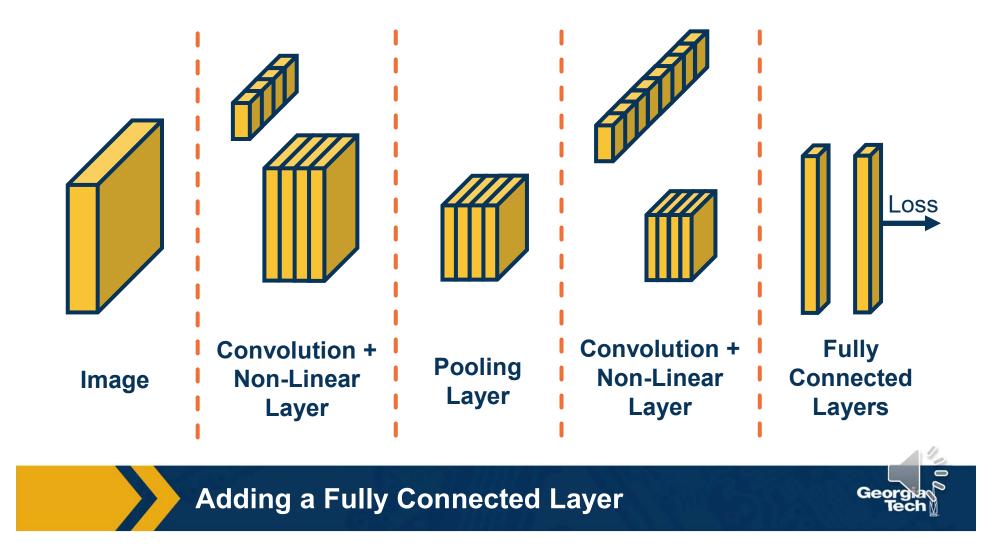
Topics:

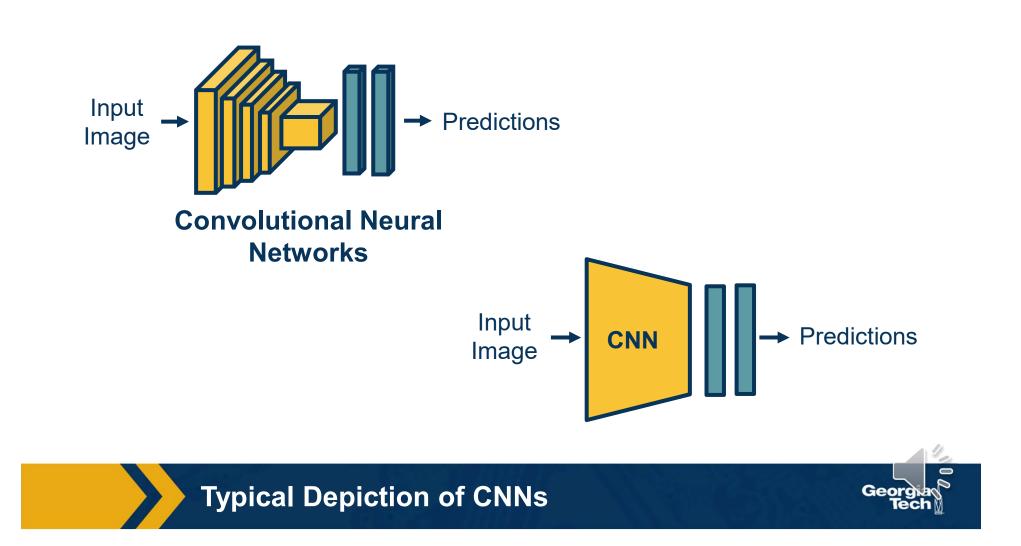
- Convolutional Neural Networks
- Visualization

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 2

- Due soon!
- Resources (in addition to lectures):
 - DL book: Convolutional Networks
 - CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
 - Backprop notes
 <u>https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf</u>
 - HW2 Tutorial @113, Conv @116, Focal Loss @117
 - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)





These architectures have existed **since 1980s**

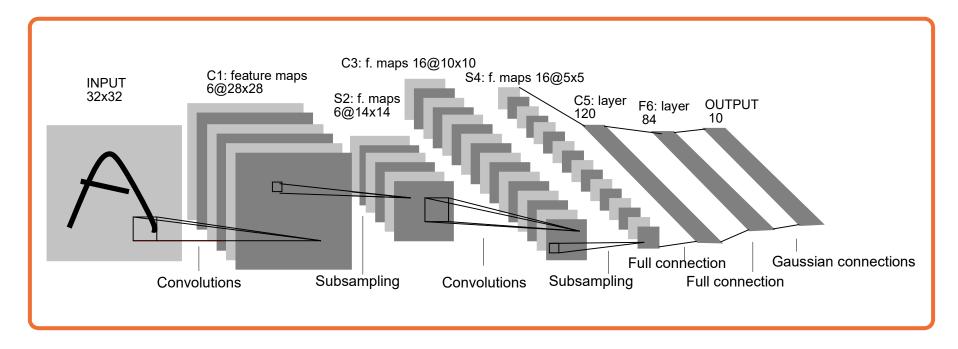
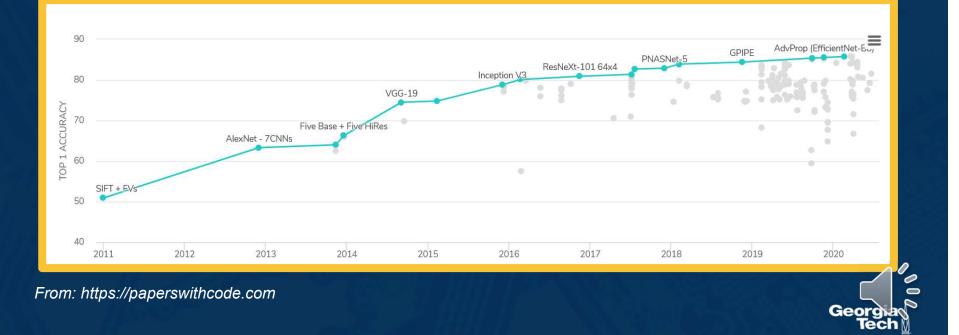
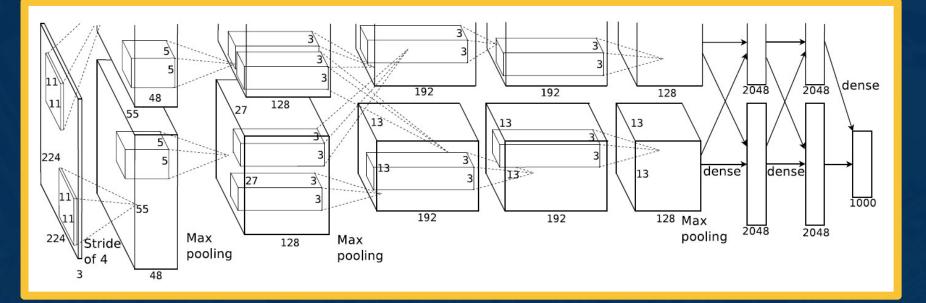


Image Credit: Yann LeCun, Kevin Murphy

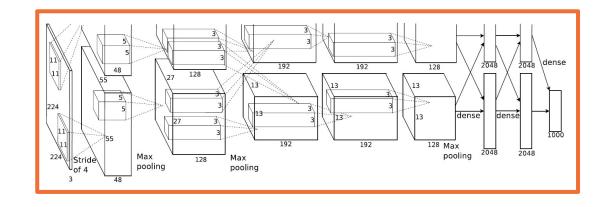
The Importance of Benchmarks



AlexNet - Architecture



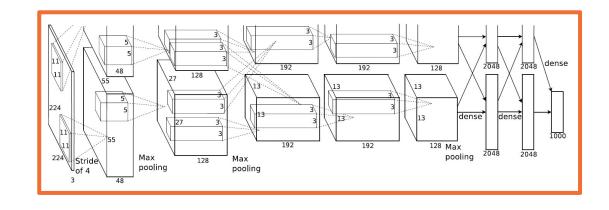
From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55 W' = (W - F + 2P) / S + 1

Geo

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

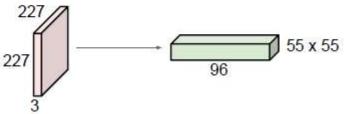


First layer (CONV1): 96 11x11 filters applied at stride 4

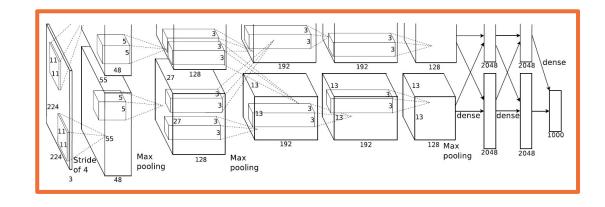
W' = (W - F + 2P) / S + 1

Geo

Output volume [55x55x96]



From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

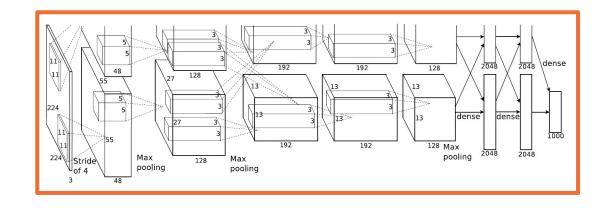


First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96] 11 x 11

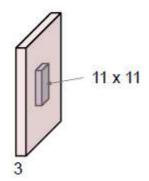
Geo

Q: What is the total number of parameters in this layer?

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317



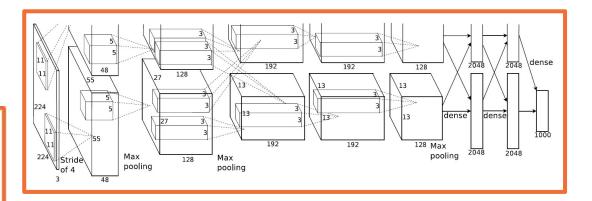
First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96] Parameters: (11*11*3 + 1)*96 = 35K



Geo

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

Full (simplified) AlexNet architecture: [224k224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [4096] FC7: 4096 neurons



Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

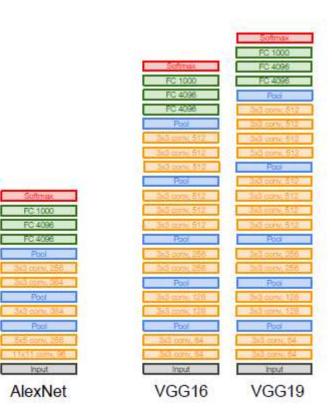
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14



From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

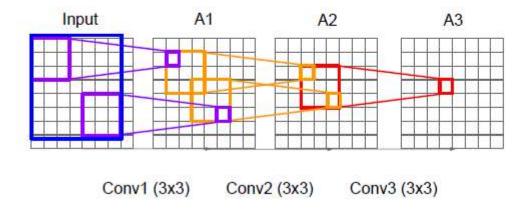
Q: Why use smaller filters? (3x3 conv)

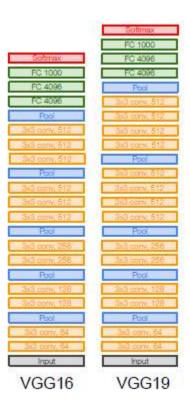
Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?





From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2317

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7^2C^2 for C channels per layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

	-					
INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	ConvNet Configuration					
in office we we have been been been been been been been be	A	A-LRN	B	C	D	E
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	layers	layers	layers	layers	layers	layers
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	input (224 × 224 RGB image)					
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	LRN conv3-64 conv3-64 conv3-64 conv3-64 maxpool					
	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	000000000	000000000	conv3-128	conv3-128	conv3-128	conv3-128
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	maxpool					
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256		conv3-256	conv3-256	conv3-256	conv3-256
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
POOL2: [28x28x256] memory: 28*28*256=200K params: 0				conv1-256	conv3-256	conv3-256
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648	maxpool conv3-256					
	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296				conv1-512	conv3-512	conv3-512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0						conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	maxpool					
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	conv3-512 conv1-512	conv3-512 conv3-512	conv3-512 conv3-512
				CONVI-512	COIIV3-512	conv3-512
POOL2: [7x7x512] memory: 7*7*512=25K params: 0		maxpool				
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	FC-4096					
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	FC-4096					
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	FC-1000					
	soft-max					
	Table 2: Number of parameters (in millions).					
	Network A,A-LRN B C D E					
	Number of parameters 133 133 134 138 144					

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

(not counting biases) memory: 224*224*3=150K params: 0 INPUT: [224x224x3] CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096.000

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r/

ConvNet Configuration										
A	A-LRN	B	C	D	Е					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
input (224 × 224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
			4096							
			4096		8					
			1000		8					
		soft	-max							
Table 2: Number of parameters (in millions).										
Network A.A-LRN B C D E										
Number of parameters 133 133 134 138 144										

Key aspects:

Repeated application of:

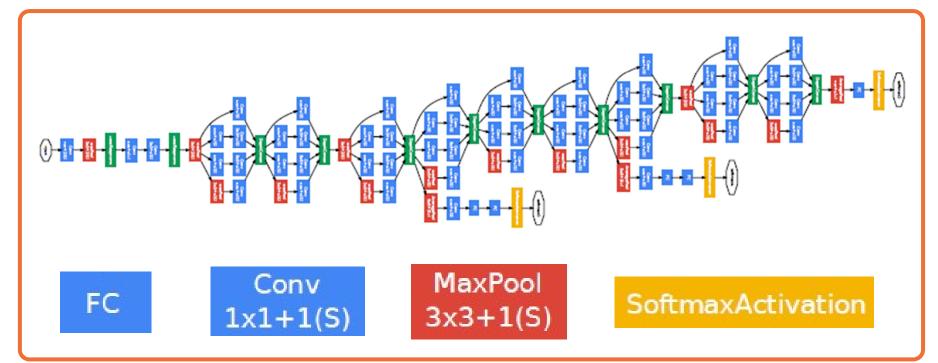
- 3x3 conv (stride of 1, padding of 1)
- 2x2 max pooling (stride 2)

Very large number of parameters (138M)

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r/

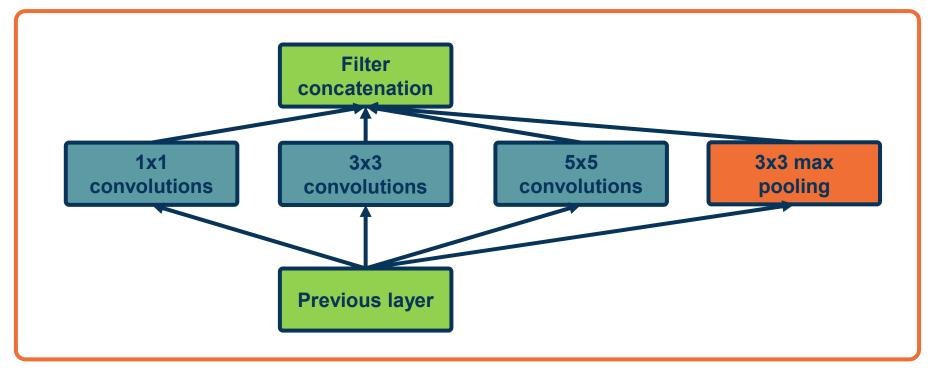
VGG – Key Characteristics

But have become **deeper and more complex**



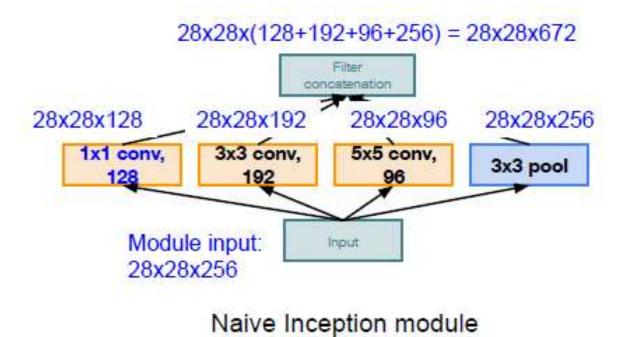
From: Szegedy et al. Going deeper with convolutions

Inception Architecture



Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

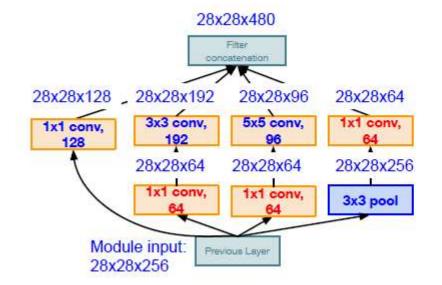


Key idea: Repeated blocks and multi-scale features

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Apply 1x1 convolutions as bottleneck layer (decrease number of channels!)

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r



Inception module with dimension reduction

Using same parallel layers as naive example, and adding "1x1 conv, 64 filter" bottlenecks:

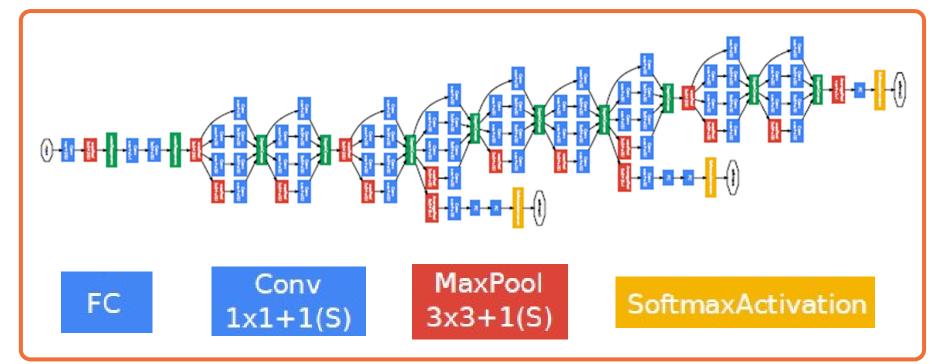
Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 **Total: 358M ops**

Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

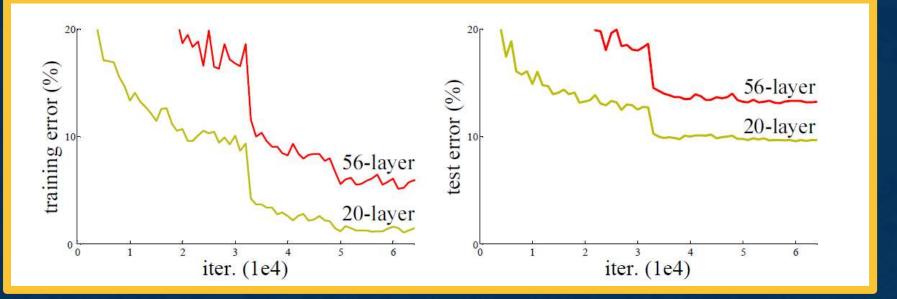
But have become **deeper and more complex**



From: Szegedy et al. Going deeper with convolutions

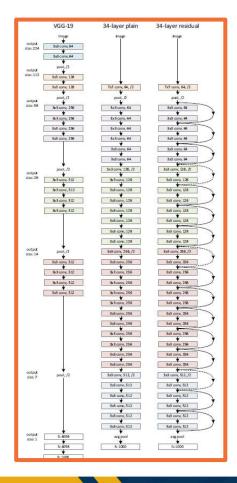
Inception Architecture

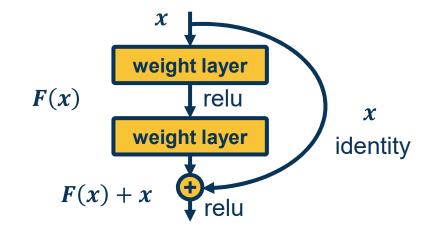
The Challenge of Depth



From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!





Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

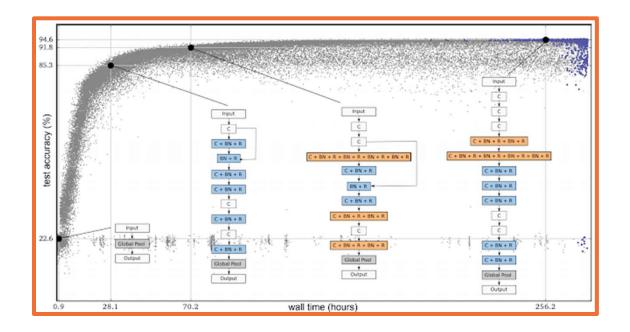
From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks

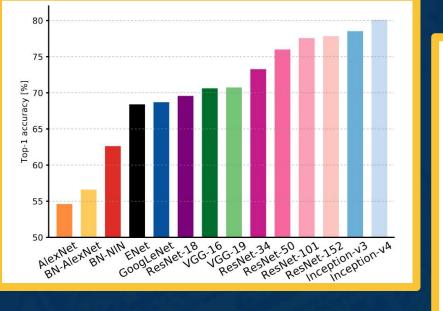
Learning of repeated blocks typical

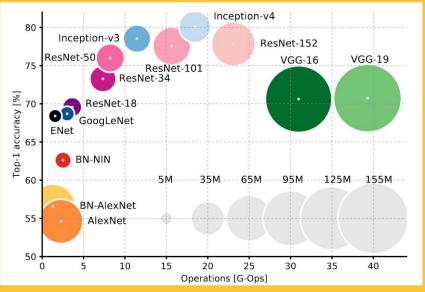


From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity



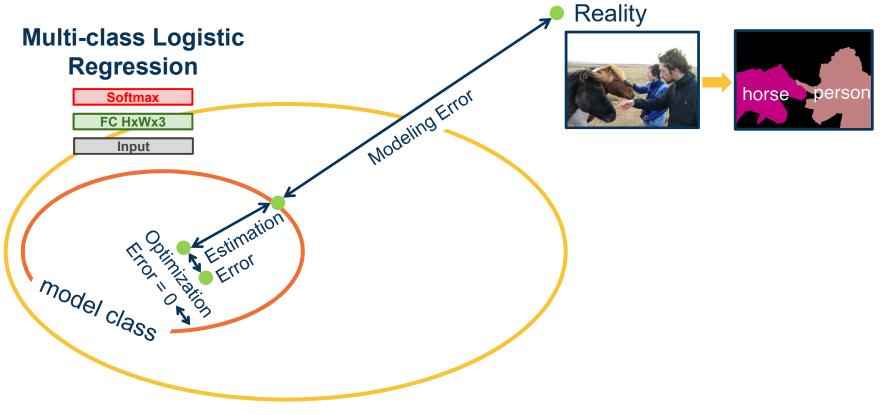


0

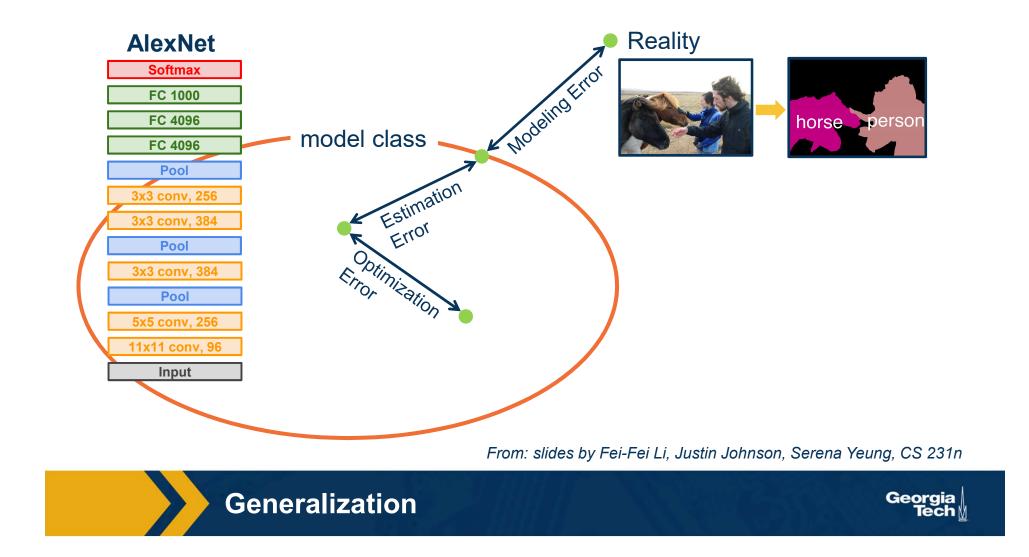
Geo

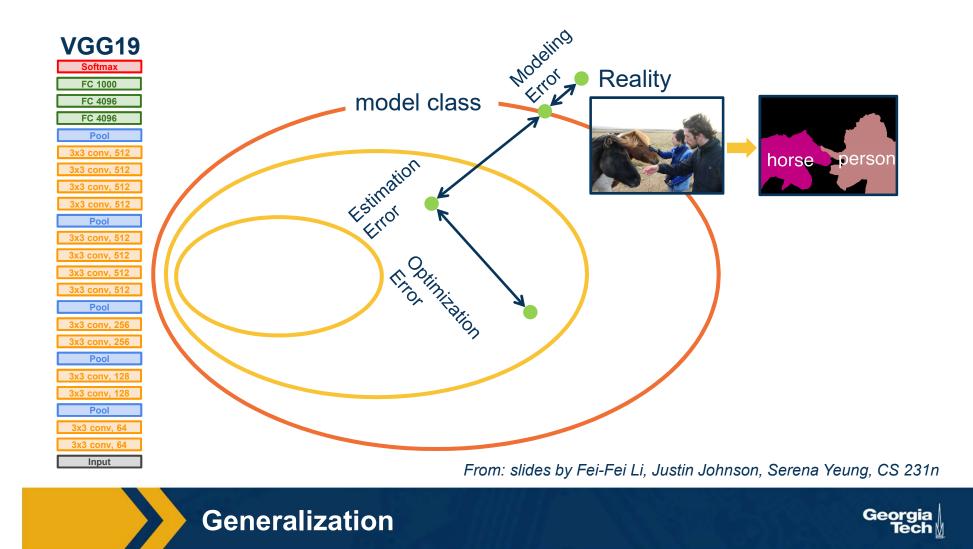
From: An Analysis Of Deep Neural Network Models For Practical Application

Transfer Learning & Generalization



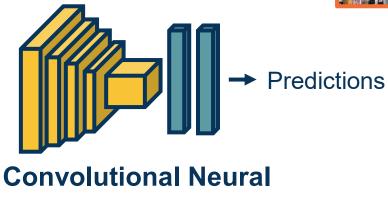
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





What if we don't have enough data?

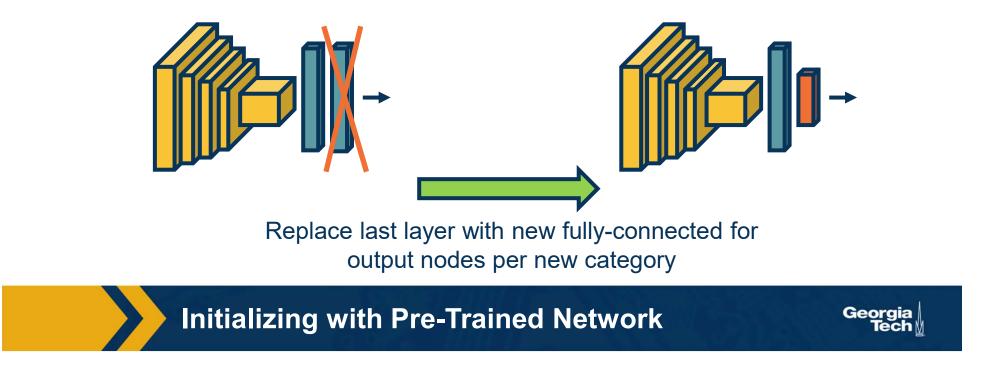
Step 1: Train on large-scale dataset



Networks

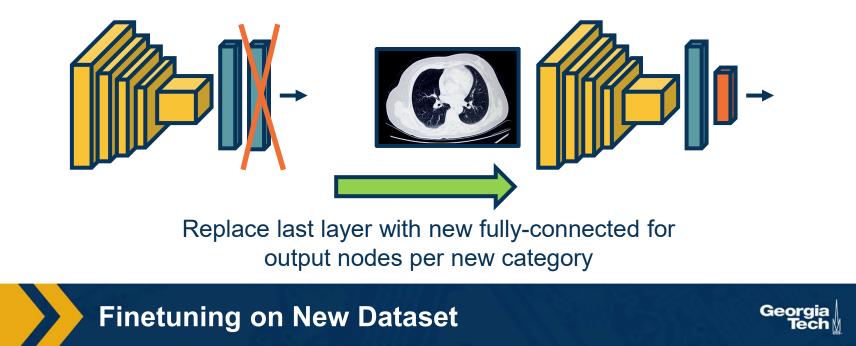
Transfer Learning – Training on Large Dataset

Step 2: Take your custom data and **initialize** the network with weights trained in Step 1



Step 3: (Continue to) train on new dataset

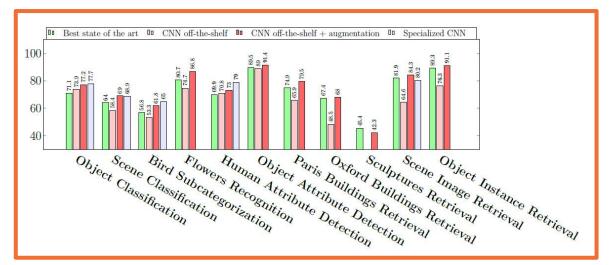
- **Finetune:** Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)



This works extremely well! It

was surprising upon discovery.

- Features learned for 1000 object categories will work well for 1001st!
- Generalizes even across tasks (classification to object detection)



From: Razavian et al., CNN Features off-the-shelf: an Astounding Baseline for Recognition

Surprising Effectiveness of Transfer Learning Georgia

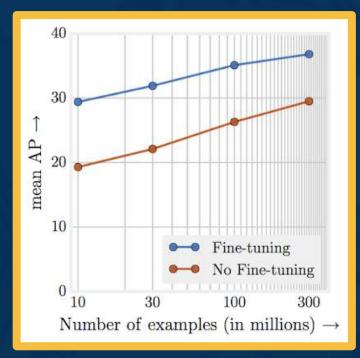
Learning with Less Labels

But it doesn't always work that well!

- If the source dataset you train on is very different from the target dataset, transfer learning is not as effective
- If you have enough data for the target domain, it just results in faster convergence
 - See He et al., "Rethinking ImageNet Pre-training"



Effectiveness of More Data



From: Revisiting the Unreasonable Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html

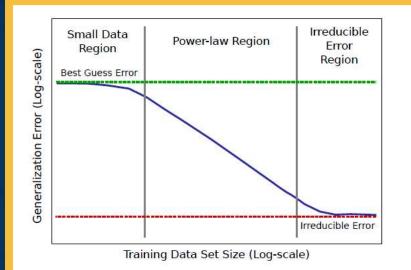


Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is Predictable

There is a large number of different low-labeled settings in DL research

Setting	Source	Target	Shift Type
Semi-supervised	Single labeled	Single unlabeled	None
Domain Adaptation	Single labeled	Single unlabeled	Non-semantic
Domain Generalization	Multiple labeled	Unknown	Non-semantic
Cross-Task Transfer	Single labeled	Single unlabeled	Semantic
Few-Shot Learning	Single labeled	Single few-labeled	Semantic
Un/Self-Supervised	Single unlabeled	Many labeled	Both/Task

Non-Semantic Shift

Semantic Shift

Dealing with Low-Labeled Situations

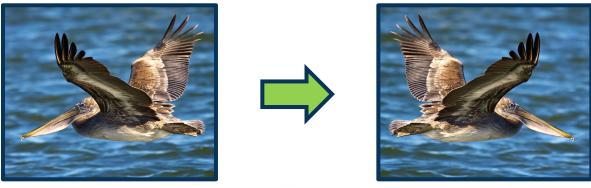
Georgia Tech∦

Data **Augmentation** 000 Geo

Data augmentation – Performing a range of **transformations** to the data

- This essentially "increases" your dataset
- Transformations should not change meaning of the data (or label has to be changed as well)

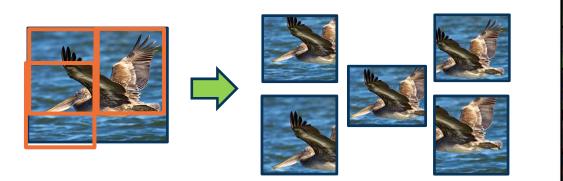
Simple example: Image Flipping



Data Augmentation: Motivation

Random crop

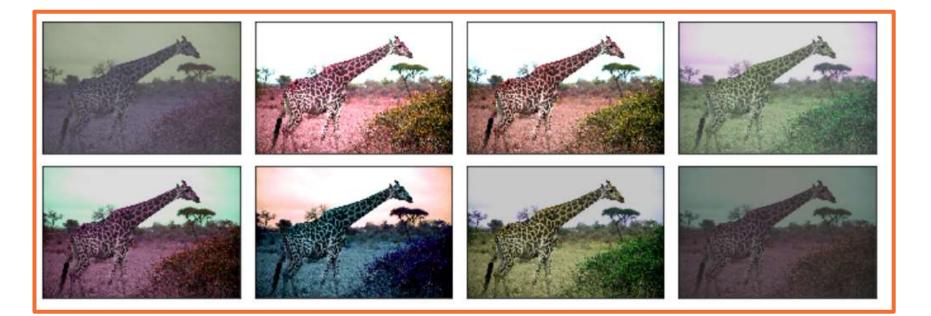
- Take different crops during training
- Can be used during inference too!



CutMix

Color Jitter

Color Jitter



From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

We can apply **generic affine transformations**:

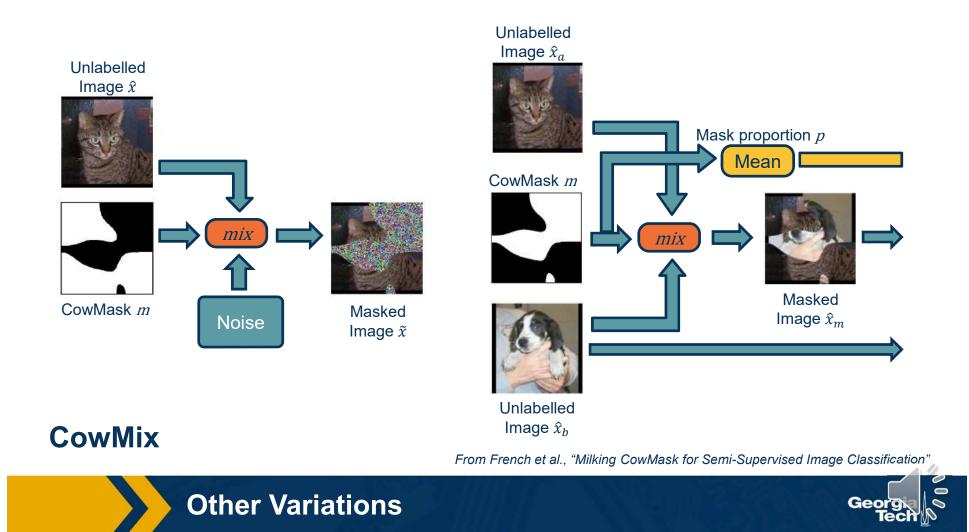
- Translation
- Rotation
- Scale
- Shear

Geometric Transformations

We can **combine these transformations** to add even more variety!

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Combining Transformations



Visualization of Neural Networks

Given a **trained** model, we'd like to understand what it learned.



Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

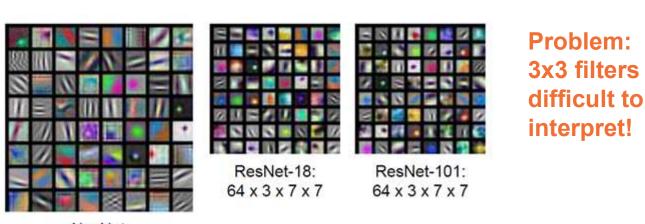
Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Conv layers: For each kernel, scale values from 0-255 and visualize



AlexNet: 64 x 3 x 11 x 11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Young, from CS 2310

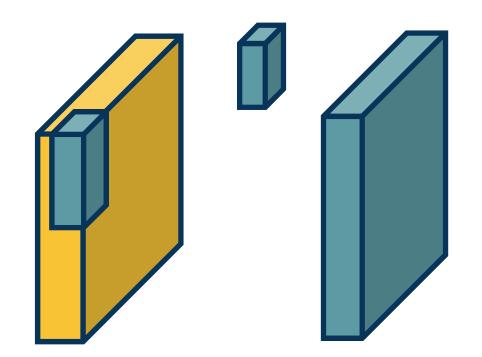
0

Geo

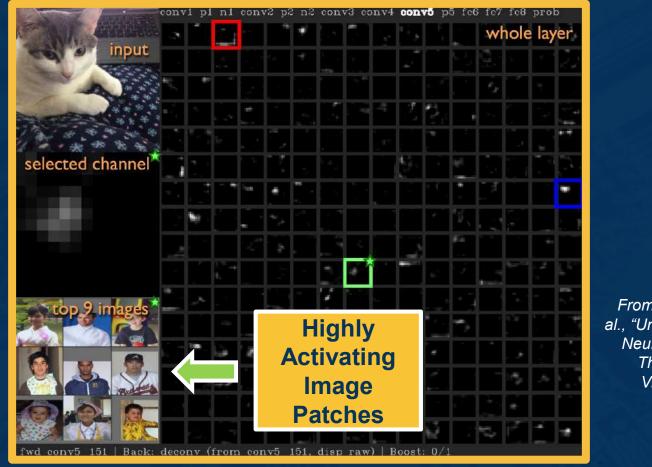
Visualizing Weights

We can also produce visualization output (aka activation/filter) maps

These are **larger** early in the network.

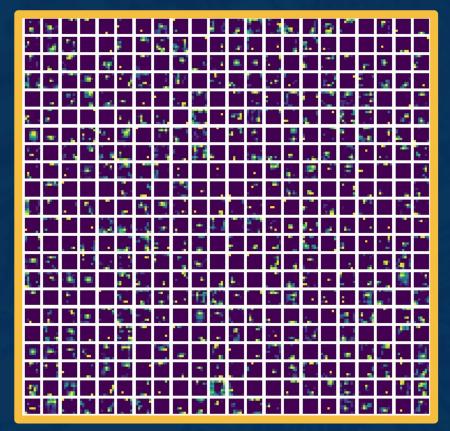


Visualizing Output Maps



From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization", 2015 Georga

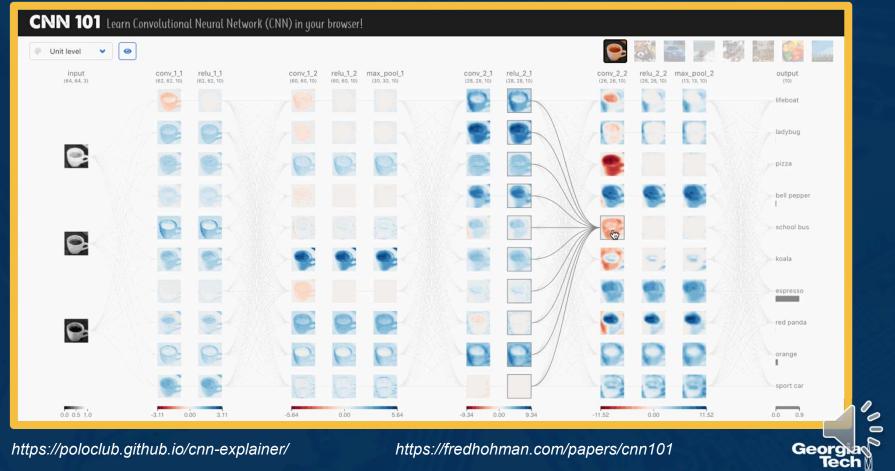
Activations – Small Output Sizes



Problem: Small conv outputs also hard to interpret

Activations of last conv layer in VGG network

CNN101 and CNN Explainer



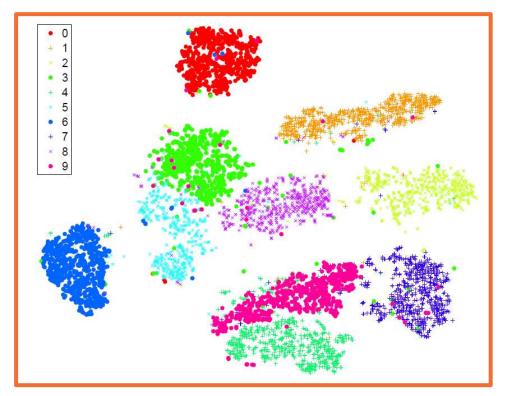
https://poloclub.github.io/cnn-explainer/

We can take the activations of any layer (FC, conv, etc.) and **perform dimensionality reduction**

- Often reduce to two dimensions for plotting
- E.g. using Principle Component Analysis (PCA)

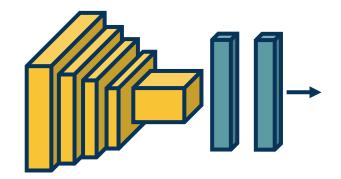
t-SNE is most common

 Performs non-linear mapping to preserve pair-wise distances



Van der Maaten & Hinton, "Visualizing Data using t-SNE", 2008.

Dimensionality Reduction: t-SNE



Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

Summary & Caveats

While these methods provide **some** visually interpretable representations, they can be misleading or uninformative (Adebayo et al., 2018)

Assessing interpretability is difficult

- Requires user studies to show usefulness
- E.g. they allow a user to predict mistakes beforehand

Neural networks learn **distributed** representation

- (no one node represents a particular feature)
- This makes interpretation difficult

Adebayo et al., "Sanity Checks for Saliency Maps", 2018.

