
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– Automatic Differentiation

– (Finish) Forward mode vs Reverse mode AD
– Patterns in backprop



Administrativia
• HW1 Reminder

– Due: 09/09, 11:59pm

• HW2 out on 9/10
• Schedule: https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/

• Project discussion next class
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https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/


Recap from last time
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How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Vector/Matrix Derivatives Notation
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Vector/Matrix Derivatives Notation
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Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Graphical view
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Chain Rule: Cascaded
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Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

    implementing chain-rule on computation graphs
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Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay
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Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Computational Graphs
• Notation
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Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

    implementing chain-rule on computation graphs
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Forward mode AD
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Reverse mode AD



Plan for Today
• Automatic Differentiation

– (Finish) Forward mode vs Reverse mode AD
– Backprop
– Patterns in backprop
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Example: Forward mode AD
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Q: What happens if there’s 
another input variable x3?
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+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another input variable x3?
A: more sophisticated graph; 
d+1 “passes” for d+1 variables
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another output variable f2?
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+

sin( )

x1 x2

*

Example: Forward mode AD

Q: What happens if there’s 
another output variable f2?
A: more sophisticated graph; 

d “passes” for variables



Example: Reverse mode AD
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Example: Reverse mode AD
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Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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Example: Reverse mode AD
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Example: Reverse mode AD
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Q: What happens if there’s 
another input variable x3?
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another input variable x3?
A: more sophisticated graph; 

single “backward prop”
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Example: Reverse mode AD

+
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x1 x2

*

Q: What happens if there’s 
another output variable f2?
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Example: Reverse mode AD

+

sin( )

x1 x2

*

Q: What happens if there’s 
another output variable f2?
A: more sophisticated graph; 
c “backward props” for c vars



Forward Pass vs 
Forward mode AD vs Reverse Mode AD
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Forward mode vs Reverse Mode
• What are the differences? 
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?
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Forward mode vs Reverse Mode
• x  Graph  L
• Intuition of Jacobian
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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Plan for Today
• Automatic Differentiation

– (Finish) Forward mode vs Reverse mode AD
– Backprop
– Patterns in backprop
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Neural Network Computation Graph
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Backprop



Any DAG of differentiable 
modules is allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 48

Computational Graph



Key Computation: Forward-Prop
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Key Computation: Back-Prop
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
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Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 56Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
• Step 3: Use gradient to update parameters
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor



add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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