CS 4803 / 7643: Deep Learning

Topics:

- Automatic Differentiation
 - (Finish) Forward mode vs Reverse mode AD
 - Patterns in backprop

Dhruv Batra Georgia Tech

Administrativia

- HW1 Reminder Due: 09/09, 11:59pm
- HW2 out on 9/10
 - ScheduleL<u>https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/_</u>
- Project discussion next class

Recap from last time

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
 - Numerical Differentiation
 - Automatic Differentiation

 - Forward mode ADReverse mode AD
 - aka "backprop"

Vector/Matrix Derivatives Notation x, y 6/R ¥ YEIR ZER 03 02 X, YERMXN Ser J num = dem den=din 2 (C) Dhruv Batra

Extension to Tensors

E IR^{diz-2}dn X CIX--XCn IR e Y (:) NOC. (:) Jacobian matri-"

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters 🚧
 - Output = Loss
 - Scheduling = Topological ordering
- Auto-Diff
 - A family of algorithms for implementing chain-rule on computation graphs

Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
 - Directed edges
 - No (directed) cycles
 - Underlying undirected cycles okay

(C) Dhruv Batra

Computational Graphs - MAG

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- Auto-Diff
 A family of algorithms for implementing chain-rule on computation graphs

Plan for Today

- Automatic Differentiation
 - (Finish) Forward mode vs Reverse mode AD
 - Backprop
 - Patterns in backprop

Example: Forward mode AD

$$a_{1} = 0$$
 a_{1} a_{1} $f(x_{1}, x_{2}) = \sin(x_{1}) + x_{1}x_{2}$
 $a_{3} = 0$ a_{1} a_{3} $b_{1} + b_{2}$ a_{3} a_{3} $b_{1} + b_{2}$ $b_{3} = b_{1} + b_{2} + b_{3} +$

Example: Forward mode AD

$$f(x_1, x_2) = \sin(x_1) + x_1 x_2$$

Gradients add at branches

Duality in Fprop and Bprop

Example: Reverse mode AD

$$f(x_1, x_2) = \sin(x_1) + x_1 x_2$$

Example: Reverse mode AD

$$f(x_1, x_2) = \sin(x_1) + x_1 x_2$$

• What are the differences?

- What are the differences?
- Which one is faster to compute?
 Forward or backward?
 Depends
 Js
 Js

- 👱 🗹 Graph 🔼
- Intuition of Jacobian

- What are the differences?
- Which one is faster to compute?
 Forward or backward?
- Which one is more memory efficient (less storage)?
 Forward or backward?

Plan for Today

- Automatic Differentiation
 - (Finish) Forward mode vs Reverse mode AD
 - Backprop
 - Patterns in backprop

Neural Network Computation Graph

Computational Graph

Key Computation: Forward-Prop

Key Computation: Back-Prop

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 1: Compute Loss on mini-batch [F-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]
- Step 3: Use gradient to update parameters

Backpropagation: a simple example

Backpropagation: a simple example

Q: What is an **add** gate?

add gate: gradient distributor

add gate: gradient distributorQ: What is a max gate?

add gate: gradient distributormax gate: gradient router

add gate: gradient distributormax gate: gradient routerQ: What is a mul gate?

add gate: gradient distributormax gate: gradient routermul gate: gradient switcher

Gradients add at branches

Duality in Fprop and Bprop

