CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Automatic Differentiation
 - Patterns in backprop
 - Jacobians in FC+ReLU NNs

Dhruv Batra Georgia Tech

Administrativia

- HW2 out Due: 09/23 11:59pm
 - Theory: Gradient descent, Hessians, Auto-diff, Convolutions
 - https://www.overleaf.com/project/5f4c143e06061d00013dd4f0 •
 - Implementation: ConvNets in Python and PyTorch
 - Bonus: Challenge on EvalAI
 - https://evalai.cloudcv.org/web/challenges/challenge-page/684/overview

Project

Goal

Chance to take on something open-ended

Encouraged to apply to your research

(computer vision, NLP, robotics,...)

- Main categories
 - Reproducibility
 - Pick a paper from a recent conference. Attempt to reproduce the method and validate claims.
 - Application/Survey
 - Compare a collection of existing algorithms on a new application domain of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing algorithm

(C) Dhruv Batra

Project

Rules Combine with other classes / research / credits / anything

- You have our blanket permission
- Get permission from other instructors; delineate different parts
- Must be done this semester.

Groups of 3-4

Expectations

20% of final grade individual effort equivalent to 1 HW

- Expectation scales with team size
- Most work will be done in Nov but please plan early.

Project Ideas

ML Reproducibility Challenge 2020

 <u>https://paperswithcode.com/rc2020</u>

RC2020

Browse State-of-the-Art

Methods Trends About

▶ RC2020

Registration

Task

Resources

ML Reproducibility Challenge 2020

Welcome to the ML Reproducibility Challenge 2020! This is already the fourth edition of this event (see V1, V2, V3), and we are excited this year to announce that we are broadening our coverage of conferences and papers to cover several new top venues, including: NeurIPS, ICML, ICLR, ACL, EMNLP, CVPR and ECCV.

The primary goal of this event is to encourage the publishing and sharing of scientific results that are reliable and reproducible. In support of this, the objective of this challenge is to investigate reproducibility of papers accepted for publication at top conferences by inviting members of the community at large to select a paper, and verify the empirical results and claims in the paper by reproducing the computational experiments, either via a new implementation or using code/data or other information provided by the authors.

All submitted reports will be peer reviewed and shown next to the original papers on Papers with Code. Reports will be peer-reviewed via OpenReview. Every year, a small number of these reports, selected for their clarity, thoroughness, correctness and insights, are selected for publication in a special edition of the journal ReScience. (see J1, J2).

TAs

Sameer Dharur

Hrishikesh Kale

Joanne Truong

Tianyu Zhan

Yihao Chen

Prabhav Chawla

Michael Piseno

Guillermo Nicolas Grande

Computing

- Major bottleneck
 - GPUs
- Options
 - Your own / group / advisor's resources
 - Google Cloud Credits
 - \$50 credits to every registered student courtesy Google
 - Google Colab
 - jupyter-notebook + free GPU instance

Administrativia

- **Project Teams**
 - https://gtvault-my.sharepoint.com
 - /:x:/g/personal/dbatra8_gatech_edu/EY4_65XOzWtOkX
 - SSz2WgpoUBY8ux2gY9PsRzR6KnglIFEQ?e=4tnKWI
 - **Project Title**
 - 1-3 sentence project summary TL;DR] change ok.
 - Te<u>am</u> member names

Recap from last time

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- Auto-Diff

A family of algorithms for

implementing chain-rule on computation graphs

Forward mode vs Reverse Mode

- 👱 🗹 Graph 🔼 🗋
- Intuition of Jacobian

Forward mode vs Reverse Mode

- What are the differences?
- Which one is faster to compute? Forward or backward?
- Which one is more memory efficient (less storage)?
 - Forward or backward?

Neural Network Computation Graph

Key Computation: Forward-Prop

Key Computation: Back-Prop

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 1: Compute Loss on mini-batch [F-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]
- Step 3: Use gradient to update parameters

Computational Graph

Plan for Today

- Automatic Differentiation •

 - F Patterns in backprop Jacobians in FC+ReLU NNs

Forward pass

 $w_2 = w_1 + w_2$

Q: What is an **add** gate?

add gate: gradient distributor

add gate: gradient distributor max gate: gradient router

add gate: gradient distributormax gate: gradient routerQ: What is a mul gate?

-12.00 2.00 -10.00 -20.00*2 + 2.00 1.00 z 2.00 2.00 2.00 max 2.00 w -1.00 0.00

Patterns in backprop $h_i = \overline{w}_i$ 3000 3.00 add gate: gradient distributor -8.00 -12.00 max gate: gradient router * 2.00 mul gate: gradient switcher -10.00 -20.00+ 2.00 1.00 z 2.00 2.00 2.00

w <u>-1.00</u>

max

2.00

Duality in Fprop and Bprop

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):	
#	
<pre>def forward(inputs):</pre>	
<pre># 1. [pass inputs to input gates]</pre>	
<pre># 2. forward the computational graph:</pre>	
<pre>for gate in self.graph.nodes_topologically_sorted():</pre>	
gate.forward()	
return loss # the final gate in the graph outputs the loss	
<pre>def backward():</pre>	7
<pre>for gate in reversed(self.graph.nodes_topologically_sorted()):</pre>	
<pre>gate.backward() # little piece of backprop (chain rule applie</pre>	ed)
return inputs_gradients	-

Modularized implementation: forward / backward API

Modularized implementation: forward / backward API

Example: Caffe layers

Create new file Upload files Find file History

Latest commit e687a71 21 days ago

a year ago a year ago

a year ago

a year ago

Branch: master - caffe / src / caffe / layers /

	base_conv_layer.cpp	enable dilated deconvolution	a year ago
	base_data_layer.cpp	Using default from proto for prefetch	3 months ago
I	base_data_layer.cu	Switched multi-GPU to NCCL	3 months ago
	batch_norm_layer.cpp	Add missing spaces besides equal signs in batch_norm_layer.cpp	4 months ago
	batch_norm_layer.cu	dismantle layer headers	a year ago
	batch_reindex_layer.cpp	dismantle layer headers	a year ago
	batch_reindex_layer.cu	dismantle layer headers	a year ago
	bias_layer.cpp	Remove incorrect cast of gemm int arg to Dtype in BiasLayer	a year ago
,	bias_layer.cu	Separation and generalization of ChannelwiseAffineLayer into BiasLayer	a year ago
1	bnll_layer.cpp	dismantle layer headers	a year ago
•	bnll_layer.cu	dismantle layer headers	a year ago
	Concat_layer.cpp	dismantle layer headers	a year ago
	concat_layer.cu	dismantle layer headers	a year ago
	Contrastive_loss_layer.cpp	dismantle layer headers	a year ago
	Contrastive_loss_layer.cu	dismantle layer headers	a year ago
	Conv_layer.cpp	add support for 2D dilated convolution	a year ago
	conv_layer.cu	dismantle layer headers	a year ago
	E crop_layer.cpp	remove redundant operations in Crop layer (#5138)	2 months ago
	E crop_layer.cu	remove redundant operations in Crop layer (#5138)	2 months ago
	Cudnn_conv_layer.cpp	dismantle layer headers	a year ago
	cudnn_conv_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago

cudnn_lcn_layer.cpp	dismantle layer headers	a year ago
Cudnn_lcn_layer.cu	dismantle layer headers	a year ago
cudnn_Irn_layer.cpp	dismantle layer headers	a year ago
cudnn_Irn_layer.cu	dismantle layer headers	a year ago
cudnn_pooling_layer.cpp	dismantle layer headers	a year ago
Cudnn_pooling_layer.cu	dismantle layer headers	a year ago
cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
Cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_softmax_layer.cpp	dismantle layer headers	a year ago
cudnn_softmax_layer.cu	dismantle layer headers	a year ago
cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
data_layer.cpp	Switched multi-GPU to NCCL	3 months ago
deconv_layer.cpp	enable dilated deconvolution	a year ago
deconv_layer.cu	dismantle layer headers	a year ago
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ago
dropout_layer.cu	dismantle layer headers	a year ago
dummy_data_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cu	dismantle layer headers	a year ago
elu_layer.cpp	ELU layer with basic tests	a year ago
elu_layer.cu	ELU layer with basic tests	a year ago
embed_layer.cpp	dismantle layer headers	a year ago
embed_layer.cu	dismantle layer headers	a year ago
euclidean_loss_layer.cpp	dismantle layer headers	a year ago
euclidean_loss_layer.cu	dismantle layer headers	a year ago
exp_layer.cpp	Solving issue with exp layer with base e	a year ago
exp laver cu	dismantle laver headers	a vear ano

Caffe is licensed under BSD 2-Clause

Caffe is licensed under BSD 2-Clause

Plan for Today

- Automatic Differentiation
 - Patterns in backprop
 Jacobians in FC+ReLU NNs

Backprop

