
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Reinforcement Learning Part 1

• Markov Decision Processes
• Value Iteration

Reinforcement
Learning

Introduction

Reinforcement
Learning

⬣ Evaluative
feedback in the
form of reward

⬣ No supervision on
the right action

Types of Machine Learning

Unsupervised
Learning

⬣ Input:

⬣ Learning
output:

⬣ Example: Clustering,
density estimation,
etc.

Supervised
Learning

⬣ Train Input:

⬣ Learning output:
,

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Figure Credit: Rich Sutton

RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the
policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton

Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move
forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright
and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece
down

⬣ Reward: +1 if win at the end of game,
0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov
Decision

Processes

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own
partial observation ot of the
state st at time t, using past
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own
partial observation ot of the
state st at time t, using past
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ For this lecture, assume that we know the true reward and transition distribution
and look at algorithms for solving MDPs i.e. finding the best policy

⬣ Rewards known everywhere, no evaluative feedback

⬣ Know how the world works i.e. all transitions

MDPs in the context of RL

MDP

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Discount factor:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy,
next states from transition distribution

Optimal policy examples

⬣ Some optimal policies for three different grid world MDPs (gamma=0.99)

⬣ Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

R(s) = -0.03 R(s) = -0.4 R(s) = -2.0

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

⬣ The V and Q functions corresponding to the optimal policy

Optimal V & Q functions

Recursive Bellman expansion (from definition of Q)

Bellman Optimality Equations

(Expected) return from t = 0

(Reward at t = 0) + gamma * (Return from expected state at t=1)

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

NOTE: In the

V(s’)

NOTE: In the
lecture video for

these slides, there
was a typo having

V(s) instead of
V(s’)

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

• A robot car wants to travel far, quickly
• Three states: Cool, Warm, Overheated
• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Slide Credit: http://ai.berkeley.edu

Example: Racing

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over
actions as well as states

For Value Iteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size
16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration

Value Iteration

⬣ Bellman update to state value
estimates

Q-Value Iteration

⬣ Bellman update to (state,
action) value estimates

Summary: MDP Algorithms

