Dhruv Batra 12



Example: Logistic Regression
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Vector/Matrix Derivatives Notation
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Vector/Matrix Derivatives Notation
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Vector Derivative Example
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Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Graphical view
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Chain Rule: Cascaded
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Chain Rule: How should we multiply?
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Example: Logistic Regression
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Logistic Regression Derivatives
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Logistic Regression Derivatives
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

    implementing chain-rule on computation graphs
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x

W

hinge 
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph



(C) Dhruv Batra 34Figure Credit: Andrea Vedaldi

Neural Network Computation Graph



Any DAG of differentiable 
modules is allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 35

Computational Graph



Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 36



Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Directed Acyclic Graphs (DAGs)
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Computational Graphs
• Notation
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Example
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+

sin( )

x1 x2

*



HW0
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HW0 Submission by Samyak Datta



Logistic Regression as a Cascade
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Given a library of simple functions

Compose into a

complicate function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

    implementing chain-rule on computation graphs
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Forward mode vs Reverse Mode
• Key Computations
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g

Forward mode AD
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Reverse mode AD



Example: Forward mode AD
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+

sin( )

x1 x2

*



Example: Forward mode AD

(C) Dhruv Batra 49

+

sin( )

x1 x2

*



Example: Forward mode AD
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+

sin( )

x1 x2

*
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+

sin( )

x1 x2

*

Example: Forward mode AD
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+

sin( )

x1 x2

*

Example: Forward mode AD



(C) Dhruv Batra 53

+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another input variable x3?
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+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another input variable x3?
A: more sophisticated graph; 
d “forward props” for d variables
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+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another output variable f2?



(C) Dhruv Batra 56

+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another output variable f2?
A: more sophisticated graph; 

single “forward prop”



Example: Reverse mode AD
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+

sin( )

x1 x2

*



Example: Reverse mode AD
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+

sin( )

x1 x2

*
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Example: Reverse mode AD

+

sin( )

x1 x2

*



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another input variable x3?
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another input variable x3?
A: more sophisticated graph; 

single “backward prop”
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another output variable f2?
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another output variable f2?
A: more sophisticated graph; 
c “backward props” for c vars



Forward mode vs Reverse Mode
• x  Graph  L
• Intuition of Jacobian
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Forward Pass vs 
Forward mode AD vs Reverse Mode AD
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+

sin( )

x1 x2

*

+

sin( )

x2

*

x1

+

sin( )

x1 x2

*



Forward mode vs Reverse Mode
• What are the differences? 
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+

sin( )

x2

*

+

sin( )

x1 x2

*

x1



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?

(C) Dhruv Batra 68



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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