Topics:
* Masked Language Models (dropbox M3L12)
 Embeddings (dropbox M3L13)

* Reinforcement Learning introduction

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 4 out
e Due April 4th 11:59pm EST (grace April 6t")

* Do not submit first version last-minute on 6!
* Please submit *something* by deadline (Apr 4t") to avoid last-minute hiccups and zero!

Projects
* Project due May 1%t 11:59pm EST

Outline of rest of course:
 Today we start (deep) reinforcement learning

* Guest lectures/other topics (e.g. self-supervised learning)
* Generative models (VAEs / GANs)



Sequences in Input or Output?

’ -
i |t S one to one one to many many to one many to many many to many

Input: No

sequence Input: No Input: Sequence Input: Sequence
Output: No sequence Output: No Output: Sequence
sequence Output: Sequence sequence Example: machine translation, video classification,
Example: Example: Example: video captioning, open-ended question answering
ple: .
Im2Caption sentence

“standard”
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Input I — Predictions Input — Predictions
Data Image

Fully Connected Convolutional Neural
Neural Networks Networks

-+ 1

Recurrent Neural Attention-Based Graph-Based
Networks Networks Networks
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Jean Maillard

Jean Maillard is a Research Scientist on the
Language And Translation Technologies Team
(LATTE) at Facebook Al. His research interests
within NLP include word- and sentence-level
semantics, structured prediction, and low-
resource languages. Prior to joining Facebook in
2019, he was a doctoral student with the NLP
group at the University of Cambridge, where he
researched compositional semantic methods. He
received his BSc in Theoretical Physics from
Imperial College London.
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Recall: language models estimate the probability of sequences of words:

p(S) — p(W‘I)WZa U Wn)

Masked language modeling is a related pre-training task — an auxiliary
task, different from the final task we're really interested in, but which can
help us achieve better performance by finding good initial parameters for
the model.

By pre-training on masked language modeling before training on our final
task, it is usually possible to obtain higher performance than by simply
training on the final task.
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performance (GLUE)
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@ BERT (2018)
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Model Size in Perspective

100000
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Types of model:
shallow network
RNN

@® transformer
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Preprint. Under review.

AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*f, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiachua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsbhy*f
*equal technical contribution, fequal advising
Google Research, Brain Team
{adosovitskiy, nei lhoulsby}@google .com

<
(|
O
™ ABSTRACT
-
Q : : ;
™~ While the Transformer architecture has become the de-facto standard for natural
b language processing tasks, its applications to computer vision remain limited. In
o vision, attention is either applied in conjunction with convolutional networks, or
(@] used to replace certain components of convolutional networks while keeping their
A overall structure in place. We show that this reliance on CNNs is not necessary
> and a pure transformer applied directly to sequences of image patches can perform
¥ very well on image classification tasks. When pre-trained on large amounts of
o/ data and transferred to multiple mid-sized or small image recognition benchmarks
v (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
Li results compared to state-of-the-art convolutional networks while requiring sub-

stantially fewer computational resources to [rainm

) What About Vision? Gegraia |
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Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JFT Ours-JFT Ours-121K BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl52x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.544+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90x0.05 93.25+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02  99.74+0.00 99.61+0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+0.23 76.284046 72.724+0.21 76.29+1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 123k

>

ViT Results
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90

= »
>
8 851 @& When trained on mid-sized datasets such
g as ImageNet, such models yield modest
@ | . .
< 20 ; L4 accuracies of a few percentage points
S below ResNets of comparable size. This
E - — . L seemingly discouraging outcome maybe
& ® o ViT-B/32 VIT-L/16 expected: Transformers lack some of the
£ ' ViT-B/16 () ViT-H/14 inductive biases inherent to CNNs, such
01 : : as translation equivariance and locality,
ImageNet ImageNet-21k JFT-300M

and therefore do not generalize well

Pre-training dataset . . -
when trained on insufficient amounts of

data.
Figure 3: Transfer to ImageNet. While
large ViT models perform worse than BiT However, the picture changes if the
ResNets (shaded area) when pre-trained on models are trained on larger datasets
small datasets, they shine when pre-trained on (14M-300M images). We find that large
larger datasets. Similarly, larger ViT variants scale training trumps inductive bias.

overtake smaller ones as the dataset grows.

ViTs and Transfer Learning Gacrgia |




Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

segmentation -
classification  detection ... classification

[
(T i i 4%

(a) Swin Transformer (ours)

) Swin Transformers




Summary

“Attention” models outperform recurrent models and convolutional models
for sequence processing. They allow long range interactions.

These models do best with LOTS of training data

Surprisingly, they seem to outperform convolutional networks for image

processing tasks. Again, long range interactions might be more important
than we realized.

Naive attention mechanisms have quadratic complexity with the number of
input tokens, but there are often workarounds for this.

Georgia |
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cross-entropy H(p™,p) Zp )log p(x)

Xex

reference distribution
Laist = H(t,s) Zt logs; or Dg.(t|s)
Estudent — H(Y: S) — Z.Vilog Sj
i

L = aLlyist + 8 Lstudent

) Knowledge Distillation to Reduce Model Sizes  racesooka Georg'ﬁ&
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Ledell Wu

Ledell Wu is a research engineer at Facebook Al
Research. Ledell joined Facebook in 2013 after
graduating from University of Toronto. She worked on
Newsfeed ranking as a machine learning engineer. After
joining Facebook Al, Ledell worked on general purpose
and large-scale embedding systems. She collaborated
with teams including page recommendations, video
recommendations, ads interest suggestion, people
search and feed integrity, to use embeddings to better
serve products. She is one of the main contributors in
open source projects including StarSpace (general
purpose embedding system), PyTorch Big-Graph (large-
scale graph embedding system) and BLINK (entity
linking). Ledell also studies fairness and biases in
machine learning models.
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Embeddings

Word Embeddings
Graph Embeddings
Applications, world2vec

Additional Topics
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Mapping Objects to Vectors through a trainable function

[0.4,-1.3,25,-0.7, ...] [0.2,-2.1,0.4,-05, ..]

samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0); B G

EOIF RIS AT EIFTA

""" r""’”’-’———-""‘
7= = 7 T - - - - LA

EaP T R ST HTERTTA

V. Rl A A A

CEP T AP S ST ITA

&
& y o
Red Green Blue ﬁ

“The neighbors' dog was a Samoyed,
which looks a lot like a Siberian husky”

Slide Credit: Yann LeCun
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oyeux Anniversaire!

L #lamOld

| #yannsplanes |‘\ '

tribute concert

'\ Watched
\ John Coltrane

Wow! Checkout
this vint jot

Slide Credit: Yann LeCun

Introduction to Embeddings FACEBOOK Al Gegria |




(Big) Graph Data is Everywhere

Knowledge Graphs Recommender Systems
Standard domain for studying graph Deals with graph-like data, but
embeddings (Freebase, ...) supervised
“Gender, a2 . . "
/ | \ “™Female USState user_id | movie_id | rating
PlacesLived  Spouse 1992.10.03 4
/ \ StartDate/ Tylpe 0 196 242 3
Event21 Event8 Hawaii 4 l10e nnn n
— '
ContainedBy
\ JB: _
Location ~ Type Marriage UnitedStates ContainedBy

— e Social Graphs

Chicago| gackObama PlacsOfBirth——Honolulu Predict attributes based on homophily
Location PlacesLived . . .
B3, fB/n h \Pf 1 or stru_ctu ral similarity
' / AN | (Twitter, Yelp, ...)

Wang, Zhenghao & Yan, Shengquan & Wang, Huaming & Huang, Xuedong. (2014).
An Overview of Microsoft Deep QA System on Stanford WebQuestions Benchmark. Slide Credit: Adam Lerer

Graph Embeddings FACEBOOK Al Geqaia
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Graph Embedding & Matrix Completion

item1 item2 itemN
Relations between items

personl - - + (and people)

ltems in {people, movies,
person2 + ? page, articles, products,

word sequences...}
Predict if someone will like

an item, if a word will follow
personP + - ? a word sequence

Slide Credit: Yann LeCun

) Graph Embeddings FACEBOOK Al Ge%ggg&



0 Embedding: A learned map from entities to
vectors of numbers that encodes similarity
Word embeddings: word~" vector
Graph embeddings: node -+ vector
Graph Embedding: Optimize the objective
that connected nodes have more similar
embeddings than unconnected nodes via
Q gradient descent.

A multi-relation graph

Slide Credit: Adam Lerer

) Graph Embeddings Facesook a Segrsial



Why Graph Embeddings?

Graph embeddings are a form of
I unsupervised learning on graphs.
Task-agnostic entity representations
Features are useful on downstream tasks
without much data
Q Nearest neighbors are semantically

meaningful

A multi-relation graph

Slide Credit: Adam Lerer

) Graph Embeddings Facesook a Segrsial




3 PyTorch BigGraph

Margin loss between the score for an edge f(e) and

0 a negative sampled edge f(e’
£=3" 3 max(fg) - () +2.0)
e e’'esSt L
The score for an edge is a similarity (e.g. dot projuct)
between the source embedding and a transform
version of the destination embedding, e.g.
f(e) = cos(6s, 0, + 6,)

Negative samples are constructed by taking a real
edge and rgplacmg the source or destination with a

@dom node.
A multi-relation graph Se =1(s,md)ls € VIU{(s,rd|d €V}

Slide Credit: Adam Lerer

) Graph Embeddings Facesook a Segrsial




3 PyTorch BigGraph
Margin loss between the score for an edge f(e) and

@ a negative sampled edge f(e')

=" max(f(e) - £(¢) +1,0))

e e’'esSt L
The score for an edge is a similarity (e.g. dot projuct)
@ between the source embedding and a transform

version of the destination embedding, e.g.

f(e) = cos(6s, 6 + 64)

Negative samples are constructed by taking a real
edge and replacing the source or destination with a
random node.
\’ ! ! / AR
A multi-relation graph Se =1(s,,md)[s" € V}Ui(s,rd]d €V}

Slide Credit: Adam Lerer

) Graph Embeddings Facesook a Segrsial




3 PyTorch BigGraph
Margin loss between the score for an edge f(e) and

@ a negative sampled edge f(e')

=" max(f(e) - £(¢) +1,0))

e e’'esSt L
The score for an edge is a similarity (e.g. dot projuct)
@ between the source embedding and a transform

version of the destination embedding, e.g.

f(e) = cos(6s, 6 + 64)

Negative samples are constructed by taking a real
edge and replacing the source or destination with a
random node.
\’ ! ! / AR
A multi-relation graph Se =1(s,,md)[s" € V}Ui(s,rd]d €V}

Slide Credit: Adam Lerer

) Graph Embeddings Facesook a Segrsial




Multiple Relations in Graphs

.\ Identity: gla =

. Translator: g(;[;‘A) —xz+ A

[Bordes et al. 13’]

. Affine: g($|A‘ A) = Ax + JAN
[Nickel et al., 11°]
Multi-Entity Multi-Relation
o O Diagonal: g(z|b) =boOx

[Yang et al., 15']

Figure Credit: Alex Peysakhovich

) Graph Embeddings Facesook a1 Segdial



TagSpace PageSpace

Input: restaurant has great food Input: (user, page) pairs
Label: #yum, #restaurant
Use-cases:
Use-cases: Clustering of pages
Labeling posts Recommending pages to users

Clustering of hashtags

user

Reference: [Weston et al. 14], [Wu et al. 18] fan /fan \fan fan
https://qithub.com/facebookresearch/StarSpace

page_1 page_2

page_n

) Application: TagSpace, PageSpace FACEBOOK Al Ge‘%!%ﬁﬁ



Create

Groups

Create, like,

Join, comment,
post to, reshare,
interact with angry, haha, B alsort

Users |—> Posts — | Topics
Fan,
interact with

Pages

Contain
Create

Link from | Domain

Slide Credit: Alex Peysakhovich

) Application: world2vec FACEBOOK Al Gegrgla



The Power of Universal Behavioral Features

What pages or topics might
you be interested in?

Which posts contain
misinformation, hate speech,
election interference, ...?

Is a person’s account fake /
hijacked?

What songs might you like?
(even if you’'ve never provided
any song info)

) Application: world2vec

Adam

Subscribed

Emily

Like

Y

Friends

\ 4

SU()
Sc,./-b
€q

Ellen

Billie Eilish | Author

Fan Page

Interscope

Ski Lovers | link

Page

v

skipasses.com

Topic

Skiing

Slide Credit: Adam Lerer
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Reinforcement
Learning

Introduction
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Supervised
Learning

Train Input: {X,Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Unsupervised

Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
etc.

Reinforcement
Learning

Evaluative
feedback in the
form of reward

No supervision on
the right action

S @

Agent

) Types of Machine Learning Gegrgia|



RL: Sequential decision making in an environment with evaluative feedback.

Agent
.State, Reward, Action,
StlmU“{S, Gain, Payoff, Response,
Situation Cost Control
Environmen
t D
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.
Seeking to maximize cumulative reward in the long run.

) What is Reinforcement Learning? SEE




RL: Sequential decision making in an environment with evaluative feedback.

Evaluative Feedback Sequential Decisions

Plan and execute actions
over a sequence of
states

Pick an action, receive a
reward (positive or
negative)

No supervision for what
the “correct” action is or
would have been, unlike
supervised learning

Reward may be delayed,
requiring optimization of
future rewards (long-term

|
I
I
|
I
I
|
I
I
|
I
I
|
I .
. planning).
|

I

I

) What is Reinforcement Learning? SEE




RL: Environment Interaction API

—y ;f‘;_tﬁ } aton At each time step t, the agent:
° \ 0.8 g o 4 = Receives observation o,
= Executes action a
- I " At each time step t, the environment:
Receives action a,
Emits observation o, 4

Emits scalar reward r,,

Slide credit; David Silver

Georgia [61

Tech




Signature Challenges in Reinforcement Learning

Evaluative feedback: Need trial and error to find the right action
Delayed feedback: Actions may not lead to immediate reward

Non-stationarity: Data distribution of visited states changes when the
policy changes

Fleeting nature of time and online data

Slide adapted from: Richard Sutton

) RL: Challenges Gecraial



Robot Locomotion

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Objective: Make the robot move
forward

State: Angle and position of the joints
Action: Torques applied on joints

Reward: +1 at each time step upright
and moving forward

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Examples of RL tasks

Georgia [61
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Examples of RL tasks Gecrin)




Go
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Objective: Defeat opponent
State: Board pieces

Action: Where to put next piece
down

Reward: +1 if win at the end of game,
0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Examples of RL tasks
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MDPs: Theoretical framework underlying RL

Markov Decision Processes (MDPs) iy




MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T, )
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor

Markov Decision Processes (MDPs) iy




MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T, )
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor
Interaction trajectory: ... S¢, Q¢, T¢41,St4+1,A¢4+1,T¢4+2, St4+2, .- - -

) Markov Decision Processes (MDPs) Gegutia)




Markov property: Current state completely characterizes state of the
environment

Assumption: Most recent observation is a sufficient statistic of history
p(5t+1 — S’|5t = 8¢, Ay = a4, 5¢-1=54-1,...5 = 50) — p(5t+1 — 8”5} = 54, Ay = (lt)

) Markov Decision Processes (MDPs) iy




Fully observed MDP Partially observed MDP

Agent receives the true state
s;at time t

Agent perceives its own
partial observation o, of the
state s, at time t, using past

Example: Chess, Go _
states e.g. with an RNN

Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

) MDP Variations Gegrgia |



We will assume fully observed MDPs for this lecture

) MDP Variations Gegrgia|




In Reinforcement Learning, we assume an underlying MDP with unknown:
Transition probability distribution T NMDP
Reward distribution 7%, (S, A,R,T,~)

) MDPs in the context of RL Gegrgia |




In Reinforcement Learning, we assume an underlying MDP with unknown:
Transition probability distribution T NMDP
Reward distribution 7%, (S, A,R,T,~)

Evaluative feedback comes into play, trial and error necessary

) MDPs in the context of RL Gegrgia |




In Reinforcement Learning, we assume an underlying MDP with unknown:

Transition probability distribution T NMDP
Reward distribution 7%, (S, A,R,T,~)

Evaluative feedback comes into play, trial and error necessary

For this and next lecture, assume that we know the true reward and transition
distribution and look at algorithms for solving MDPs i.e. finding the best policy

Rewards known everywhere, no evaluative feedback
Know how the world works i.e. all transitions
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Figure credits: Pieter Abbeel
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Agent lives in a 2D grid environment
3
2 7]
1
1 2 3 4

Figure credits: Pieter Abbeel

) A Grid World MDP Gegegia |




Agent lives in a 2D grid environment
3
State: Agent’s 2D coordinates
Actions: N, E, S, W 2 7]
Rewards: +1/-1 at absorbing states
1
1 2 3 4

Figure credits: Pieter Abbeel
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Agent lives in a 2D grid environment

3
State: Agent’s 2D coordinates
Actions: N, E, S, W 2 T
Rewards: +1/-1 at absorbing states

1
Walls block agent’s path

1 2 3 4

Actions to not always go as planned

20% chance that agent drifts one cell e

left or right of direction of motion 0.1 0.1
(except when blocked by wall).

Figure credits: Pieter Abbeel
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