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• Machine Translation with RNNs

• RNNs with Attention

• From Attention to Transformers

• What can Transformers do?



Image Credit: Andrej Karpathy

Sequence Modeling with RNNs
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Problem: si is used to 
encode input and 
maintain decoder state
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context vector c = h4 
and predict s0 from h4
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vector at each step of 
decoder!



we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state: 
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Compute alignment scores
et,i = fatt(st-1, hi)        (fatt is an MLP)

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Compute alignment scores
et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get 
attention weights

0 < at,i < 1    ∑iat,i = 1
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Set context vector c to a linear 
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attention weights
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Compute alignment scores
et,i = fatt(st-1, hi)        (fatt is an MLP)
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This is all differentiable! Do not 
supervise attention weights –
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Machine Translation with RNNs and Attention
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translation
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the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
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Visualize attention weights at,i
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Diagonal attention means 
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order
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Attention Layer
Inputs: 
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(st-1, hi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(q, Xi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)
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Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Changes: 
- Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Changes: 
- Use dot product for similarity
- Multiple query vectors
- Separate key and value 

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

One query per input vector
Self-Attention Layer

Slide credit: Justin Johnson



Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson
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Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)
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Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
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Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
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Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)
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Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
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Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector
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Consider permuting
the input vectors:

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj
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Self-Attention Layer
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Product(→),   Sum(↑)

Softmax(↑)
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Consider permuting
the input vectors:

Queries and Keys will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Consider permuting
the input vectors:

Similarities will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Consider permuting
the input vectors:

Attention weights will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Product(→),   Sum(↑)

Softmax(↑)
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Consider permuting
the input vectors:

Values will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Consider permuting
the input vectors:

Outputs will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Consider permuting
the input vectors:

Outputs will be the 
same, but permuted

Self-attention layer is 
Permutation 
Equivariant
f(s(x)) = s(f(x))

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Self-Attention Layer
Self attention doesn’t “know” 
the order of the vectors it is 
processing!

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Self attention doesn’t “know” 
the order of the vectors it is 
processing!

In order to make processing 
position-aware, concatenate 
input with positional encoding

E can be learned lookup table, 
or fixed function

E(1) E(2) E(3)

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Masked Self-Attention Layer
Don’t let vectors “look 
ahead” in the sequence

Used for language 
modeling (predict next 
word)
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Product(→),   Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Multihead Self-Attention Layer
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Split

Concat

Use H independent 
“Attention Heads” in 
parallel

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the 
whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Slide credit: Justin Johnson



Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the 
whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

x1 x2 x3 x4

Slide credit: Justin Johnson



Three Ways of Processing Sequences
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Product(→),			Sum(↑)
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Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the 
whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after 
one self-attention layer, each 
output “sees” all inputs!
(+) Highly parallel: Each output 
can be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson



Three Ways of Processing Sequences

x
1

x
2

x
3

y1 y2 y3

x
4

y4

x
1

x
2

x
3

x
4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1
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Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the 
whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after 
one self-attention layer, each 
output “sees” all inputs!
(+) Highly parallel: Each output 
can be computed in parallel
(-) Very memory intensive

Attention is all you need
Vaswani et al, NeurIPS 2017

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact 
with each other

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently 
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently 
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson
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+Residual connection



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

x1 x2 x3 x4

All vectors interact 
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide credit: Justin Johnson

MLP independently 
on each vector

y1 y2 y3 y4

MLP MLP MLP MLP



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

x1 x2 x3 x4

All vectors interact 
with each other

Residual connection

MLP independently 
on each vector

Slide credit: Justin Johnson
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact 
with each other

Residual connection

MLP independently 
on each vector

Residual connection

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only 
interaction between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a 
sequence of transformer 
blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only 
interaction between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

Slide credit: Justin Johnson



Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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SYSTEM PROMPT (HUMAN-WRITTEN)
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, 
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke 
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)
The scientist named the population, after their distinctive horn, Ovid’s 
Unicorn. These four-horned, silver-white unicorns were previously unknown to 
science.

Now, after almost two centuries, the mystery of what sparked this odd 
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and 
several companions, were exploring the Andes Mountains when they found a small 
valley, with no other animals or humans. Pérez noticed that the valley had what 
appeared to be a natural fountain, surrounded by two peaks of rock and silver 
snow.

Pérez and the others then ventured further into the valley. “By the time we 
reached the top of one peak, the water looked blue, with some crystals on top,” 
said Pérez.

Source: OpenAI, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/



Can Attention/Transformers be used 
from more than text processing?



ViLBERT Pre-Training

blue sofa in the living 
room.

a worker helps to clear 
the debris.

pop artist performs at the 
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned, 
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.



RPN

CNN RoI
Pool

Faster R-CNN

Vision Language

Multimodal Transformer

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

blue sofa in the living 
room.



ViLBERT Demo: 
https://vilbert.cloudcv.org/

https://vilbert.cloudcv.org/


Summary
Self-Attention Transformer Model ViLBERT


