
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Masked Language Models (dropbox M3L12)
• Embeddings (dropbox M3L13)
• Reinforcement Learning introduction



Administrivia

• Assignment 4 out
• Due April 4th 11:59pm EST (grace April 6th)
• Do not submit first version last-minute on 6th! 

• Please submit *something* by deadline (Apr 4th) to avoid last-minute hiccups and zero!

• Projects
• Project due May 1st 11:59pm EST

• Outline of rest of course:
• Today we start (deep) reinforcement learning
• Guest lectures/other topics (e.g. self-supervised learning)
• Generative models (VAEs / GANs)



Sequences in Input or Output?

• It’s a spectrum… 

(C) Dhruv Batra 3

Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
/ 

regression 
problems

Input: No 
sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: 
sentence 

classification, 
multiple-choice 

question 
answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



The Space of Architectures

Recurrent Neural 
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Fully Connected
Neural Networks

PredictionsInput
Data
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Input
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Attention-Based 
Networks 

+

Graph-Based 
Networks 



Recall: Transformers

Transformer Block Multi-Layered Encoder/Decoder
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Jean Maillard

Jean Maillard is a Research Scientist on the 
Language And Translation Technologies Team 
(LATTE) at Facebook AI. His research interests 
within NLP include word- and sentence-level 
semantics, structured prediction, and low-
resource languages. Prior to joining Facebook in 
2019, he was a doctoral student with the NLP 
group at the University of Cambridge, where he 
researched compositional semantic methods. He 
received his BSc in Theoretical Physics from 
Imperial College London.

Lecturer Introduction



Recap and Intro

⬣ Recall: language models estimate the probability of sequences of words:

⬣ Masked language modeling is a related pre-training task – an auxiliary 
task, different from the final task we’re really interested in, but which can 
help us achieve better performance by finding good initial parameters for 
the model.

⬣ By pre-training on masked language modeling before training on our final 
task, it is usually possible to obtain higher performance than by simply 
training on the final task.
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Token-level Tasks



Token-level Tasks



Sentence-level Tasks



Sentence-level Tasks



Cross-lingual Masked Language Modeling



Cross-lingual Masked Language Modeling



Cross-lingual Masked Language Modeling



Cross-lingual Task: Natural Language Inference



Cross-lingual Task: Natural Language Inference



Model Size in Perspective



What About Vision? 



Vision Transformer (ViT)



ViT Results



When trained on mid-sized datasets such 
as ImageNet, such models yield modest 
accuracies of a few percentage points 
below ResNets of comparable size. This 
seemingly discouraging outcome maybe 
expected: Transformers lack some of the 
inductive biases inherent to CNNs, such 
as translation equivariance and locality, 
and therefore do not generalize well 
when trained on insufficient amounts of 
data.

However, the picture changes if the 
models are trained on larger datasets 
(14M-300M images). We find that large 
scale training trumps inductive bias.

Dosovitskiy et al.

https://paperswithcode.com/sota/image-classification-on-imagenetViTs and Transfer Learning



Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

https://paperswithcode.com/sota/instance-segmentation-on-coco
Swin Transformers



Summary

• “Attention” models outperform recurrent models and convolutional models 
for sequence processing. They allow long range interactions.

• These models do best with LOTS of training data
• Surprisingly, they seem to outperform convolutional networks for image 

processing tasks. Again, long range interactions might be more important 
than we realized. 

• Naïve attention mechanisms have quadratic complexity with the number of 
input tokens, but there are often workarounds for this.



Knowledge Distillation to Reduce Model Sizes
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reference distribution

cross-entropy

Knowledge Distillation to Reduce Model Sizes
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Ledell Wu
Ledell Wu is a research engineer at Facebook AI 
Research. Ledell joined Facebook in 2013 after 
graduating from University of Toronto. She worked on 
Newsfeed ranking as a machine learning engineer. After 
joining Facebook AI, Ledell worked on general purpose 
and large-scale embedding systems. She collaborated 
with teams including page recommendations, video 
recommendations, ads interest suggestion, people 
search and feed integrity, to use embeddings to better
serve products. She is one of the main contributors in 
open source projects including StarSpace (general 
purpose embedding system), PyTorch Big-Graph (large-
scale graph embedding system) and BLINK (entity 
linking). Ledell also studies fairness and biases in 
machine learning models.
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⬣ Word Embeddings

⬣ Graph Embeddings

⬣ Applications, world2vec

⬣ Additional Topics

Embeddings



⬣ Mapping Objects to Vectors through a trainable function

Introduction to Embeddings

“The neighbors' dog was a Samoyed, 
which looks a lot like a Siberian husky” 

Neural Net

[0.2, -2.1, 0.4, -0.5, …][0.4, -1.3, 2.5, -0.7, …]

Slide Credit: Yann LeCun



Introduction to Embeddings

Slide Credit: Yann LeCun



Graph Embeddings

(Big) Graph Data is Everywhere
Knowledge Graphs

Standard domain for studying graph 
embeddings (Freebase, …)

Wang, Zhenghao & Yan, Shengquan & Wang, Huaming & Huang, Xuedong. (2014). 
An Overview of Microsoft Deep QA System on Stanford WebQuestions Benchmark. 

Recommender Systems
Deals with graph-like data, but 

supervised
(MovieLens, …)

Social Graphs
Predict attributes based on homophily

or structural similarity
(Twitter, Yelp, …)

Slide Credit: Adam Lerer



Graph Embeddings

Graph Embedding & Matrix Completion

item1 item2 … itemN

person1 - + +

person2 + ?

…

personP + - ?

⬣ Relations between items
(and people)

⬣ Items in {people, movies,
page, articles, products,
word sequences…}

⬣ Predict if someone will like
an item, if a word will follow
a word sequence

Slide Credit: Yann LeCun



Graph Embeddings

A

B
C

D E

A multi-relation graph

Embedding: A learned map from entities to 
vectors of numbers that encodes similarity
⬣ Word embeddings:  word vector
⬣ Graph embeddings: node vector

Graph Embedding: Optimize the objective 
that connected nodes have more similar 
embeddings than unconnected nodes via 
gradient descent.

Slide Credit: Adam Lerer



Graph Embeddings

Why Graph Embeddings?

Graph embeddings are a form of 
unsupervised learning on graphs. 

⬣ Task-agnostic entity representations
⬣ Features are useful on downstream tasks 

without much data
⬣ Nearest neighbors are semantically 

meaningful

Slide Credit: Adam Lerer
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Graph Embeddings

Margin loss between the score for an edge 𝑓(𝑒) and 
a negative sampled edge 𝑓 𝑒ᇱ

The score for an edge is a similarity (e.g. dot product) 
between the source embedding and a transformed 
version of the destination embedding, e.g.

        𝑓 𝑒 = cos (𝜃௦, 𝜃௥ + 𝜃ௗ)

Negative samples are constructed by taking a real 
edge and replacing the source or destination with a 
random node.

Slide Credit: Adam Lerer
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A multi-relation graph



Graph Embeddings

Multiple Relations in Graphs

Figure Credit: Alex Peysakhovich

⬣ Identity:

⬣ Translator:

⬣ Affine:

⬣ Diagonal:

[Bordes et al. 13’]

[Nickel et al., 11’]

[Yang et al., 15’]



Application: TagSpace, PageSpace

TagSpace

Reference: [Weston et al. 14’], [Wu et al. 18’]
https://github.com/facebookresearch/StarSpace

Input: restaurant has great food

Label: #yum, #restaurant

Use-cases: 

⬣ Labeling posts

⬣ Clustering of hashtags

Input: (user, page) pairs

Use-cases: 

⬣ Clustering of pages

⬣ Recommending pages to users

PageSpace



Application: world2vec

Slide Credit: Alex Peysakhovich



Application: world2vec

⬣ What pages or topics might
you be interested in?

⬣ Which posts contain 
misinformation, hate speech, 
election interference, …?

⬣ Is a person’s account fake / 
hijacked?

⬣ What songs might you like? 
(even if you’ve never provided 
any song info)

The Power of Universal Behavioral Features

Slide Credit: Adam Lerer



Reinforcement 
Learning 

Introduction



Reinforcement 
Learning

⬣ Evaluative 
feedback in  the 
form of reward

⬣ No supervision on 
the right action

Types of Machine Learning

Unsupervised 
Learning

⬣ Input: 

⬣ Learning 
output: 

⬣ Example: Clustering, 
density estimation, 
etc.

Supervised 
Learning

⬣ Train Input: 

⬣ Learning output:    
, 

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environmen
t

(world)
Figure Credit: Rich Sutton



What is Reinforcement Learning?

Evaluative Feedback Sequential Decisions

⬣ Pick an action, receive a 
reward (positive or 
negative)

⬣ No supervision for what 
the “correct” action is or 
would have been, unlike 
supervised learning

⬣ Plan and execute actions 
over a sequence of 
states

⬣ Reward may be delayed, 
requiring optimization of 
future rewards (long-term 
planning).

RL: Sequential decision making in an environment with evaluative feedback.



RL API

RL: Environment Interaction API

⬣ At each time step t, the agent:

⬣ Receives observation ot

⬣ Executes action at

⬣ At each time step t, the environment:

⬣ Receives action at

⬣ Emits observation ot+1

⬣ Emits scalar reward rt+1

Slide credit: David Silver



RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the 
policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton



Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move 
forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright 
and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece 
down

⬣ Reward: +1 if win at the end of game, 
0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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⬣ MDPs: Theoretical framework underlying RL
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MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 
partial observation ot of the 
state st at time t, using past 
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom



MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 
partial observation ot of the 
state st at time t, using past 
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture



⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and 
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP
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⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ For this and next lecture, assume that we know the true reward and transition 
distribution and look at algorithms for solving MDPs i.e. finding the best policy

⬣ Rewards known everywhere, no evaluative feedback

⬣ Know how the world works i.e. all transitions

MDPs in the context of RL

MDP



A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell 
left or right of direction of motion 
(except when blocked by wall).

Figure credits: Pieter Abbeel
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