Topics:

- Visualization
- Advanced Architectures

CS 4644-DL / 7643-A ZSOLT KIRA

Given a **trained** model, we'd like to understand what it learned.

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

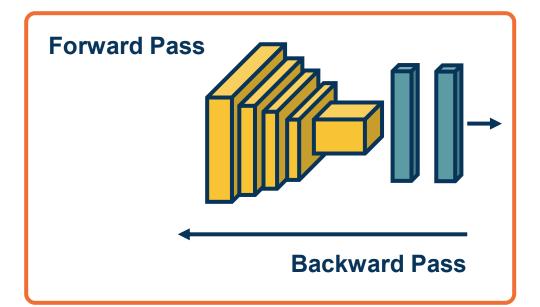
Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

Given a **trained** model, we can perform:

- Freeze the model weights
- Forward pass given an input to get scores, softmax probabilities, loss and then
- Backwards pass to get gradients



- Note: We are keeping parameters/weights frozen
 - Do not use gradients w.r.t. weights to perform updates
 - Instead use gradients to analyze what the network learned

Normal backprop not always best choice

Example: You may get parts of image that **decrease** the feature activation

 There are probably lots of such input pixels

Guided backprop can be used to improve visualizations

b) Forward pass	1 -1 5 2 -5 -7 -3 2 4	105200024
Backward pass: backpropagation	-2 0 -1 6 0 0 0 -1 3	-23-16-312-13
Backward pass: "deconvnet"	0 3 0 6 0 1 2 0 3	-23-16-312-13
Backward pass: guided backpropagation	0 0 0 6 0 0 0 0 3	-23-16-312-13

From: Springenberg et al., "Striving For Simplicity: The All Convolutional Nev"

Guided Backprop

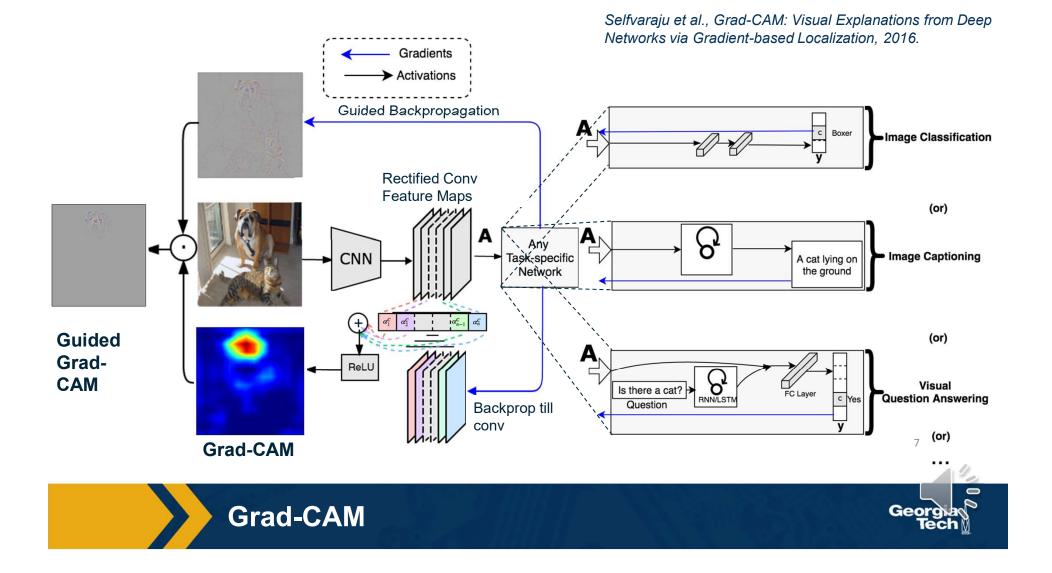
VGG Layer-by-Layer Visualization

Note: These images were created by a slightly different method called **deconvolution**, which ends up being similar to guided backprop

From: "Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: "Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

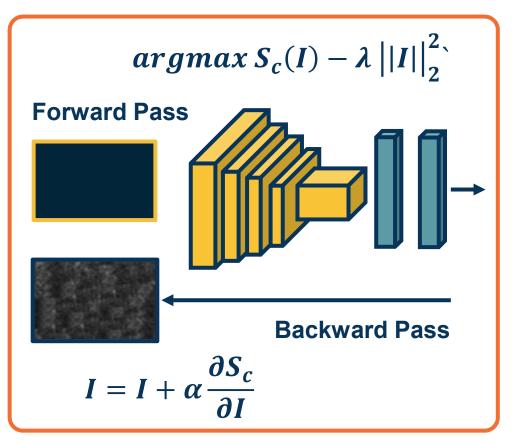


We can perform **gradient ascent** on image

- Start from random/zero image
- Use scores to avoid minimizing other class scores instead

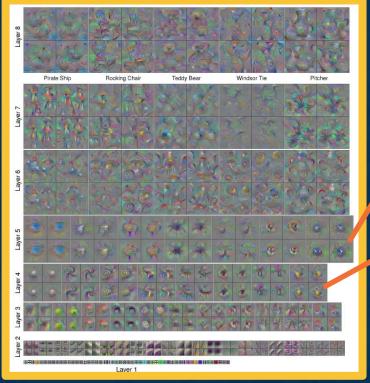
Often need **regularization term** to induce statistics of natural imagery

E.g. small pixel values, spatial smoothness

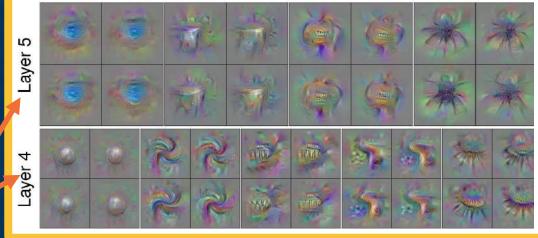


From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Improved Results



Note: Can generate input images to maximize any arbitrary activation!

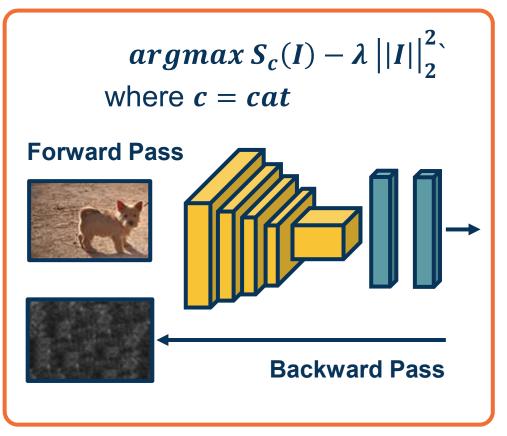


From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization", 2015

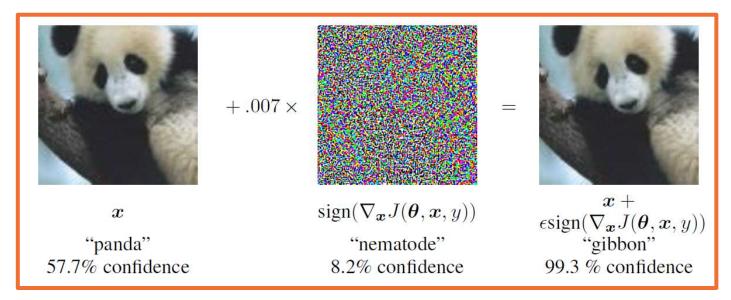
We can perform gradient ascent on image

- Rather than start from zero image, why not real image?
- And why not optimize the score of an arbitrary (incorrect!) class

Surprising result: You need very small amount of pixel changes to make the network confidently wrong!



From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013



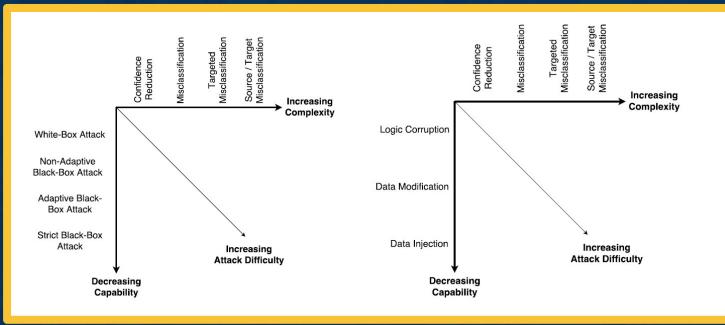
Note this problem is not specific to deep learning!

- Other methods also suffer from it
- Can show how linearity (even at the end) can bring this about
 - Can add many small values that add up in right direction

From: Goodfellow et al., "Explaining and Harnessing Adversarial Examples", 2015

Variations of Attacks

BIRD FROG(86.5%)



Single-Pixel Attacks!

Su et al., "One Pixel Attack for Fooling Deep Neural Networks", 2019.

White vs. Black-Box Attacks of Increasing Complexity

Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018

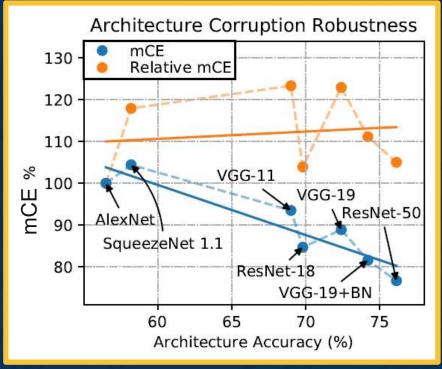
Summary of dversarial Attacks/Defenses

Similar to other security-related areas, it's an active **cat-and-mouse** game

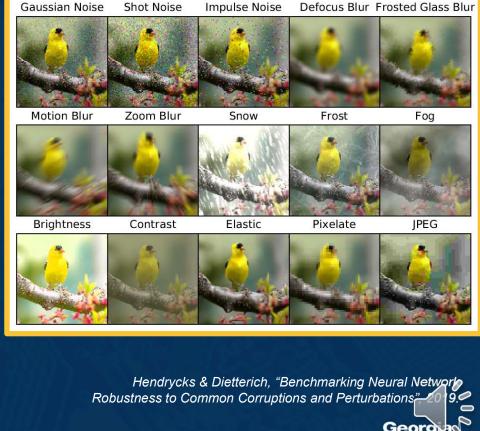
Several defenses such as:

- Training with adversarial examples
- Perturbations, noise, or reencoding of inputs

There are **not universal methods** that are robust to all types of attacks



Other Forms of Robustness Testing



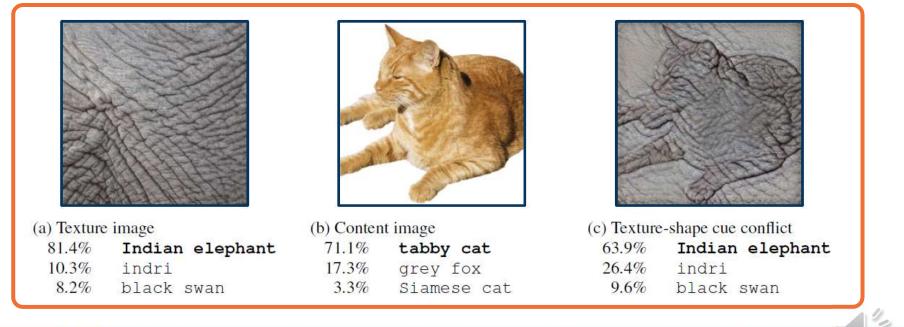
$$\operatorname{CE}_{c}^{f} = \left(\sum_{s=1}^{5} E_{s,c}^{f}\right) / \left(\sum_{s=1}^{5} E_{s,c}^{\operatorname{AlexNet}}\right).$$

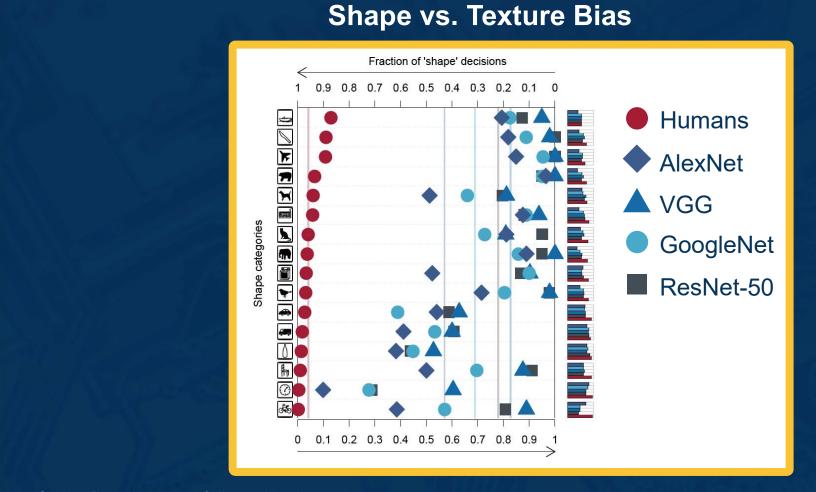
We can try to understand the biases of CNNs

Can compare to those of humans

Example: Shape vs. Texture Bias

Geirhos, "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", 2018.





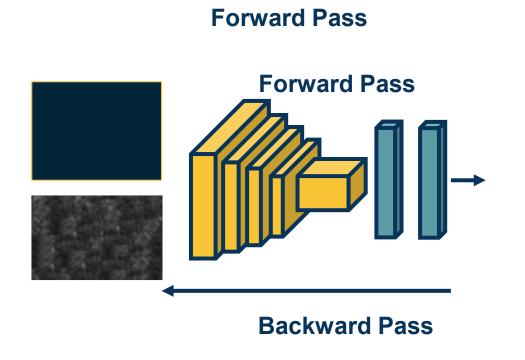
Geo

Geirhos, "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", 2018.

Summary

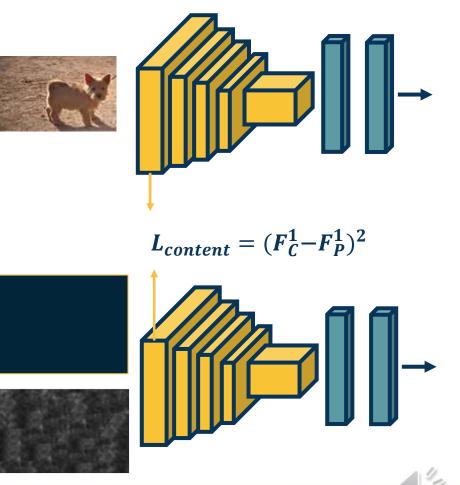
- Various ways to test the robustness and biases of neural networks
- Adversarial examples have implications for understanding and trusting them
- Exploring the gain of different architectures in terms of robustness and biases can also be used to understand what has been learned

- We can generate images through backprop
 - Regularization can be used to ensure we match image statistics
- Idea: What if we want to preserve the content of the image?
 - Match features at different layers!
 - We can have a loss for this

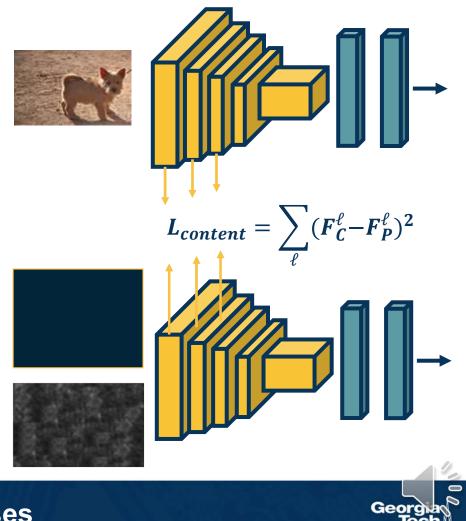


- We can generate images through backprop
 - Regularization can be used to ensure we match image statistics
- Idea: What if we want to preserve the content of a particular image C?
 - Match features at different layers!
 - We can have a loss for this

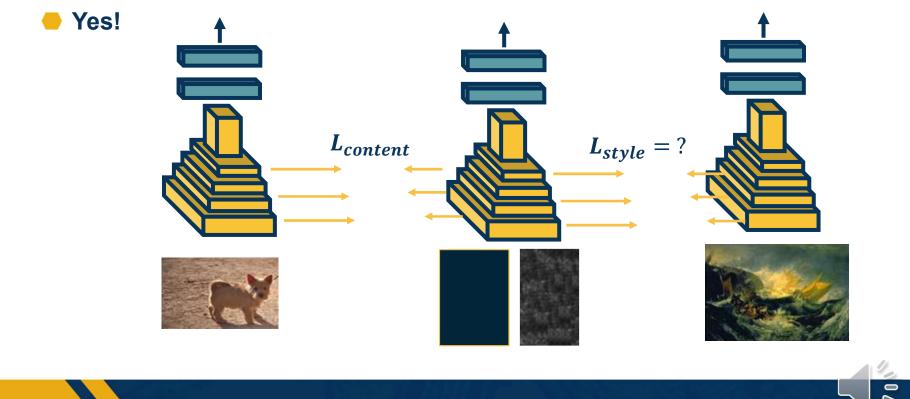
Matching Features to Replicate Content



- How do we deal with multiple losses?
 - Remember, backwards edges going to same node summed
- We can have this content loss at many different layers and sum them too!



Idea: Can we have the *content* of one image and *texture* (style) of another image?



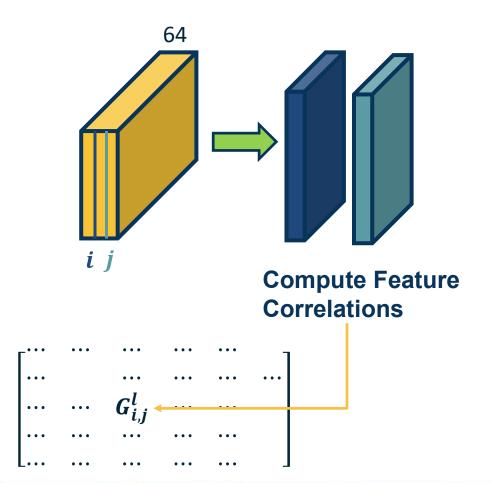
Geo

Replicating Content and Style

- How do we represent similarity in terms of textures?
- Long history in image processing!
 - Key ideas revolve around summary statistics
 - Should ideally remove most spatial information

Deep learning variant: Feature correlations!

Called a Gram Matrix



$$G_{S}^{\ell}(i,j) = \sum_{k} F_{S}^{\ell}(i,k) F_{S}^{\ell}(j,k)$$

where i, j are particular **channels** in the output map of layer ℓ and k is the position (convert the map to a vector)

$$L_{style} = \sum_{\ell} \left(G_{S}^{\ell} - G_{P}^{\ell} \right)^{2}$$

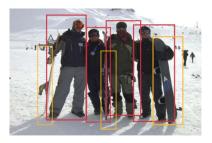
$$L_{total} = \alpha L_{content} + \beta L_{style}$$

Summary

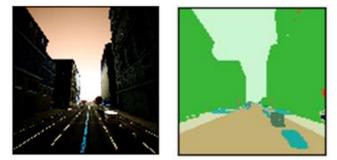
- Generating images through optimization is a powerful concept!
- Besides fun and art, methods such as stylization also useful for understanding what the network has learned
- Also useful for other things such as data augmentation

Image Segmentation Networks

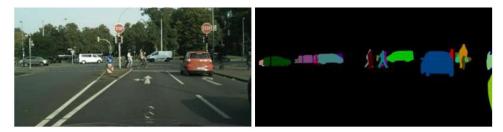
Classification (Class distribution per image)



Object Detection (List of bounding boxes with class distribution per box)



Semantic Segmentation (Class distribution per pixel)

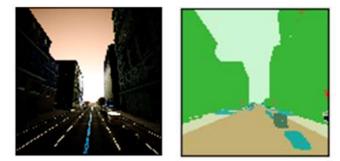


Instance Segmentation (Class distribution per pixel with unique ID)

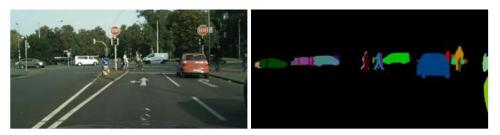
Georgia Tech 🛛

Given an image, output another image

- Each output contains class distribution per pixel
- More generally an image-to-image problem

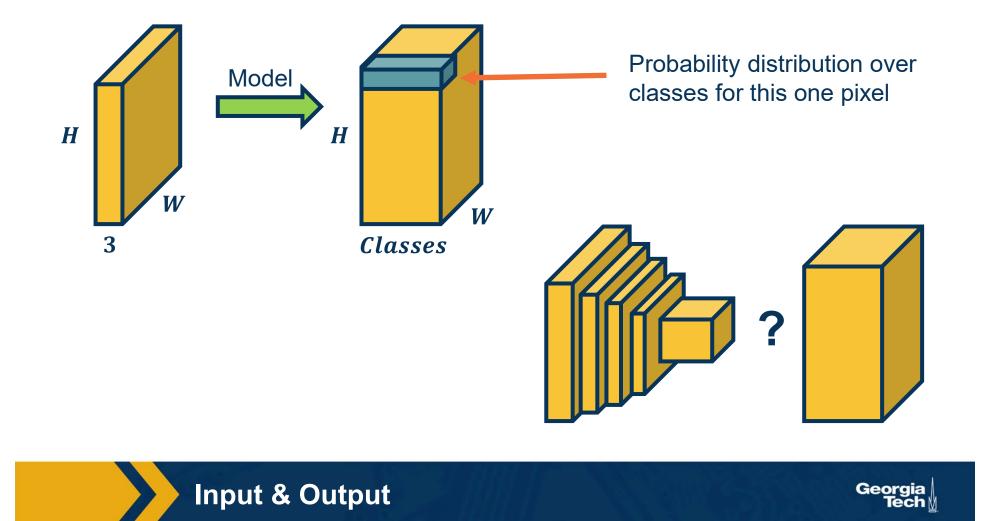


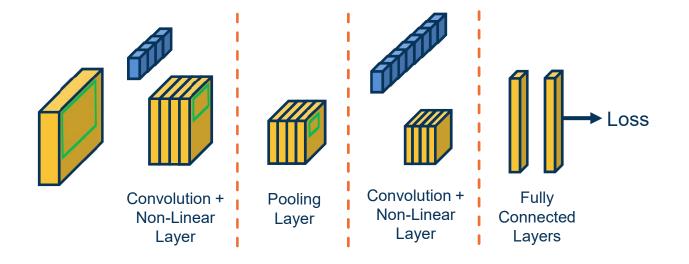
Semantic Segmentation (Class distribution per pixel)



Instance Segmentation (Class distribution per pixel with unique ID)

Georgia Tech 🛛



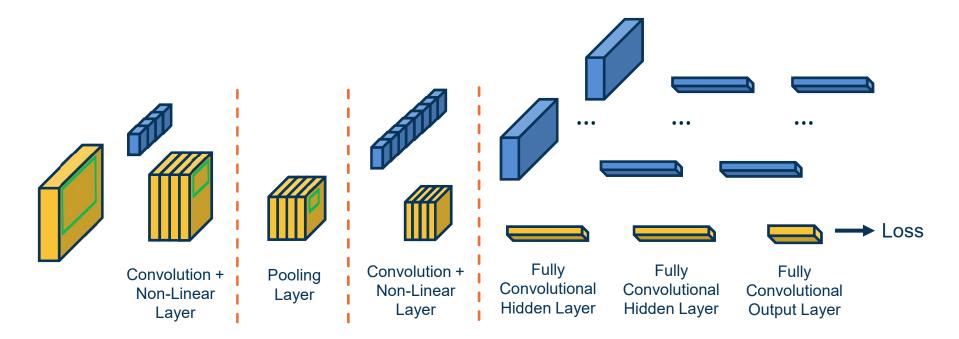


Fully connected layers no longer explicitly retain spatial information (though the network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Idea 1: Fully-Convolutional Network

Georgia ∤ Tech ∦

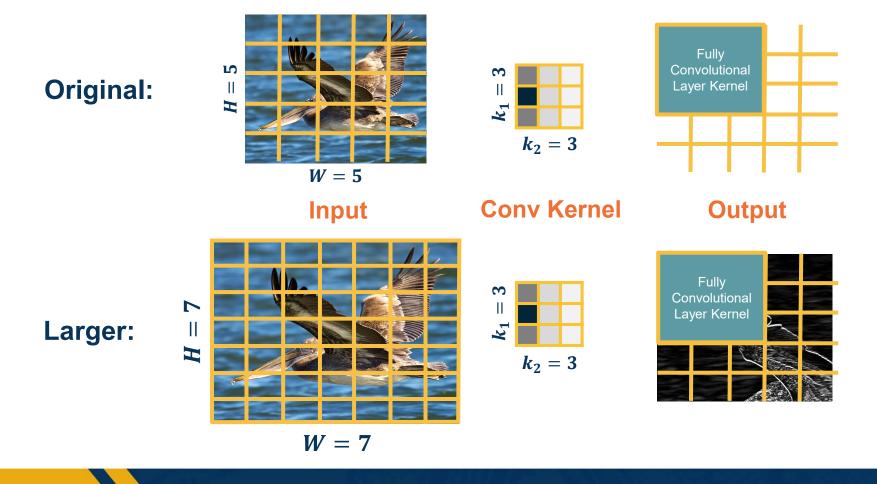


Each kernel has the size of entire input! (output is 1 scalar)

- This is equivalent to Wx+b!
- We have one kernel per output node

Converting FC Layers to Conv Layers

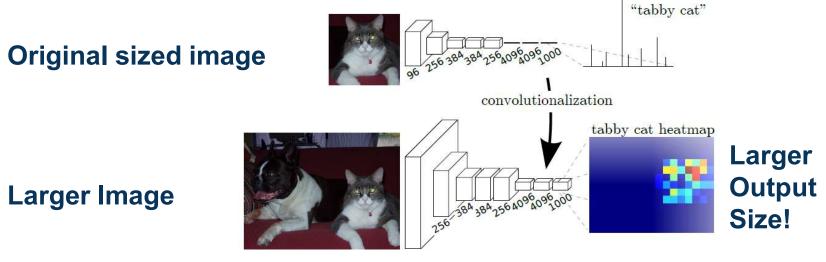
Georgia Tech



Same Kernel, Larger Input

Why does this matter?

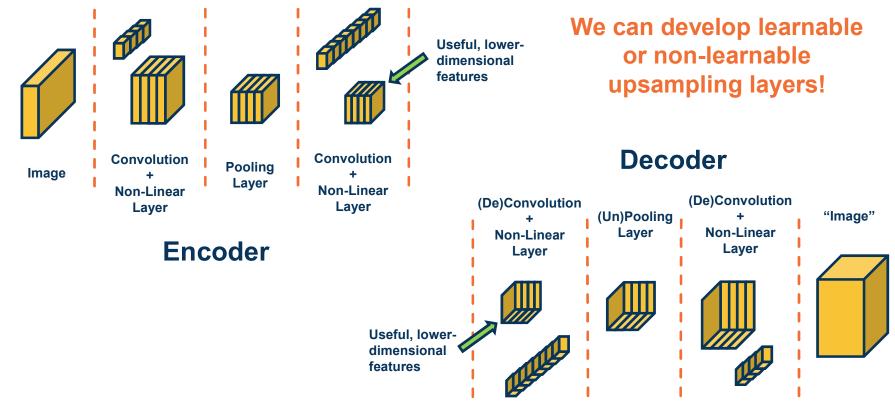
- We can stride the "fully connected" classifier across larger inputs!
- Convolutions work on arbitrary input sizes (because of striding)



Larger Output Maps

Long, et al., "Fully Convolutional Networks for Semantic Segmentation", 2015

Inputting Larger Images



Convolutional Neural Network (CNN)

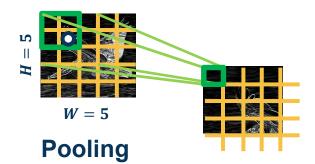
Idea 2: "De"Convolution and UnPooling

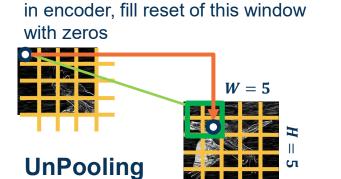
Georgia Tech∦

Example : Max pooling

Stride window across image but perform per-patch max operation

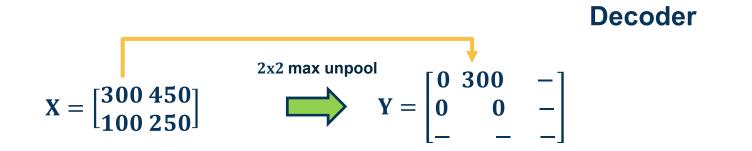
 $X(0:1,0:1) = \begin{bmatrix} 100 & 150 \\ 100 & 200 \end{bmatrix} \longrightarrow max(0:1,0:1) = 200$



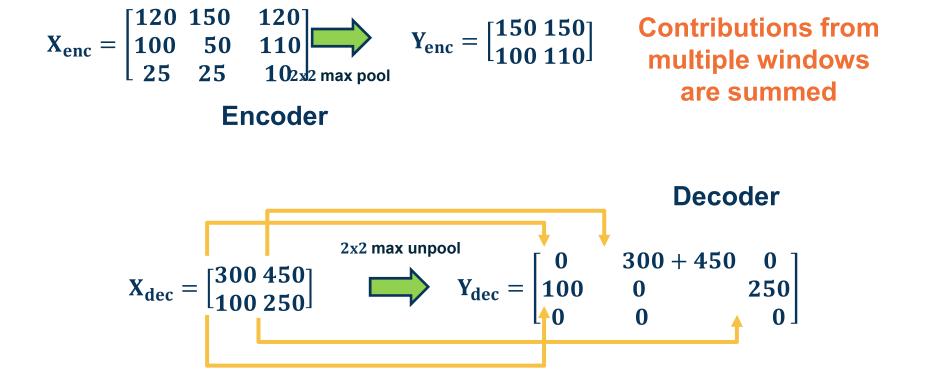


Copy value to position chosen as max

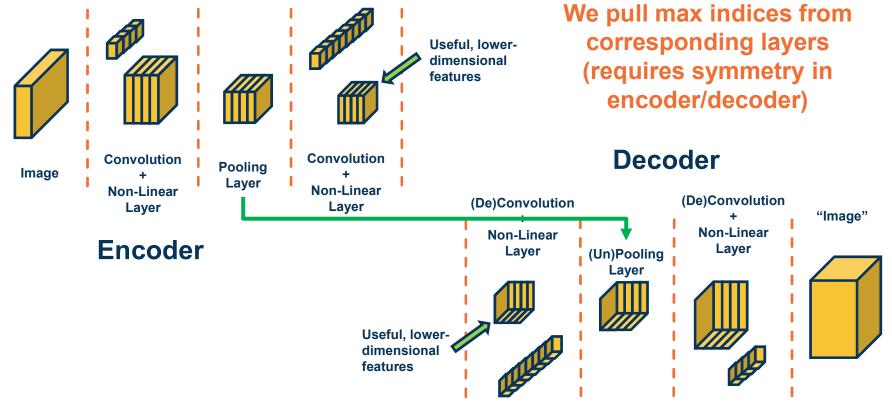
Idea: Remember max elements in encoder! Copy value from equivalent position, rest are zeros



Max Unpooling Example (one window)



Max Unpooling Example

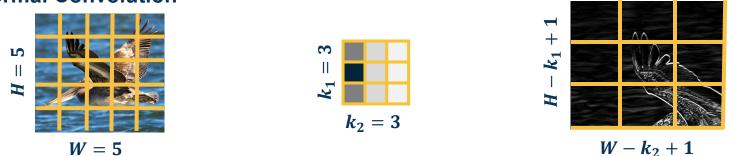


Convolutional Neural Network (CNN)

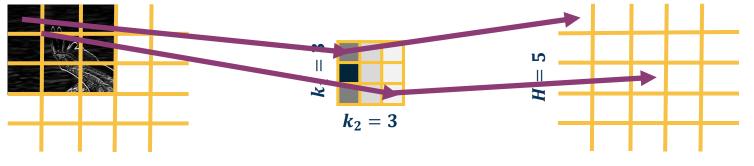
Symmetry in Encoder/Decoder

Georgia Tech

How can we upsample using convolutions and learnable kernel?

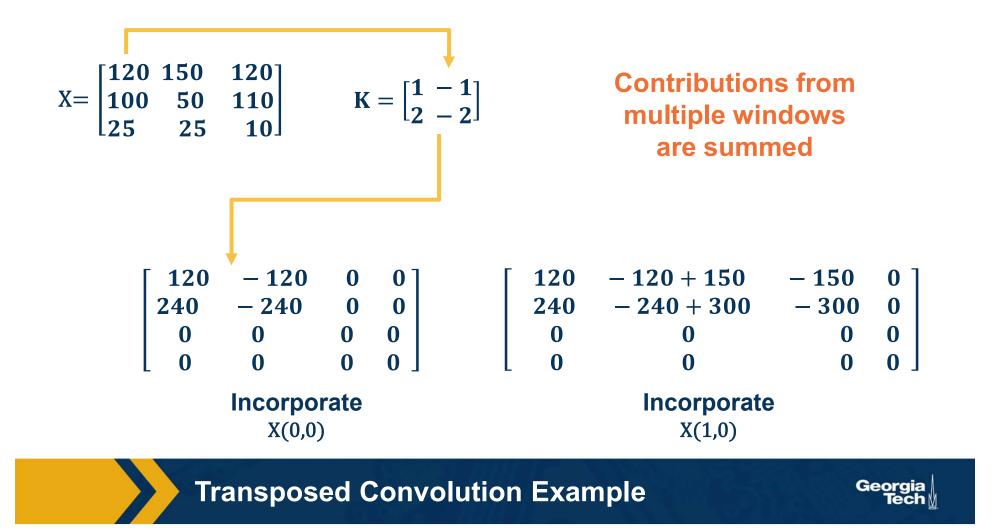


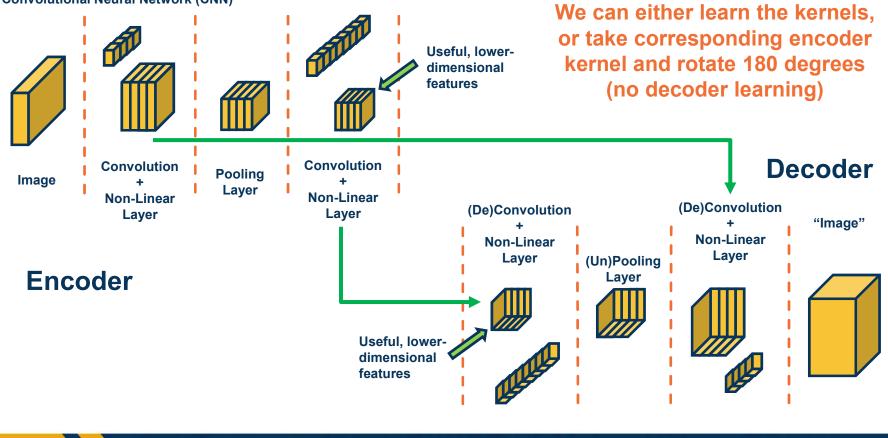
Transposed Convolution (also known as "deconvolution", fractionally strided conv) Idea: Take each input pixel, multiply by learnable kernel, "stamp" it on output



"De"Convolution (Transposed Convolution)

Normal Convolution

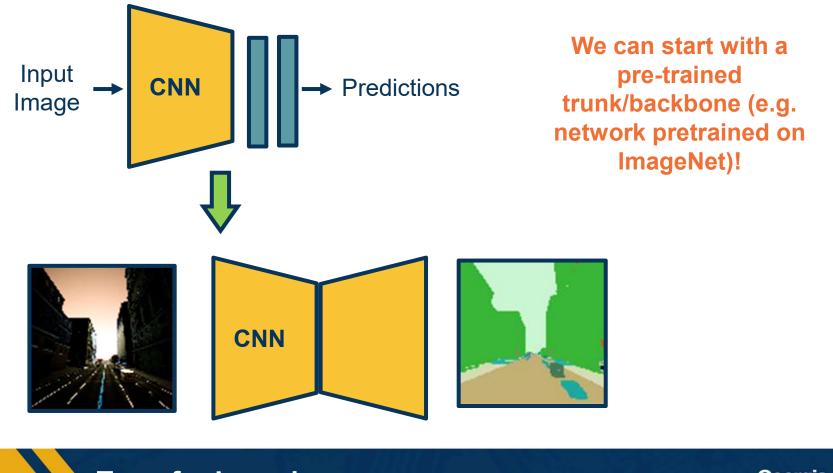




Convolutional Neural Network (CNN)

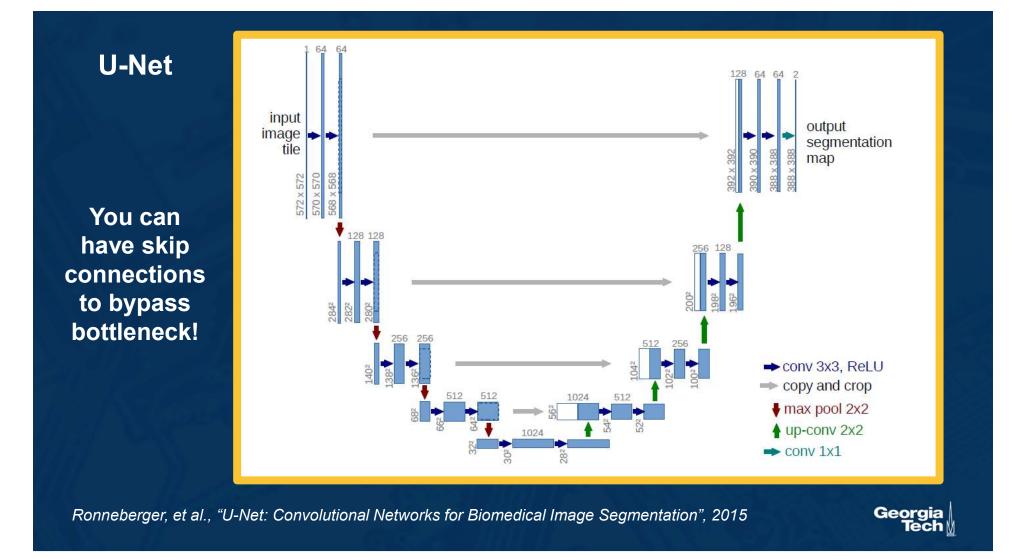
Symmetry in Encoder/Decoder

Georgia Tech



Transfer Learning

Georgia Tech∦



Summary

- Various ways to get image-like outputs, for example to predict segmentations of input images
- Fully convolutional layers essentially apply the striding idea to the output classifiers, supporting arbitrary input sizes
 - (without output size depending on what the input size is)
- We can have various upsampling layers that actually increase the size
- Encoder/decoder architectures are popular ways to leverage these to perform general image-to-image tasks

