
Attention and Transformers

Arjun Majumdar
Georgia Tech

Slide Credits: Andrej Karpathy, Justin Johnson, Dhruv Batra

Lecture Outline

• Machine Translation with RNNs

• RNNs with Attention

• From Attention to Transformers

• What can Transformers do?

Image Credit: Andrej Karpathy

Sequence Modeling with RNNs

Machine Translation

we are eating bread estamos comiendo pan

RNN DecoderRNN Encoder

Machine Translation

we are eating bread

estamos comiendo pan

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0 = h4

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s1

[START]

y0

y1

estamos
Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0

Decoder: st = gU(yt, st-1)

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

estamos

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Problem: si is used to
encode input and
maintain decoder state

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

h0

Solution: add a
context vector c = h4
and predict s0 from h4

c

Decoder: st = gU(yt, st-1, c)

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

Slide credit: Justin Johnson

Solution: add a
context vector c = h4
and predict s0 from h4

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Problem: Input sequence
bottlenecked through
fixed-sized vector.

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Slide credit: Justin Johnson

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]
Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Idea: use new context
vector at each step of
decoder!

we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get
attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Set context vector c to a linear
combination of hidden states

ct = ∑iat,ihi

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get
attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

s1

y0

y1

estamos

Set context vector c to a linear
combination of hidden states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

[START]

Machine Translation with RNNs and Attention

Normalize to get
attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

s1

y0

y1

estamos

This is all differentiable! Do not
supervise attention weights –
backprop through everythingBahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Set context vector c to a linear
combination of hidden states

ct = ∑iat,ihi

Normalize to get
attention weights

0 < at,i < 1 ∑iat,i = 1

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖

+

✖ ✖ ✖

Intuition: Context vector
attends to the relevant
part of the input sequence
“estamos” = “we are”

s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

a11=0.45, a12=0.45, a13=0.05, a14=0.05

Set context vector c to a linear
combination of hidden states

ct = ∑iat,ihi

Normalize to get
attention weights

0 < at,i < 1 ∑iat,i = 1

Compute alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

This is all differentiable! Do not
supervise attention weights –
backprop through everything

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

s2

y2

comiendo

y1

Use c2 to
compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖ ✖ ✖ ✖

+

s2

y2

comiendo

y1

Intuition: Context vector
attends to the relevant part
of the input sequence
“comiendo” = “eating”

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Use c2 to
compute s2, y2

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures
out different word
orders

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

e21 e22 e23 e24

softmax

a21 a22 a23 a24

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Attention Layer
Inputs:
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(st-1, hi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(q, Xi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes:
- Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Changes:
- Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Changes:
- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Softmax()

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Slide credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

One query per input vector
Self-Attention Layer

Slide credit: Justin Johnson

Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Queries and Keys will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Similarities will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Attention weights will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Values will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant
f(s(x)) = s(f(x))

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self attention doesn’t “know”
the order of the vectors it is
processing!

In order to make processing
position-aware, concatenate
input with positional encoding

E can be learned lookup table,
or fixed function

E(1) E(2) E(3)

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Masked Self-Attention Layer
Don’t let vectors “look
ahead” in the sequence

Used for language
modeling (predict next
word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2

E3,1

0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multihead Self-Attention Layer

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

Split

Concat

Use H independent
“Attention Heads” in
parallel

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

x1 x2 x3 x4

Slide credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson

Three Ways of Processing Sequences

x
1

x
2

x
3

y1 y2 y3

x
4

y4

x
1

x
2

x
3

x
4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

Attention is all you need
Vaswani et al, NeurIPS 2017

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact
with each other

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide credit: Justin Johnson

MLP independently
on each vector

y1 y2 y3 y4

MLP MLP MLP MLP

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Residual connection

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a
sequence of transformer
blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide credit: Justin Johnson

Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

SYSTEM PROMPT (HUMAN-WRITTEN)
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)
The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on top,”
said Pérez.

Source: OpenAI, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

ViLBERT Pre-Training

blue sofa in the living
room.

a worker helps to clear
the debris.

pop artist performs at the
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

RPN

CNN RoI
Pool

Faster R-CNN

Vision Language

Multimodal Transformer

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

blue sofa in the living
room.

ViLBERT Demo:
https://vilbert.cloudcv.org/

https://vilbert.cloudcv.org/

Summary
Self-Attention Transformer Model ViLBERT

