Topics:
- Advanced Architectures
- Bias, Fairness, Calibration
• Assignment 3 out
 • Due March 14th 11:59pm EST.

• Projects
 • Project proposal due March 13th
 • Next class: Come with project teams/ideas and run them by TAs!

• Meta Office Hours on Fairness/Bias Friday 3pm EST
 • NOT recorded!
Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Classification
(Class distribution per image)

Object Detection
(List of bounding boxes with class distribution per box)

Instance Segmentation
(Class distribution per pixel with unique ID)
Input & Output

Probability distribution over classes for this one pixel

Model

Classes

?
Each kernel has the size of entire input! (output is 1 scalar)

- This is equivalent to $Wx+b$!
- We have one kernel per output node

Converting FC Layers to Conv Layers
Idea 2: “De”Convolution and UnPooling

We can develop learnable or non-learnable upsampling layers!

Encoder

Decoder
Example: Max pooling

- Stride window across image but perform per-patch **max operation**

\[
X(0:1,0:1) = \begin{bmatrix} 100 & 150 \\ 100 & 200 \end{bmatrix} \quad \Rightarrow \quad \text{max}(0:1,0:1) = 200
\]

Idea: Remember max elements in encoder! Copy value from equivalent position, rest are zeros

Copy value to position chosen as max in encoder, fill reset of this window with zeros

Max Unpooling
Max Unpooling Example (one window)

Encoder

\[X = \begin{bmatrix} 120 & 150 & 120 \\ 100 & 50 & 110 \\ 25 & 25 & 10 \end{bmatrix} \Rightarrow Y = \begin{bmatrix} 150 & 150 \\ 100 & 110 \end{bmatrix} \]

Decoder

\[X = \begin{bmatrix} 300 & 450 \\ 100 & 250 \end{bmatrix} \Rightarrow Y = \begin{bmatrix} 0 & 300 \\ 0 & 0 \\ - & - \end{bmatrix} \]
Max Unpooling Example

Encoder

\[
X_{\text{enc}} = \begin{bmatrix}
120 & 150 & 120 \\
100 & 50 & 110 \\
25 & 25 & 10
\end{bmatrix}
\]

\[\overset{2x2 \text{ max pool}}{\Rightarrow}
Y_{\text{enc}} = \begin{bmatrix}
150 \\
100 \\
110
\end{bmatrix}
\]

Contributions from multiple windows are summed

Decoder

\[
X_{\text{dec}} = \begin{bmatrix}
300 & 450 \\
100 & 250
\end{bmatrix}
\]

\[\overset{2x2 \text{ max unpool}}{\Rightarrow}
Y_{\text{dec}} = \begin{bmatrix}
0 \\
100 \\
0
\end{bmatrix}
\]

\[\begin{bmatrix}
0 & 300 + 450 & 0 \\
0 & 0 & 250 \\
0 & 0 & 0
\end{bmatrix}
\]
We pull max indices from corresponding layers (requires symmetry in encoder/decoder).
How can we *upsample* using convolutions and learnable kernel?

Normal Convolution

| $H = 5$ | $W = 5$ | $k_1 = 3$ | $W - k_2 + 1$ | $H = 5$ |

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)

Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output
Transposed Convolution Example

Contributions from multiple windows are summed.

\[
X = \begin{bmatrix}
120 & 150 & 120 \\
100 & 50 & 110 \\
25 & 25 & 10
\end{bmatrix} \quad K = \begin{bmatrix}
1 \\
2 \\
-2
\end{bmatrix}
\]

\[
\begin{bmatrix}
120 & -120 & 0 & 0 \\
240 & -240 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Incorporate \(X(0,0)\)

\[
\begin{bmatrix}
120 & -120 + 150 & -150 & 0 \\
240 & -240 + 300 & -300 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Incorporate \(X(1,0)\)
We can either learn the kernels, or take corresponding encoder kernel and rotate 180 degrees (no decoder learning).
We can start with a pre-trained trunk/backbone (e.g. network pretrained on ImageNet)!
You can have skip connections to bypass bottleneck!

Various ways to get image-like outputs, for example to predict segmentations of input images.

Fully convolutional layers essentially apply the striding idea to the output classifiers, supporting arbitrary input sizes. (without output size depending on what the input size is)

We can have various upsampling layers that actually increase the size.

Encoder/decoder architectures are popular ways to leverage these to perform general image-to-image tasks.
Single-Stage Object Detection
Given an image, output a list of bounding boxes with probability distribution over classes per box

Problems:

- Variable number of boxes!
- Need to determine candidate regions (position and scale) first

Object Detection

(List of bounding boxes with class distribution per box)
We can use the same idea of fully-convolutional networks

- Use ImageNet pre-trained model as backbone (e.g. taking in 224x224 image)
- Feed in larger image and get classifications for different windows in image
Object Detection Tasks

We can have a *multi-headed architecture*

- One part predicting distribution over class labels (classification)
- One part predicting a bounding box for each image region (regression)
 - Refinement to fit the object better (outputs 4 numbers)
- Both heads *share features*! Jointly optimized (summing gradients)
Can also do this at multiple scales to result in a large number of detections

- Various tricks used to increase the resolution (decrease subsampling ratio)
- Redundant boxes are combined through Non-Maximal Suppression (NMS)

Single-shot detectors use a similar idea of **grids** as anchors, with different scales and aspect ratios around them.

- Various tricks used to increase the resolution (decrease subsampling ratio)

Similar network architecture but single-scale (and hence faster for same size)

You Only Look Once (YOLO)
Datasets

1. For each bounding box, calculate intersection over union (IoU)
2. Keep only those with IoU > threshold (e.g. 0.5)
3. Calculate precision/recall curve across classification probability threshold
4. Calculate average precision (AP) over recall of [0, 0.1, 0.2, …, 1.0]
5. Average over all categories to get mean Average Precision (mAP)

\[
mAP = \frac{1}{11} \sum_{i \in [0, 0.1, \ldots, 1.0]} AP_i
\]
Results

Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector”, 2020
Two-Stage Object Detectors
Instead of making dense predictions across an image, we can decompose the problem:

- Find regions of interest (ROIs) with object-like things
- Classifier those regions (and refine their bounding boxes)

We can use **unsupervised (non-learned!) algorithms** for finding candidates

Downsides:
- Takes 1+ second per image
- Return thousands of (mostly background) boxes

Resize each candidate to full input size and classify

What is the problem with this?

Computation for convolutions re-done for each image patch, even if overlapping!

Fast R-CNN

Map each ROI in image to corresponding region in feature maps

Idea: **Reuse** computation by finding regions in **feature maps**
- Feature extraction only done once per image now!
- Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015
Given an arbitrarily-sized feature map, we can use **pooling** across a grid (ROI Pooling Layer) to convert to fixed-sized representation.

For each grid element, max pool however many values there are to one scalar.

\[
\begin{bmatrix}
120 & 150 & 120 \\
100 & 50 & 110 \\
25 & 25 & 10 \\
65 & 75 & 10 \\
\end{bmatrix}
\]
We can now train this model **end-to-end** (i.e. backpropagate through entire model including ROI Pooling)!
Idea: Why not have the neural network also generate the proposals?

- Region Proposal Network (RPN) uses same features!
- Outputs **objectness score** and bounding box
- Top k selected for classification
- Note some parts (gradient w.r.t. bounding box coordinates) not differentiable so some complexity in implementation

RPN also uses notion of anchors in a grid.

Boxes of various sizes and scales classified with objectness score and refined bounding boxes refined.

Many new advancements have been made.

For example, combining detection and segmentation.

- Extract foreground (object) mask per bounding box.

He, et al., "Mask R-CNN", 2018

https://paperswithcode.com/sota/object-detection-on-coco
• A range of problems characterized by **density and type of output**

• **Semantic/instance segmentation:** Dense, spatial output
 - Leverage encoder/decoder architectures

• **Object detection:** Variable-length list of objects
 - Two-stage versus one-stage architectures
 - *(Not covered):* Anchor-based versus anchor-free methods
Bias & Fairness
ML and Fairness

• AI effects our lives in many ways
• Widespread algorithms with many small interactions
 – e.g. search, recommendations, social media
• Specialized algorithms with fewer but higher-stakes interactions
 – e.g. medicine, criminal justice, finance
• At this level of impact, algorithms can have unintended consequences
• Low classification error is not enough, need fairness
Amazon scraps secret AI recruiting tool that showed bias against women

Jeffrey Dastin

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’ resumes with the aim of mechanizing the search for top talent, five people familiar with the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses or driving pricing decisions. The company’s experimental hiring tool used artificial intelligence to give job candidates scores ranging from one to five stars - much like
Gender and racial bias found in Amazon’s facial recognition technology (again)

Research shows that Amazon’s tech has a harder time identifying gender in darker-skinned and female faces

By James Vincent | Jan 25, 2019, 9:45am EST
ML and Fairness

- Fairness is morally and legally motivated
- Takes many forms
- Criminal justice: recidivism algorithms (COMPAS)
 - Predicting if a defendant should receive bail
 - Unbalanced false positive rates: more likely to wrongly deny a black person bail

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrongly Labeled High-Risk</td>
<td>23.5%</td>
<td>44.9%</td>
</tr>
<tr>
<td>Wrongly Labeled Low-Risk</td>
<td>47.7%</td>
<td>28.0%</td>
</tr>
</tbody>
</table>

Why Fairness is Hard

• Suppose we are a bank trying to fairly decide who should get a loan
 — i.e. Who is most likely to pay us back?
• Suppose we have two groups, A and B (the sensitive attribute)
 — This is where discrimination could occur
• The simplest approach is to remove the sensitive attribute from the data, so that our classier doesn't know the sensi

Table 2: To Loan or Not to Loan?

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Postal Code</th>
<th>Req Amt</th>
<th>A or B?</th>
<th>Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>F</td>
<td>M5E</td>
<td>$300</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>M4C</td>
<td>$1000</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>M3H</td>
<td>$250</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>M9C</td>
<td>$2000</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>F</td>
<td>M3B</td>
<td>$200</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>M5W</td>
<td>$1500</td>
<td>B</td>
<td>0</td>
</tr>
</tbody>
</table>
Why Fairness is Hard

- However, if the sensitive attribute is correlated with the other attributes, this isn't good enough
- It is easy to predict race if you have lots of other information (e.g. home address, spending patterns)
- More advanced approaches are necessary

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Postal Code</th>
<th>Req Amt</th>
<th>A or B?</th>
<th>Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>F</td>
<td>M5E</td>
<td>$300</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>M4C</td>
<td>$1000</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>M3H</td>
<td>$250</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>F</td>
<td>M9C</td>
<td>$2000</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>F</td>
<td>M3B</td>
<td>$200</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>M5W</td>
<td>$1500</td>
<td>?</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: To Loan or Not to Loan? (masked)
Definitions of Fairness – Group Fairness

- So we've built our classifier... how do we know if we're being fair?
- One metric is demographic parity | requiring that the same percentage of A and B receive loans
 - What if 80% of A is likely to repay, but only 60% of B is?
 - Then demographic parity is too strong
- Could require equal false positive/negative rates
 - When we make an error, the direction of that error is equally likely for both groups

\[
P(\text{loan|no repay, A}) = P(\text{loan|no repay, B})
\]
\[
P(\text{no loan|would repay, A}) = P(\text{no loan|would repay, B})
\]

- These are definitions of group fairness
- Treat different groups equally"
Definitions of Fairness – Individual Fairness

- Also can talk about individual fairness | “Treat similar examples similarly"
- Learn fair representations
 - Useful for classification, not for (unfair) discrimination
 - Related to domain adaptation
 - Generative modelling/adversarial approaches

Figure 1: “The Variational Fair Autoencoder” (Louizos et al., 2016)
Conclusion

• This is an exciting field, quickly developing
• Central definitions still up in the air
• AI moves fast | lots of (currently unchecked) power
• Law/policy will one day catch up with technology
• Those who work with AI should be ready
 – Think about implications of what you develop!
Calibration
Calibration

- Definition
- Measuring Calibration
- Calibrating models
- Limitations of Calibration
A classifier is **well-calibrated** if the probability of the observations with a given probability score of having a label is equal to the proportion of observations having that label

Example: if a binary classifier gives a score of 0.8 to 100 observations, then 80 of them should be in the positive class

\[\forall p \in [0, 1], \ P(\hat{Y} = Y | \hat{P} = p) = p \]

where \(\hat{Y} \) is the predicted label and \(\hat{P} \) is the predicted probability (or score) for class \(Y \)
Calibration: Definition
Calibration: Definition

Group Calibration: the scores for subgroups of interest are calibrated (or at least, equally mis-calibrated)
Some models (e.g. Logistic Regression) tend to have well-calibrated predictions.

Some DL models (e.g. ResNet) tend to be overconfident (https://arxiv.org/pdf/1706.04599.pdf).

Logistic calibration/Platt scaling.
Post-processing approach requiring an additional validation dataset

Platt scaling (binary classifier)

- Learn parameters a, b so that the calibrated probability is
 $$\hat{q}_i = \sigma(az_i + b)$$
 where z_i is the network’s logit output

Temperature scaling extends this to multi-class classification

- Learn a temperature T, and produce calibrated probabilities
 $$\hat{q}_i = \max_k \sigma_{SoftMax}(z_i/T)$$
Calibration: Limitations

- Group based
- The Inherent Tradeoffs of Calibration