CS 4803 / 7643: Deep Learning

Topics:

Visualizing CNNs

Ramprasaath R. Selvaraju Salesforce Research

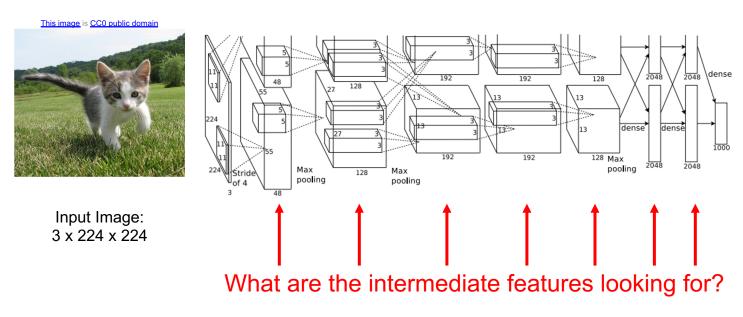
Plan for Today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect model decisions?
 - Occlusion maps
 - Salient or "important" pixels
 - · Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- How can we synthesize images to see what networks are looking for?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream
 - Feature inversion

Plan for Today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect decisions?
 - Occlusion maps
 - Salient or "important" pixels
 - Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- How can we synthesize images to see what networks are looking for?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream
 - Feature inversion

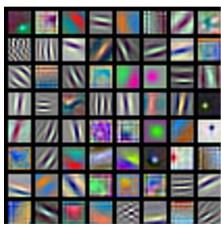
What do individual neurons look for in images?

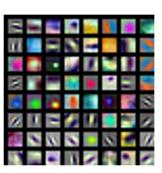


Class Scores: 1000 numbers

Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figure reproduced with permission.

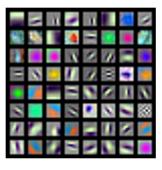
Visualizing filters in first layer



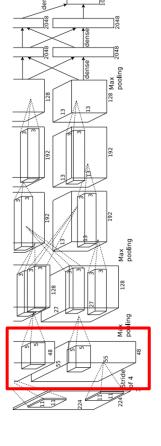


ResNet-18: 64 x 3 x 7 x 7

ResNet-101: 64 x 3 x 7 x 7



DenseNet-121: 64 x 3 x 7 x 7



AlexNet: 64 x 3 x 11 x 11

Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv 2014 He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Huang et al, "Densely Connected Convolutional Networks", CVPR 2017

Visualizing filters in intermediate layers

Visualize the filters/kernels (raw weights)

We can visualize filters at higher layers, but not that interesting

Weights:

Weights:

Weights:

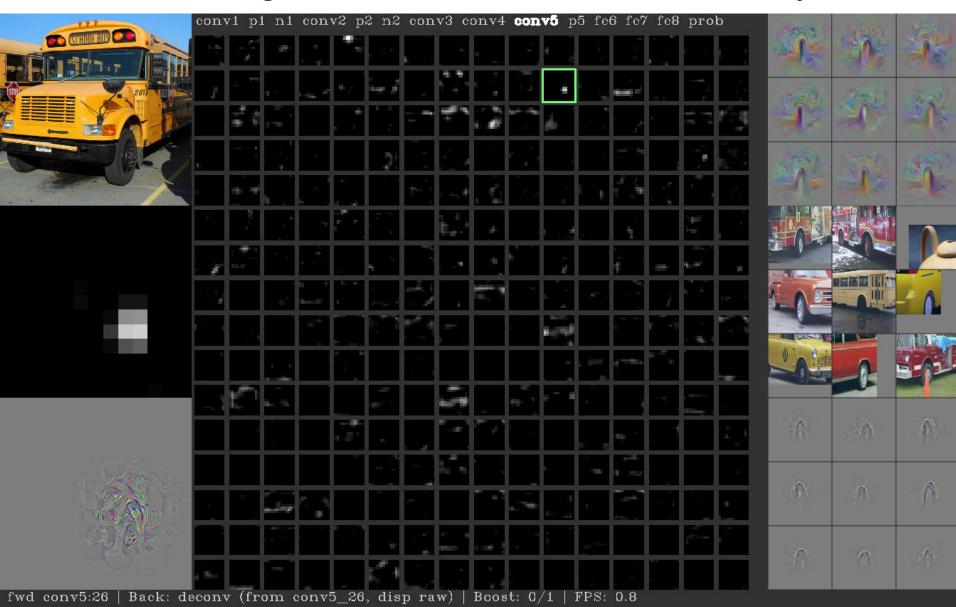
layer 1 weights

layer 2 weights

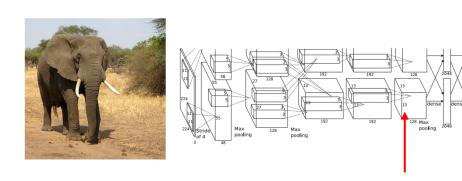
layer 3 weights $20 \times 20 \times 7 \times 7$

What do neuron activations look like?

Visualizing activations in intermediate layers



Maximally Activating Patches

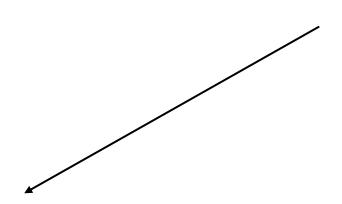


Pick a layer and a channel; e.g. conv5 is 128 x 13 x 13, pick channel 17/128

Run many images through the network, record values of chosen channel

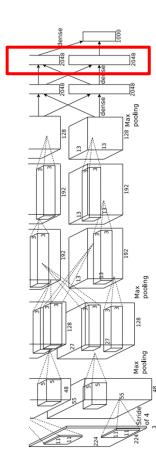
Visualize image patches that correspond to maximal activations

What does the last layer learn?



4096-dimensional feature vector for an image (layer immediately before the classifier)

Run the network on many images, collect the feature vectors

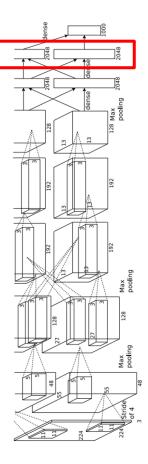


FC7 layer

Last Layer: Nearest Neighbors

4096-dim vector

Test image L2 Nearest neighbors in <u>feature</u> space



Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figures reproduced with permission.

Last Layer: Dimensionality Reduction

Visualize the "space" of FC7 feature vectors by reducing dimensionality of vectors from 4096 to 2 dimensions

Simple algorithm: Principal Component Analysis (PCA)

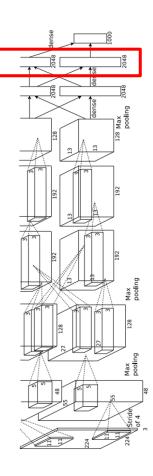
More complex: t-SNE

Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008 Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008 Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figure reproduced with permission.

See high-resolution versions at http://cs.stanford.edu/people/karpathy/cnnembed/



Plan for Today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect decisions from CNNs?
 - Occlusion maps
 - Salient or "important" pixels
 - Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- Can we synthesize network-specific images?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream
 - Feature inversion

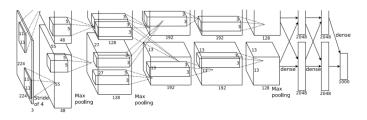
How pixels affect decisions?

Visual Explanations

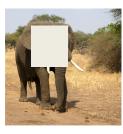
Where does an intelligent system "look" to make its predictions?

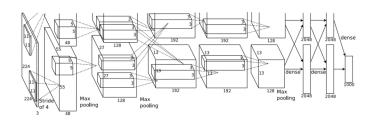
Which pixels matter: Occlusion Maps

Idea: Mask part of the image before feeding to CNN, check how much predicted probabilities change



P(elephant) = 0.95





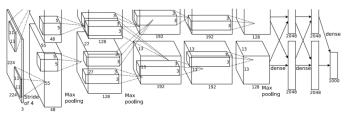
P(elephant) = 0.75

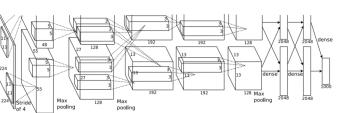
Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Boat image is CC0 public domain Elephant image is CC0 public domain Go-Karts image is CC0 public domain

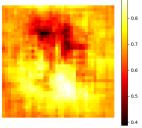
Which pixels matter: Occlusion Maps

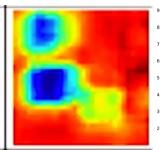
Mask part of the image before feeding to CNN, check how much predicted probabilities change





Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014





Faithful © **Very expensive** \otimes

What if our model was linear?

$$\langle \mathbf{w}_c, \mathbf{x} \rangle + b = S_c(\mathbf{x})$$

What if our model was linear?

$$\langle \left(\begin{smallmatrix} 100 \\ 0.1 \\ -0.1 \\ 510 \\ -200 \end{smallmatrix} \right) , \left(\begin{smallmatrix} 1 \\ 0.9 \\ -0.2 \\ 0.5 \\ -0.9 \end{smallmatrix} \right) + b = S_c(\mathbf{x})$$

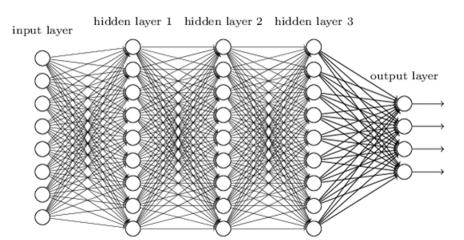
But it's not 🕾

$$\langle \mathbf{w}_c, \mathbf{x} \rangle + b = S_c(\mathbf{x})$$

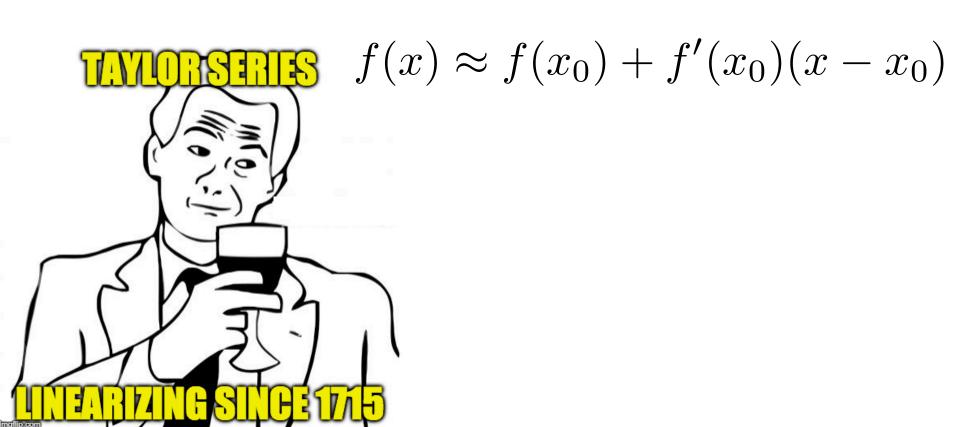
Can we make it linear?

$$f(\mathbf{x}) = S_c(\mathbf{x})$$

Deep neural network



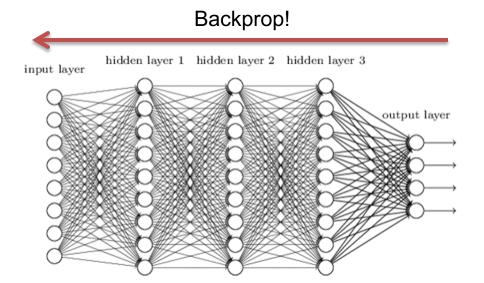
Taylor Series



Feature Importance in Deep Models

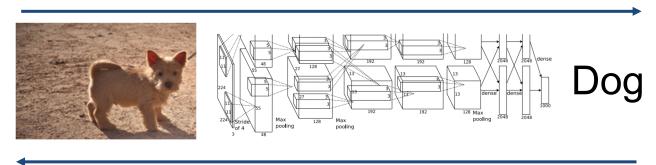
$$\mathbf{w}_c = \left. \frac{\partial S_c}{\partial \mathbf{x}} \right|_{\mathbf{x}_0}$$

$$\langle \mathbf{w}_c, \mathbf{x} \rangle + b \approx S_c(\mathbf{x})$$

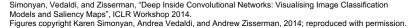


Which pixels matter: Saliency via Backprop

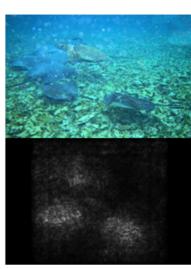
Forward pass: Compute probabilities



Compute gradient of (unnormalized) class score with respect to image pixels, take absolute value and max over RGB channels.

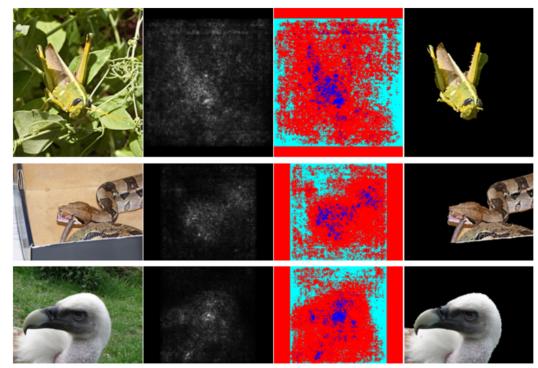


Saliency Maps



Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Saliency Maps: Segmentation without supervision



Use GrabCut on saliency map

Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

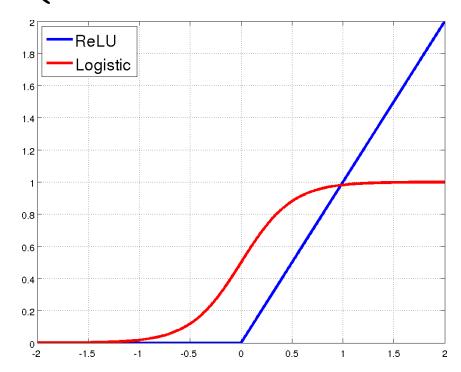
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

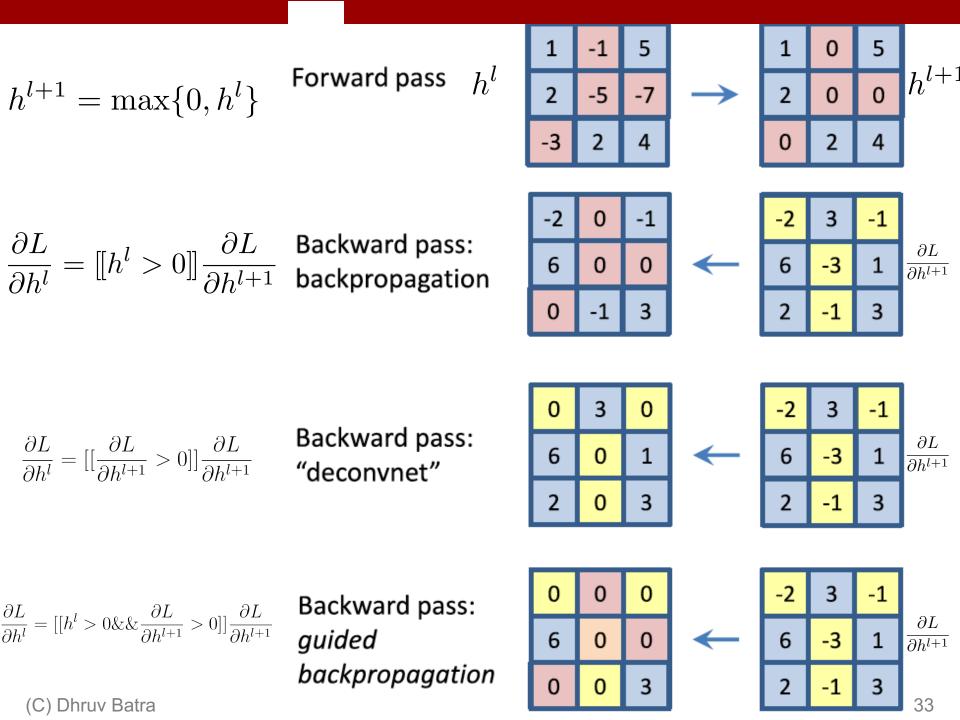
Rother et al, "Grabcut: Interactive foreground extraction using iterated graph cuts", ACM TOG 2004

Remember ReLUs?

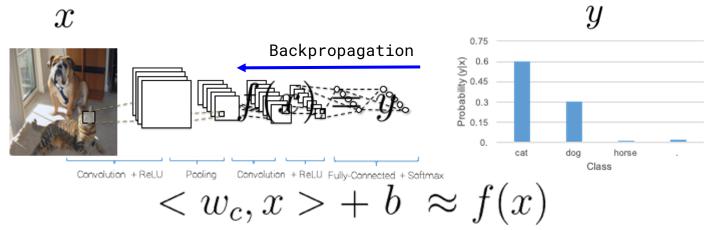
$$h^{l+1} = \text{ReLU}(h^l) = \max\{0, h^l\}$$

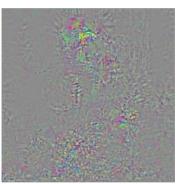
$$\frac{\partial h^{l+1}}{\partial h^l} = \begin{cases} 0 & \text{if } h^l < 0\\ 1 & \text{if } h^l > 0 \end{cases} = [[h^l > 0]]$$





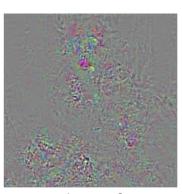
Gradient-based visualizations



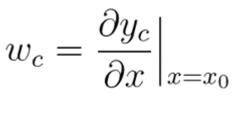


Backprop for `cat'

Noisy



Backprop for `dog'



Guided Backprop for `cat'

Guided Backprop for `dog'

Not Class-Discriminative

Grad-CAM

Visual Explanations from Deep Networks via Gradient-based Localization [ICCV '17]

Ramprasaath Selvaraju Michael Cogswell

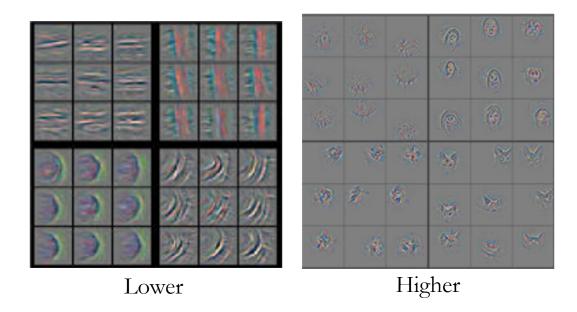
Devi Parikh

Abhishek Das

Dhruv Batra

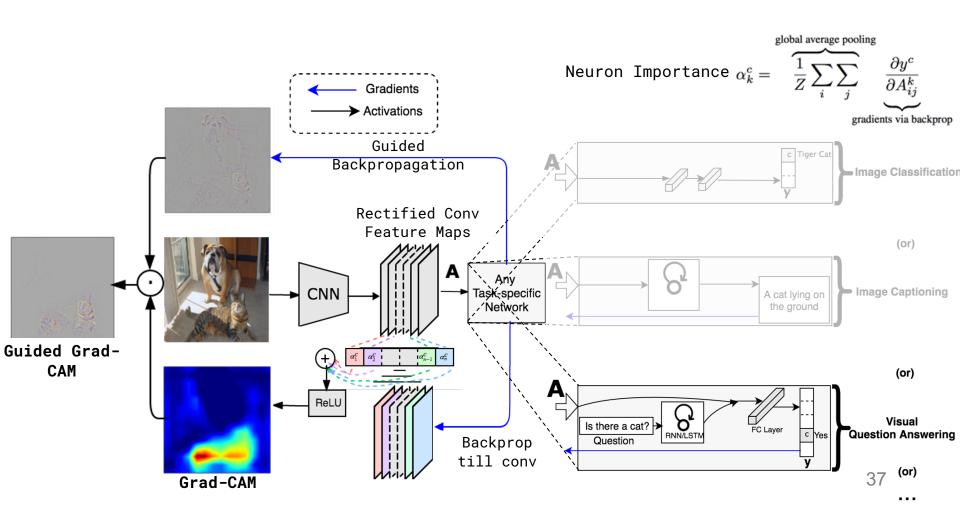
Grad-CAM Motivation

Perturb semantic neurons in the image and see how it affects the decision

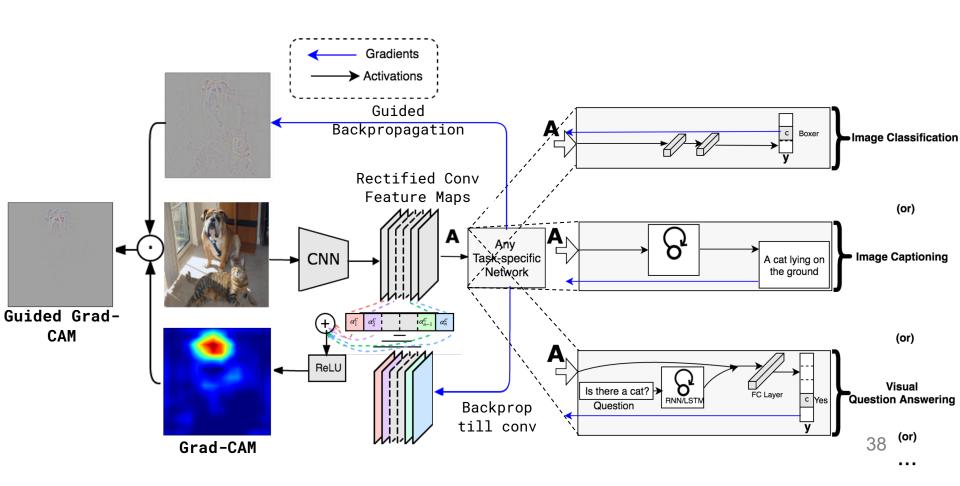


 Last convolutional layer forms a best compromise between high-level semantics and detailed spatial resolution

Guided Grad-CAM



Guided Grad-CAM



Interesting findings with Grad-CAM

 Even simple non-attention based CNN + LSTM models learn to look at appropriate regions

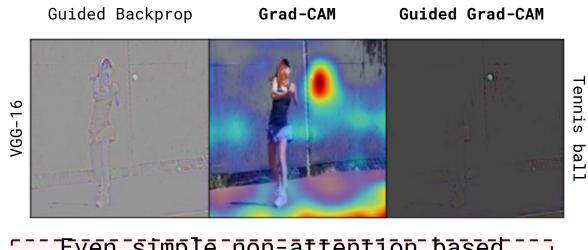
Grad-CAM for captioning

A group of people flying kites on a beach

A man is sitting at a table with a pizza

Grad-CAM for VQA

What is the person hitting?



Even simple non-attention based CNN+LSTM models attend to .____appropriate regions _____

Interesting findings with Grad-CAM

- Even simple non-attention based CNN + LSTM models learn to look at appropriate regions
- Unreasonable predictions often have reasonable explanations

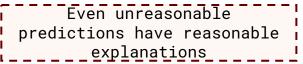
Analyzing Failure modes with Grad-CAM

Predicted: Car mirror

Ground-truth: Volcano

Predicted: Vine snake

Ground-truth: coil



Grad-CAM: Gradient-weighted Class Activation Mapping

Sirad-CAM highlights regions of the image the nattooing model looks at while making predictions.

Try Grad-CAM: Sample Images

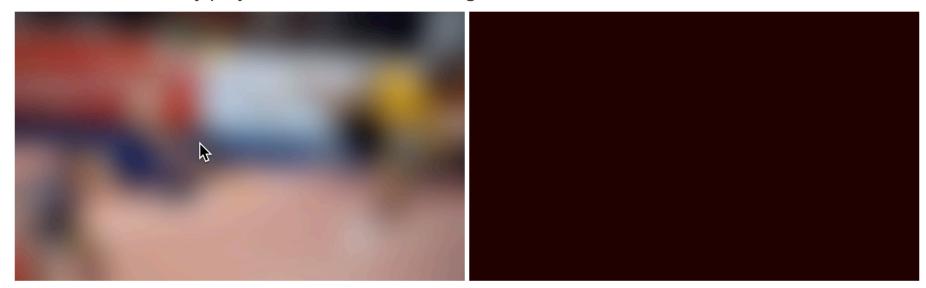
Plan for Today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect decisions?
 - Occlusion maps
 - Salient or "important" pixels
 - Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- Can we synthesize network-specific images?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream
 - Feature inversion

(C) Dhruv Batra 47

Do CNNs look at same regions as humans?

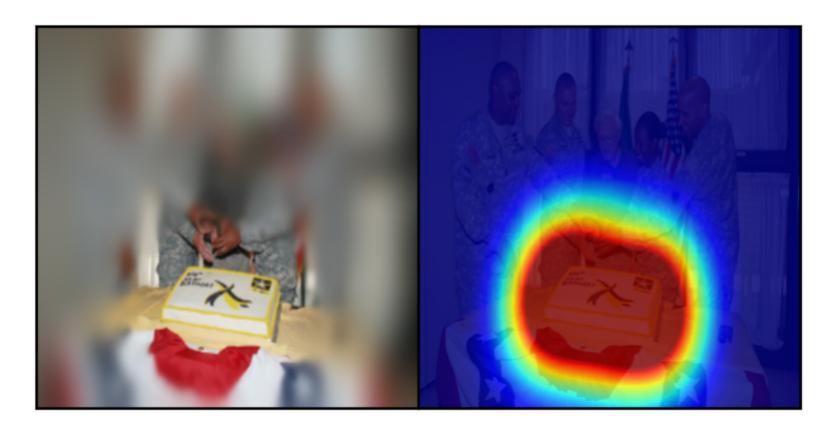
Question: How many players are visible in the image?



BLUR IMAGE

Answer:

3

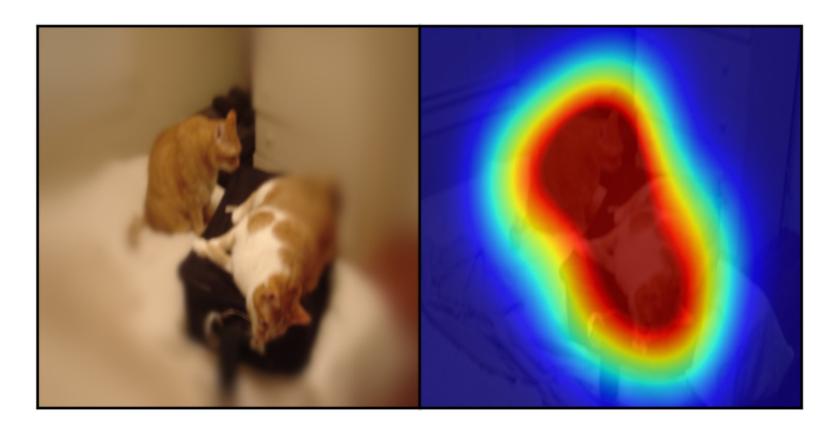


What food is on the table? Cake

Slide Credit: Abhishek Das 55

What animal is she riding? Horse

Slide Credit: Abhishek Das 56



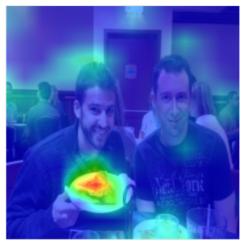
What number of cats are laying on the bed? 2

Slide Credit: Abhishek Das 57

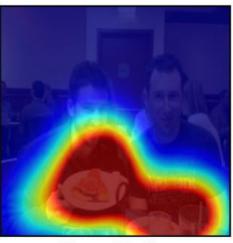
Are Grad-CAM explanations human-like?

 Correlation with human attention maps [Das & Agarwal et al. EMNLP'16]

What are they doing?



Grad-CAM for 'eating'



Human ATtention map (HAT) for 'eating'

Method	Rank Correlation w/ HAT
Guided Backpropagation	0.122
Guided Grad-CAM	0.136

Current models look at regions more similar to humans than baselines

Slide Credit: Ram Selvaraju 58

Plan for Today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect decisions?
 - Occlusion maps
 - Salient or "important" pixels
 - Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- How can we synthesize images to see what networks are looking for?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream: amplifying detected features

Feature inversion

(C) Dhruv Batra 59

How can we synthesize images to see what networks are looking for?

(C) Dhruv Batra 60

Generating prototypical images for a class

(Guided) backprop: Find the part of an image that a neuron responds to?

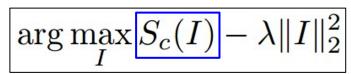
Gradient ascent on pixels:

Generate a synthetic image that maximally activates a neuron

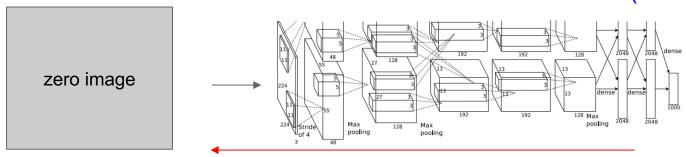
$$I^* = arg max_I f(I) + R(I)$$

Neuron value Natural image regularizer

1. Initialize image to zeros



score for class c (before Softmax)



Repeat:

- 2. Forward image to compute current scores
- 3. Backprop to get gradient of neuron value with respect to image pixels
- 4. Make a small update to the image

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2$$

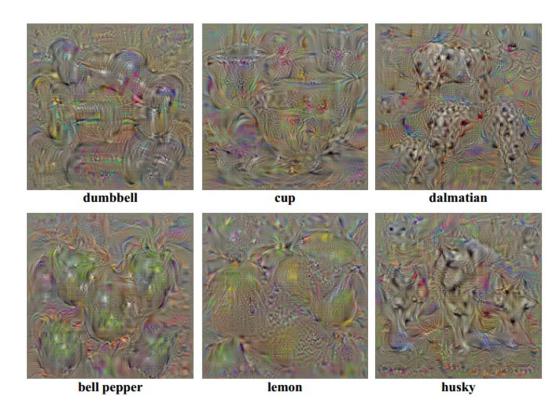
Simple regularizer: Penalize L2 norm of generated image

Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2$$

Simple regularizer: Penalize L2 norm of generated image



Simonyan, Vedaldi, and Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Strong Regularization gives Weak Regularization avoids more realistic examples at risk misleading correlations, but is of misleading correlations. less connected to real use. **Unregularized Frequency** Transformation Learned Dataset **Penalization** Robustness **Prior** Examples Erhan, et al., 2009 [3] Introduced core idea. Minimal regularization. Szegedy, et al., 2013 [11] Adversarial examples. Visualizes with dataset examples. Mahendran & Vedaldi, 2015 [7] Introduces total variation regularizer. Reconstructs input from representation. Nguyen, et al., 2015 [14] Explores counterexamples. Introduces image blurring. Mordvintsev, et al., 2015 [4] Introduced jitter & multi-scale. Explored GMM priors for classes. Øygard, et al., 2015 [15] Introduces gradient blurring. (Also uses jitter.) Tyka, et al., 2016 [16] Regularizes with bilateral filters. (Also uses jitter.) Mordvintsev, et al., 2016 [17] Normalizes gradient frequencies. (Also uses jitter.) Nguyen, et al., 2016 [18] Paramaterizes images with GAN generator. Nguyen, et al., 2016 [10] Uses denoising autoencoder prior to make a generative model.

Can neural networks be fooled?

Fooling Images / Adversarial Examples

- (1)Start from an arbitrary image
- (2)Pick an arbitrary class
- (3) Modify the image to maximize the class
- (4)Repeat until network is fooled

Fooling Images / Adversarial Examples

African elephant koala Difference 10x Difference

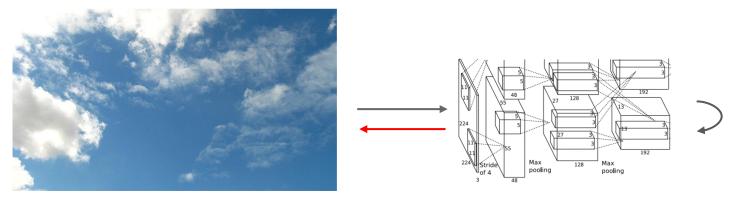
Schooner iPod Difference 10x Difference

10x Difference

oat image is CC0 public domain

DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead try to **amplify** the neuron activations at some layer in the network



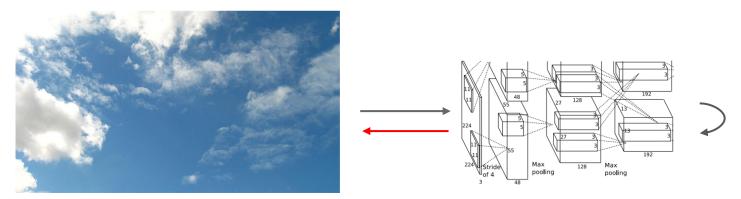
Choose an image and a layer in a CNN; repeat:

- 1. Forward: compute activations at chosen layer
- 2. Set gradient of chosen layer equal to its activation
- 3. Backward: Compute gradient on image
- 4. Update image

Mordvintsev, Olah, and Tyka, "Inceptionism: Going Deeper into Neural Networks", Google Research Blog. Images are licensed under CC-BY 4.0

DeepDream: Amplify existing features

Rather than synthesizing an image to maximize a specific neuron, instead try to **amplify** the neuron activations at some layer in the network

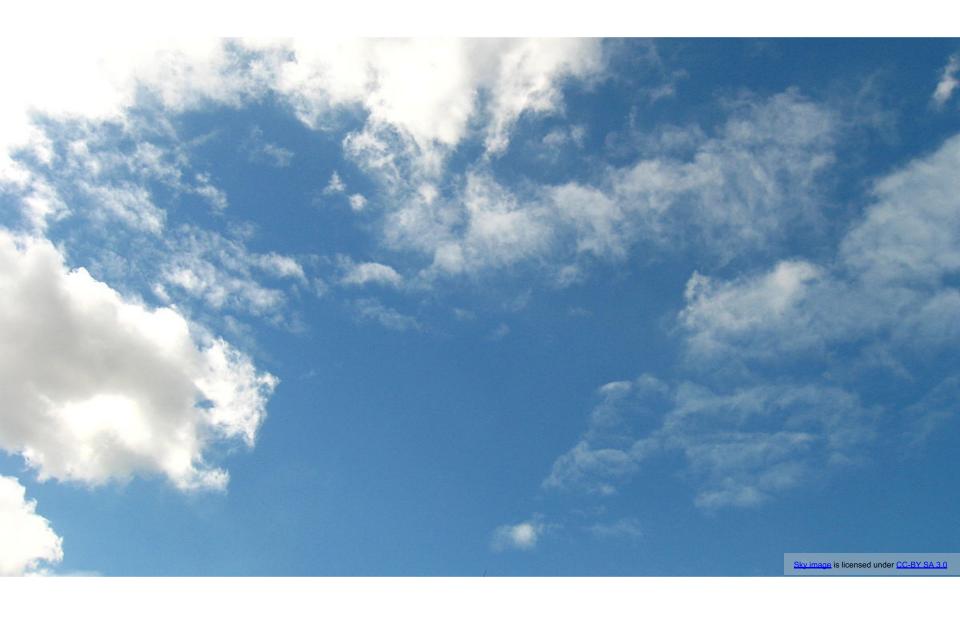


Choose an image and a layer in a CNN; repeat:

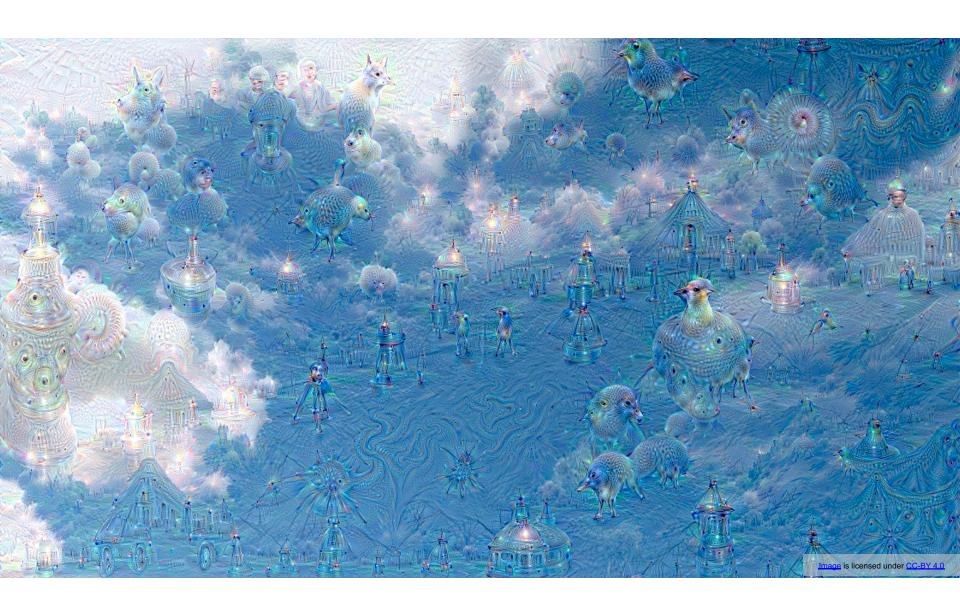
- 1. Forward: compute activations at chosen layer
- 2. Set gradient of chosen layer equal to its activation
- 3. Backward: Compute gradient on image
- 4. Update image

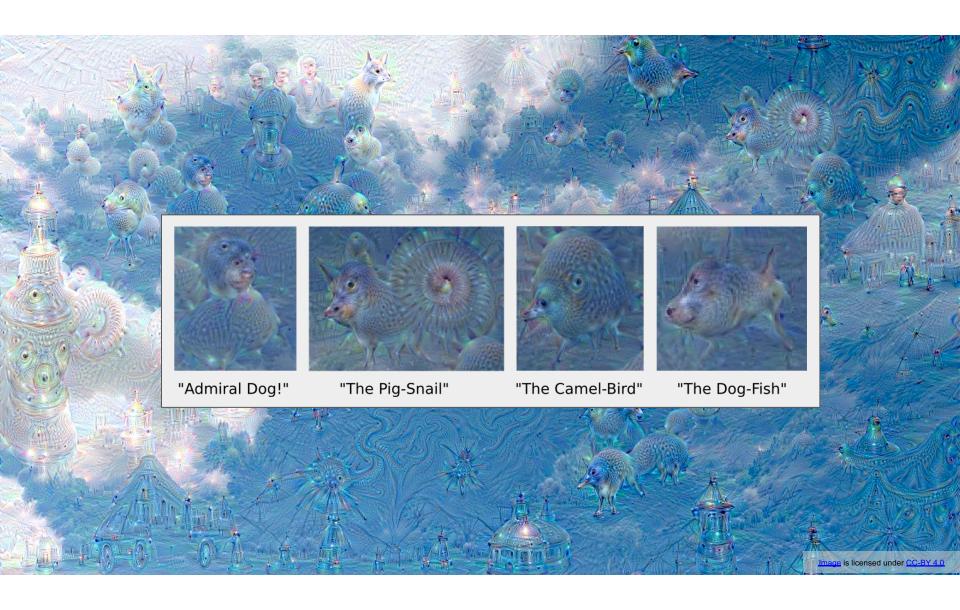
Equivalent to: ____ I* = arg max_l ∑_i f_i(I)²

Mordvintsev, Olah, and Tyka, "Inceptionism: Going Deeper into Neural Networks", Google Research Blog. Images are licensed under CC-BY 4.0



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





Given the feature vector can you reconstruct the image?

Feature Inversion

Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- "looks natural" (image prior regularization)

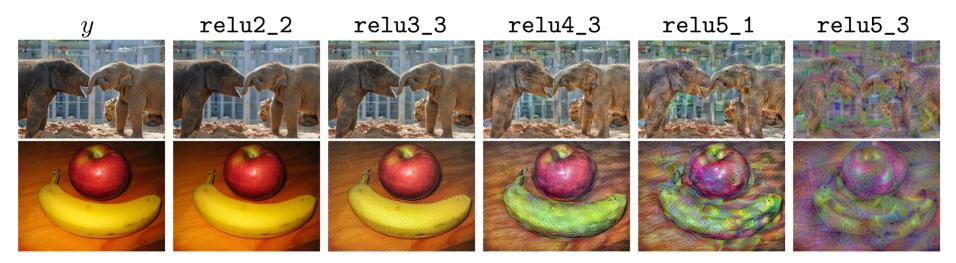
$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{H \times W \times C}} \ell(\Phi(\mathbf{x}), \overline{\Phi_0}) + \lambda \mathcal{R}(\mathbf{x}) \xrightarrow{\text{Features of new image}} \ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$

$$\mathcal{R}_{V^\beta}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^2 + (x_{i+1,j} - x_{ij})^2 \right)^{\frac{\beta}{2}} \xrightarrow{\text{Total Variation regularizer}} \text{ (encourages spatial smoothness)}$$

Mahendran and Vedaldi, "Understanding Deep Image Representations by Inverting Them", CVPR 2015

Feature Inversion

Reconstructing from different layers of VGG-16



Mahendran and Vedaldi, "Understanding Deep Image Representations by Inverting Them", CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016. Copyright Springer, 2016.
Reproduced for educational purposes.

What we covered today

- What do individual neurons look for in images?
 - Visualizing filters
 - Last layer embeddings
 - Visualizing activations
 - Maximally activating patches
- How pixels affect model decisions?
 - Occlusion maps
 - Salient or "important" pixels
 - · Gradient-based visualizations
- Do CNNs look at same regions as humans?
 - How to evaluate visualizations?
- How can we synthesize images to see what networks are looking for?
 - Creating "prototypical" images for a class
 - Creating adversarial images
 - Deep dream
 - Feature inversion

(C) Dhruv Batra 79

Thank you

ramprs.github.io rselvaraju@salesforce.com