
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Bias, Fairness, Calibration
• Structured Representations and recurrent neural networks

Administrivia

• Assignment 3
• Due March 14th 11:59pm EST.
• See https://piazza.com/class/ky0k0ha5vgy1mk?cid=176

• (note: ignore logistics on that slide deck)

• Projects
• Project proposal due March 13th

• Meta Office Hours on Language Models Friday 3pm EST

Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)

Bias &
Fairness

ML and Fairness

• AI effects our lives in many ways
• Widespread algorithms with many small interactions

– e.g. search, recommendations, social media
• Specialized algorithms with fewer but higher-stakes

interactions
– e.g. medicine, criminal justice, finance

• At this level of impact, algorithms can have unintended
consequences

• Low classification error is not enough, need fairness

(C) Dhruv Batra & Zsolt Kira 5
Slide Credit: David Madras

(C) Dhruv Batra & Zsolt Kira 6

(C) Dhruv Batra & Zsolt Kira 7

ML and Fairness
• Fairness is morally and legally motivated
• Takes many forms
• Criminal justice: recidivism algorithms (COMPAS)

– Predicting if a defendant should receive bail
– Unbalanced false positive rates: more likely to wrongly deny a black

person bail

(C) Dhruv Batra & Zsolt Kira 8
Slide Credit: David Madras

Why Fairness is Hard
• Suppose we are a bank trying to fairly decide who should get a loan

– i.e. Who is most likely to pay us back?

• Suppose we have two groups, A and B (the sensitive attribute)
– This is where discrimination could occur

• The simplest approach is to remove the sensitive attribute from the data, so that our classier doesn't
know the sensitive attribute

(C) Dhruv Batra & Zsolt Kira 9
Slide Credit: David Madras

Why Fairness is Hard

• However, if the sensitive attribute is correlated with the other attributes, this isn't good enough
• It is easy to predict race if you have lots of other information (e.g. home address, spending patterns)
• More advanced approaches are necessary

(C) Dhruv Batra & Zsolt Kira 10
Slide Credit: David Madras

Definitions of Fairness – Group Fairness

• So we've built our classier . . . how do we know if we're being fair?
• One metric is demographic parity | requiring that the same percentage of A and B receive loans

– What if 80% of A is likely to repay, but only 60% of B is?
– Then demographic parity is too strong

• Could require equal false positive/negative rates
– When we make an error, the direction of that error is equally likely for both groups

• These are definitions of group fairness
• Treat different groups equally"

(C) Dhruv Batra & Zsolt Kira 11
Slide Credit: David Madras

Definitions of Fairness – Individual Fairness
• Also can talk about individual fairness | “Treat similar examples similarly"
• Learn fair representations

– Useful for classification, not for (unfair) discrimination
– Related to domain adaptation
– Generative modelling/adversarial approaches

(C) Dhruv Batra & Zsolt Kira 12
Slide Credit: David Madras

Conclusion

• This is an exciting field, quickly developing
• Central definitions still up in the air
• AI moves fast | lots of (currently unchecked) power
• Law/policy will one day catch up with technology
• Those who work with AI should be ready

– Think about implications of what you develop!

(C) Dhruv Batra & Zsolt Kira 13
Slide Credit: David Madras

Calibration

Definition

Measuring Calibration

Calibrating models

Limitations of Calibration

A classifier is well-calibrated if the probability of the observations
with a given probability score of having a label is equal to the
proportion of observations having that label

Example: if a binary classifier gives a score of 0.8 to 100
observations, then 80 of them should be in the positive class

where is the predicted label and is the predicted probability
(or score) for class

Group Calibration: the scores for
subgroups of interest are calibrated
(or at least, equally mis-calibrated)

Some models (e.g Logistic Regression) tend to have
well-calibrated predictions

Some DL models (e.g. ResNet) tend to be
overconfident (https://arxiv.org/pdf/1706.04599.pdf)

Logistic calibration/Platt scaling

Post-processing approach requiring an additional validation
dataset

Platt scaling (binary classifier)

Learn parameters so that the calibrated probability is

𝒊 𝒊)where 𝒊 is the network’s logit output)

Temperature scaling extends this to multi-class classification

Learn a temperature , and produce calibrated probabilities

𝒊
𝒌

𝑺𝒐𝒇𝒕𝑴𝒂𝒙 𝒊

Group based

The Inherent Tradeoffs of
Calibration

Module 3
Introduction

Recurrent Neural
Networks

Fully Connected
Neural Networks

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions

Attention-Based
Networks

+

Graph-Based
Networks

Recurrent Neural Networks

Fully Connected
Neural Networks

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions

Same function!

Recurrent Neural
Networks

New Topic: RNNs

(C) Dhruv Batra 25

Image Credit: Andrej Karpathy

Why model sequences?

Figure Credit: Carlos Guestrin

Sequences are everywhere…

(C) Dhruv Batra 27

Image Credit: Alex Graves and Kevin Gimpel

Sequences in Input or Output?

• It’s a spectrum…

(C) Dhruv Batra 28

Input: No
sequence

Output: No
sequence

Example:
“standard”

classification
/

regression
problems Image Credit: Andrej Karpathy

Sequences in Input or Output?

• It’s a spectrum…

(C) Dhruv Batra 29

Input: No
sequence

Output: No
sequence

Example:
“standard”

classification
/

regression
problems

Input: No
sequence

Output: Sequence

Example:
Im2Caption

Image Credit: Andrej Karpathy

Sequences in Input or Output?

• It’s a spectrum…

(C) Dhruv Batra 30

Input: No
sequence

Output: No
sequence

Example:
“standard”

classification
/

regression
problems

Input: No
sequence

Output: Sequence

Example:
Im2Caption

Input: Sequence

Output: No
sequence

Example:
sentence

classification,
multiple-choice

question
answering
Image Credit: Andrej Karpathy

Sequences in Input or Output?

• It’s a spectrum…

(C) Dhruv Batra 31

Input: No
sequence

Output: No
sequence

Example:
“standard”

classification
/

regression
problems

Input: No
sequence

Output: Sequence

Example:
Im2Caption

Input: Sequence

Output: No
sequence

Example:
sentence

classification,
multiple-choice

question
answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification,
video captioning, open-ended question answering

Image Credit: Andrej Karpathy

What’s wrong with MLPs?

• Problem 1: Can’t model sequences
– Fixed-sized Inputs & Outputs
– No temporal structure

(C) Dhruv Batra 32

Image Credit: Alex Graves, book

What’s wrong with MLPs?

• Problem 1: Can’t model sequences
– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback

(C) Dhruv Batra 33

Image Credit: Alex Graves, book

3 Key Ideas

• The notion of memory (state)
– We want to propagate information across the sequence
– We will do this with state, represented by a vector

(embedding/representation)
– Just as a CNN represents an image with the final hidden

vector/bmedding before the final classifier

(C) Dhruv Batra 34

3 Key Ideas

• The notion of memory (state)

• Parameter Sharing
– in computation graphs = adding gradients

(C) Dhruv Batra 35

Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra

36

Computational Graph

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

3 Key Ideas

• The notion of memory (state)

• Parameter Sharing
– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

(C) Dhruv Batra 38

New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)

(C) Dhruv Batra 39

Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Idea: Input is a sequence and we will process it sequentially though a neural
network module with state

• For each timestep (element of sequence):

h

Recurrent Neural Network

x

RNN

y
usually want to
predict a vector at
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

Notice: the same function and the same set
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h

h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…

x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…

x2x1
W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

y

…

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-many

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Distributed Representations Toy Example

• Can we interpret each dimension?

(C) Dhruv Batra 59

Slide Credit: Moontae Lee

Power of distributed representations!

(C) Dhruv Batra 60

Local

Distributed

Slide Credit: Moontae Lee

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: MLE / “Teacher Forcing”

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

67

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee
566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

