Topics:

* Reinforcement Learning Part 2
* Q-Learning
* Deep Q-Learning

CS 4803-DL / 7643-A
ZSOLT KIRA



RL: Sequential decision making in an environment with evaluative feedback.

Agent
.State, Reward, Action,
StlmU“{S, Gain, Payoff, Response,
Situation Cost Control
Environmen
t D
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.
Seeking to maximize cumulative reward in the long run.

) What is Reinforcement Learning? SEE




MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T, )
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor

Markov Decision Processes (MDPs) iy




MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T, )
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor
Interaction trajectory: ... S¢, Q¢, T¢41,St4+1,A¢4+1,T¢4+2, St4+2, .- - -

) Markov Decision Processes (MDPs) Gegutia)




What we want Some intermediate concepts and terms

A Value function (how good is a state?)
V:S—R Vis)=E Z'}’tTt|SO =8,

t>0
A Q-Value function (how good is a state-action pair?)

Q:SxA—-R Q(s,a)= [Zvrﬂso—sao—aw]

t>0

SEICH. UL A policy T

7 = argmax E Z'ytrthr
s
20 Q'(s,¢) = E [ (s,a) +~V*(s")] (Mathin previous
Definition of optimal policy “p(&’]g0) lecture)

Equalities relating optimal quantities =~ We can then derive the Bellman Equation

V*(s) :mng*(Saa) Q*(s,a) = Zp(._c, 5, a) [ r(s,a) -1—1(111}1}: Q““{H’fn.."}]

This must hoId true for an optimal Q-Value!
-> Leads to dynamic programming algorithm to find it

*(s) = arg max Q*(s,a)

) Summary of Last Time Gograla




Value Iteration Update:

Vitl(s) « mC?XZp(S’B, a) |r(s,a) + VVi(s’)]

Q-lteration Update:

Q" (5,0) = Fp(elanc ) |1 (5,0) + ymax Q'(s', )]

The algorithm is same as value iteration, but it loops over
actions as well as states

) Q-lteration



For Value Iteration:

Theorem: will converge to unique optimal values

Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Time complexity per iteration O( ‘S ‘ 2 ‘A‘ )
Feasible for:

3x4 Grid world?
Chess/Go?

Atari Games with integer image pixel values [0, 255] of size
16x16 as state?

) State Spaces & Time Complexity



Summary: MDP Algorithms

Value lteration

Bellman update to state value
estimates

Q-Value Iteration

Bellman update to (state,
action) value estimates




Reinforcement
Learning,

Deep RL




Recall RL assumptions:
T(s, a, s") unknown, how actions affect the environment.
!/
R(s,a,s’) unknown, what/when are the good actions?

But, we can learn by trial and error.
Gather experience (data) by performing actions.

Approximate unknown quantities from data.

Reinforcement Learning

Learning Based Methods: RL Gegrata |




Old Dynamic Programming Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

RL Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

Slide credit: Dhruv Batra

) Learning Based Methods: RL Gograla




Sample-Based Policy Evaluation?

* We want to improve our estimate of V by computing these averages:
Vi 1(s) < > T(s,m(s), s )[R(s,m(s),s") + vV (s")]
8/

* |dea: Take samples of outcomes s’ (by doing the action!) and average
sample; = R(s,m(s), 8/1) -+ ’kaW(Sll) —
samples = R(s,m(s),s5) + vV (s5) <

« o | ‘I C
samplen = R(s,7(s), s) + YV (sh) | I E t
- 1
Vi1 (8) < ﬁz sample;
(2
What'’s the difficulty of this algorithm?

T —— e

states.

Georgia |
Tech|)



Temporal Difference Learning

* Bigidea: learn from every experience!

— Update V(s) each time we experience a transition (s, a, s’, r) S
— Likely outcomes s’ will contribute updates more often 7(s)
SI
* Temporal difference learning of values (s)
— Policy still fixed, still doing evaluation!
— Move values toward value of whatever successor occurs: running average A

Sample of V(s):  sample = R(s,m(s),s") + V™ (s)
Updateto V(s): V7 (s) + (1 — a)V"(s) 4+ (a)sample

Same update: VT(s) + V™(s) 4+ a(sample — V7 (s))

Georgia |

Tech|)




Q-Learning

* We'd like to do Q-value updates to each Q-state:
Qt1(s:0) & Y T(s,a,5) [R(s,a,5) +7 maxQu(s',a))
/ a

— But can’t compute this update without knowing T, R
* Instead, compute average as we go
— Receive a sample transition (s,a,r,s’)

— This sample suggests

Q(s,a) = 1+ ymaxQ(s', a')

— But we want to average over results from (s,a)
— Sokeep a running average

Qs,0) — (1 - )Q(s,0) + (@) |7 +7MaxQ(s',a')

Georgia |

Tech |}




Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!
e This is called off-policy learning

* Caveats:
— You have to explore enough
— You have to eventually make the learning rate
small enough
— ... but not decrease it too quickly

— Basically, in the limit, it doesn’t matter how you select action AT

Georgia |

Tech )




Deep

Q-Learning




Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* Inrealistic situations, we cannot possibly learn about every single state
— Too many states to visit them all in training
— Too many states to hold the g-tables in memory

* Instead, we want to generalize:
— Learn about some small number of training states from experience
— Generalize that experience to new, similar situations
— Thisis the fundamental idea in machine learning!




Example: Pacman

Let’s say we In naive g-learning, Or even this one!
discover through we know nothing
experience that this about this state:

state is bad:




Feature-Based Representations

Solution: describe a state using a vector of features (properties)
— Features are functions from states to real numbers (often 0/1) that capture important properties of the state
— Example features:

* Distance to closest ghost

* Distance to closest dot

*  Number of ghosts

e 1/ (dist to dot)?

* Is Pacman in a tunnel? (0/1)

* s it the exact state on this slide?
— Can also describe a g-state (s, a) with features (e.g. action moves closer to food)




Linear Value Functions

* Using a feature representation, we can write a g function (or value function) for any state using a few weights:
V(s) = wi1f1(s) +wafa(s) + ... + wnfn(s)

Q(sa CL) — wlfl(sa G,)-I—’waQ(S, a)+ . -‘|‘wnfn(3> a’)

* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but can actually be very different in value!

Georgia |
Tech |}



State space is too large and complicated for feature engineering though!
Recall: Value iteration not scalable (chess, RGB images as state space, etc)
Solution: Deep Learning! ... more precisely, function approximation.

Use deep neural networks to learn state representations
Useful for continuous action spaces as well

Deep Reinforcement Learning

Learning Based Methods: Deep RL Gegrata |




Value-based RL
(Deep) Q-Learning, approximating @ (s, a) with a deep Q-network

Policy-based RL

Directly approximate optimal policy ™ with a parametrized policy Ty

Model-based RL

Approximate transition function T(S,, a, s) and reward function R(s,a)
Plan by looking ahead in the (approx.) future!

) Deep RL: Algorithm Categories Gegraia |




Q-Learning with linear function approximators

Q(s,a;w,b) = w, s+ b,

Has some theoretical guarantees FC-4 (Q-values)

FC-256

Deep Q-Learning: Fit a deep Q-Network Q (S, a, (9)

Works well in practice

11—
Q-Network can take RGB images JJJ

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

) Deep Q-Learning Gectran



Assume we have collected a dataset:

{(87 a, 8/7 T)’i ff\;l

We want a Q-function that satisfies bellman optimality (Q-value)

Q(s,0)= | E |r(s,a) +ymaxQ(s',a)]

s'~p(s’|s,a)

Loss for a single data point:

MSE Loss := (Qnew(s, a)— (r+ YIS Qold(sla a,)))2
\ ) \ Y J

Predicted Q-Value Target Q-Value

) Deep Q-Learning Gectran



Minibatch of {(5, a, S,, T)i Z'B;l

F d :
orward pass State — Q-Network » Q-Values per action
B x D B X Ngctions
2
Compute loss: (Qnew(57 a) — (r + ymax Qq(s’, a)))
\ Y J @ \ Y J
enew Hold | FC-4 (Q-values) |

| FC-256 |

Backward pass: ) [,088 Q-Networ

89%6’11}

= I [

) Deep Q-Learning iy



MSE Loss := (Qnew(s, a)— (r+ max Qoid(s’, a)))2

In practice, for stability:
Freeze Qold and update Qnew parameters

Set Qoid < Qnew atregularintervals

) Deep Q-Learning iy



How to gather experience?

{(87 a, 8,7 T)i 7];21

This is why RL is hard

) Deep Q-Learning iy



Tlgather ——{ Environment »|  Data {(s,a,8, 1)},

Train

Update

Teather Ttrained

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

How to gather experience? Gegrata |




What should TTgather be?

Greedy? -> Local minimas, no exploration

arg max (s, a; 0)
a
An exploration strategy:
e-greedy

jarg max Q(s,a) with probability 1 — €
ar — £

lrandom action with probability e

) Exploration Problem Gecrin)




Samples are correlated => high variance gradients => inefficient learning

Current Q-network parameters determines next training samples => can lead
to bad feedback loops

e.g. if maximizing action is to move right, training samples will be
dominated by samples going right, may fall into local minima

start

) Correlated Data Problem Gegrgia |



Correlated data: addressed by using experience replay
.. /
A replay buffer stores transitions (S, a,s , 7’)

Continually update replay buffer as game (experience) episodes are
played, older samples discarded

Train Q-network on random minibatches of transitions from the replay
memory, instead of consecutive samples

Larger the buffer, lower the correlation

) Experience Replay Gecrin)



Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capacity N )
Initialize action-value function () with random weights Experience Replay
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1.7T do _
With probability € select a random action a; Epsnon-greedy
otherwise select a; = max, Q*(o(s;),a; )
Execute action a; in emulator and observe reward 7, and image x; .,
Set 84,1 = 84, a4, Tr+1 and preprocess ¢ro1 = O(S¢11)
Store transition (¢, a;, 7y, @y+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Setiiiy = { T for terminal ¢; Q Update
J r; + ymax, Q(d;.1,a’;6)  for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(d;, a;; 6'))2 according to equation 3
end for
end for

) Deep Q-Learning Algorithm Gegrata |



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games Gecrin)




Atari Games

https://www.youtube.com/watch?v=V1eYniJORnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games Geg;sgg&




In today’s class, we looked at
Dynamic Programming
Value, Q-Value lteration

Reinforcement Learning (RL)
The challenges of (deep) learning based methods
Value-based RL algorithms
Deep Q-Learning

Now:
Policy-based RL algorithms (policy gradients)

) Summary Gectran




Policy
Gradients,

Actor-Critic




Transition and
Reward Function

Yes No
Known?

f Use VaIuelPollcy < ( Estimate Transition & Estimate Q values from
Iteratlon L Reward Function data (DQNs, etc)

./

Directly Optimize
Policy v

Obtain "optimal"
policy

Overview Ge%%ﬁn&




Class of policies defined by parameters (9

mo(als) : S — A

Eg: @ can be parameters of linear transformation, deep network, etc.

Want to maximize: A

J(m) =E | R(st,ar)

t=1

In other words,

7 = arg max [E
mS—A

T T
stt,at)] m— (" = argmaxE | > R(si, a)

t=1 t=1

) Parametrized Policy Gectran




raw pixels hidden layer

Pong from Pixels Gegrata |




forward pass Supervised Learning

> log probabilities (correct label is provided)

-1.2 | -0.36
: block of differentiable compute :
'mage (e.g. neural net) P gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» |og probabilities
A5 -0.36 | —— sample an action:
. block of differentiable compute :
'mage (e.g. neural net) i i
0 -1.0

A

eventual reward -1.0
backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Loss Function Geqedh

Jh




Slightly re-writing the notation

Let T = (50, ag,...ST, CLT) denote a trajectory

779(7-) — pQ(T) — Do (807%07 “ e ST,CLT)

= p(so) Hp9 (at | st) - p(St+1 | ¢, at)
t=0

arg meax B po () [R(7T)]

Gathering Data/Experience Gegrata |




J(@) — ETNPQ (1) [R(T)]
=K

ay~T(-|8¢),5t41~p(+|s¢,a¢)

How to gather data?
We already have a policy: 779

A
§ R Sta CLt
| t=0

N
Sample N trajectorles{Tz} —1 by acting according to 779

1 N T
~ NS: JT(S;CLZE)

1=1 t=1

) Gathering Data/Experience

Georgia
Tech

411




Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

VeJ(0) = ?

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm A




= Vg /WQ(T)R(T)CZT Expectation as integral

= /VQWQ(T)R(T)CZT Exchange integral and gradient

Deriving The Policy Gradient Geqctn

AL



me(7) = p(s0) HPH (ai | s¢) - p(se+1 | se,ae)

Vo (0) = Errpo(r)[Vologmo(T)R(7)

Doesn’t depend on

T T
Vo |lompbon) + > logmg(as]s:) + Z*@g*péswri-m)] Transition probabilities!
t=1 t=1

_ T -
= ETNPQ(T) ZV@ logﬂ'g Clt‘St ZR St,CLt
| t=1

l Vi ——
4

f i | i

\ 0 X "
=
i
¢

jax
4

Continuous Action Space?

) Deriving The Policy Gradient Gograla




Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

T
VoJ (0 NZ ZVglogwe aj | s}) ZR sy | ap)
7 t=1

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Sy




upP DOWN UP UP

® @ >. @ h.DOWN @ DOWN P. DOWN r® upP P. WIN
® DOWNF. UP r® UP - ® DOWNh. UP -® UP @ LOSE
@ UP -® UP -® DOWN’. DDWN-.DOWN’. DOWN..' uP -® LOSE
® ro— 0oL o0 @ WIN

r r
Ld L

Slide credit: Dhruv Batra

Drawbacks of Policy Gradients SEE

Tech



Issues with Policy Gradients

e Credit assignment is hard!
— Which specific action led to increase in reward
— Suffers from high variance = leading to unstable training

Georgia |

Tech |}




