Topics:

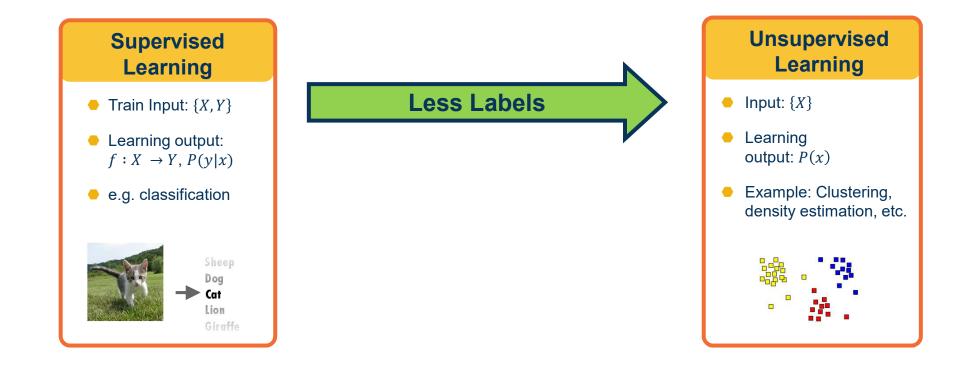
• Variational Autoencoders

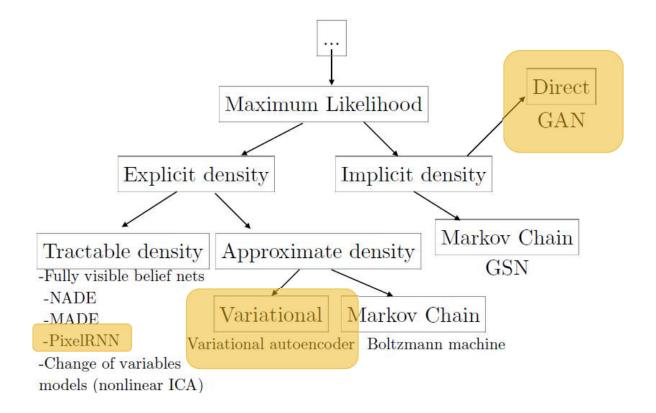
CS 4803-DL / 7643-A ZSOLT KIRA

- A4 grades slated for this weekend
- Projects!
 - Due May 1rd (May 3th with grace period)
 - Cannot extend due to grade deadlines!

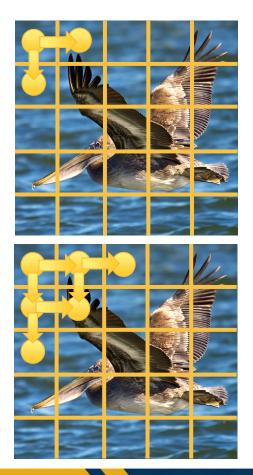
• CIOS

- Please make sure to fill out! Let us know about things you liked and didn't like in comments so that we can keep or improve!
- <u>http://b.gatech.edu/cios</u>





Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



$$p(x) = p(x_1)p(x_2|x_1)p(x_3|x_1)\prod_{i=1}^{n^2} p(x_i|x_1, \dots, x_{i-1})$$

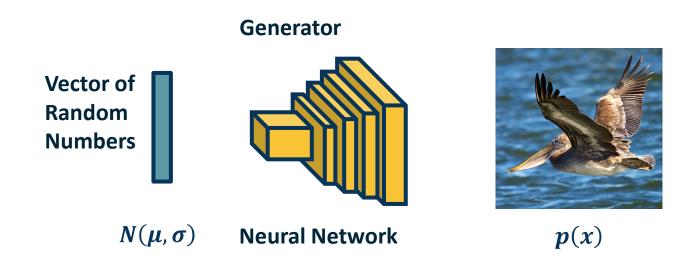
Training:

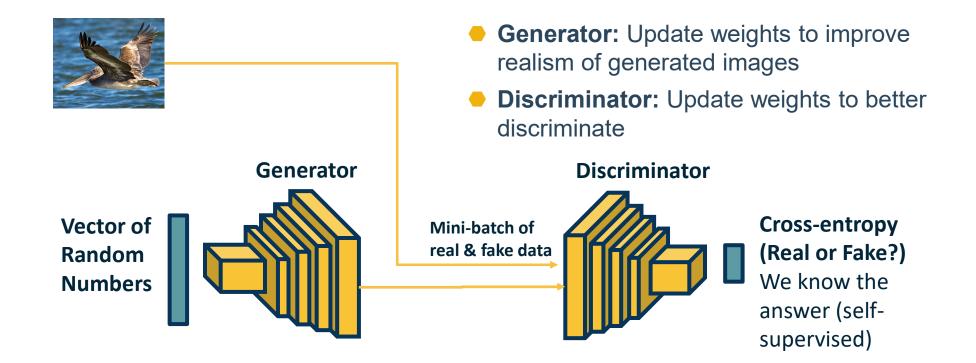
- We can train similar to language models: Teacher/student forcing
- Maximum likelihood approach
- Downsides:
 - Slow sequential generation process
 - Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

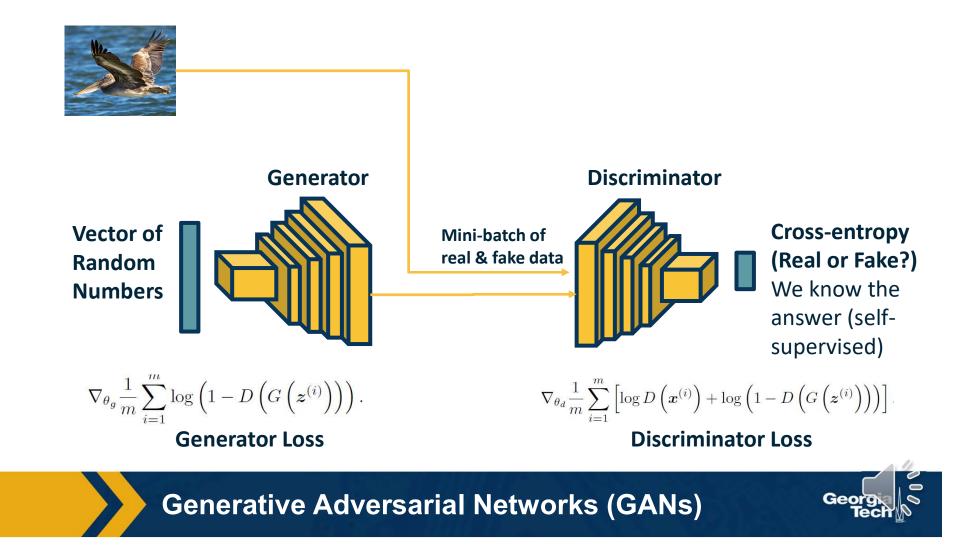


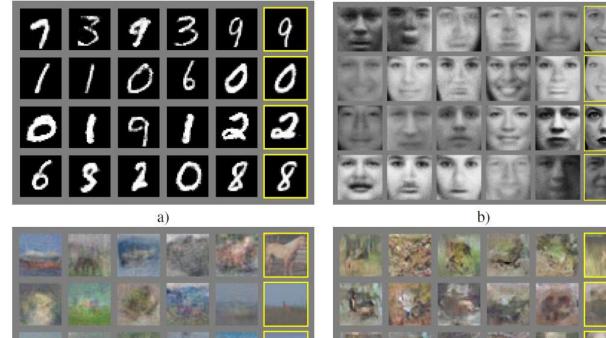


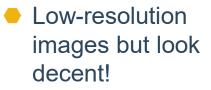
Question: What loss functions can we use (for each network)?

Generative Adversarial Networks (GANs)

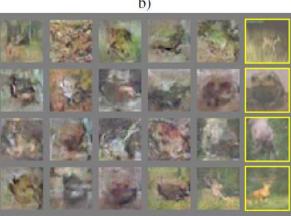
Georg







Last column are nearest neighbor matches in dataset



d)

Early Results

• GANs are very difficult to train due to the mini-max objective

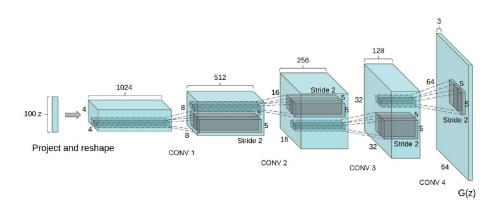
Advancements include:

- More stable architectures
- Regularization methods to improve optimization
- Progressive growing/training and scaling

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.



Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

- Training GANs is difficult due to:
 - Minimax objective For example, what if generator learns to memorize training data (no variety) or only generates part of the distribution?
 - Mode collapse Capturing only some modes of distribution

Several theoretically-motivated regularization methods

Simple example: Add noise to real samples!

$$\lambda \cdot \mathbb{E}_{x \sim P_{real}, \delta \sim N_d(0, cI)} \left[\left\| \nabla_{\mathbf{x}} D_{\theta}(x + \delta) \right\| - k \right]^2$$

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

Generative Adversarial Nets: Convolutional Architectures

Samples from the model look much better!

Radford et al, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Generative Adversarial Nets: Convolutional Architectures

g e

Interpolating between random points in latent space

Radford et al, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN

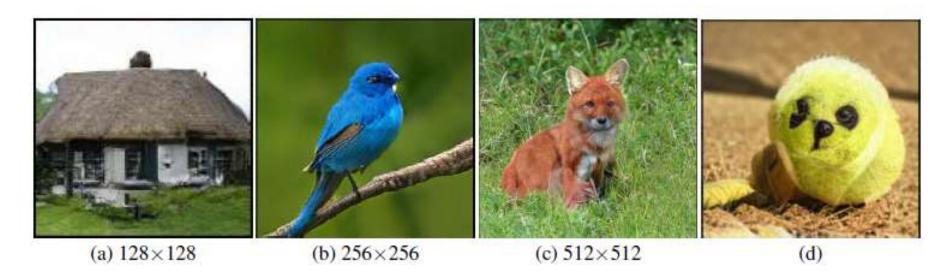
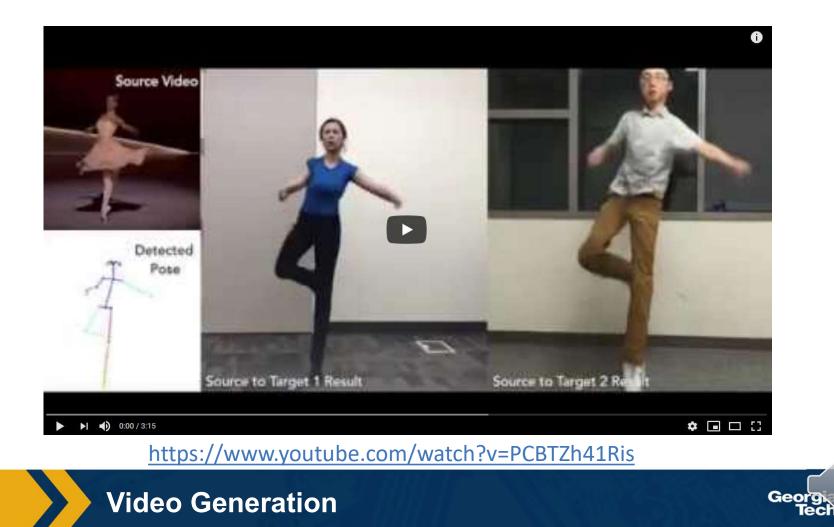


Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class leakage in a partially trained model (d).



- A few other examples:
 - Deep nostalgia: <u>https://www.myheritage.com/deep-nostalgia</u>
 - High-resolution outputs: <u>https://compvis.github.io/taming-</u> <u>transformers/</u>

GANs

Don't work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

- Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:

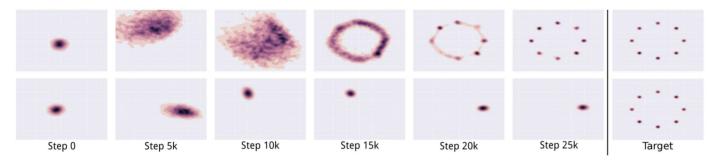
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

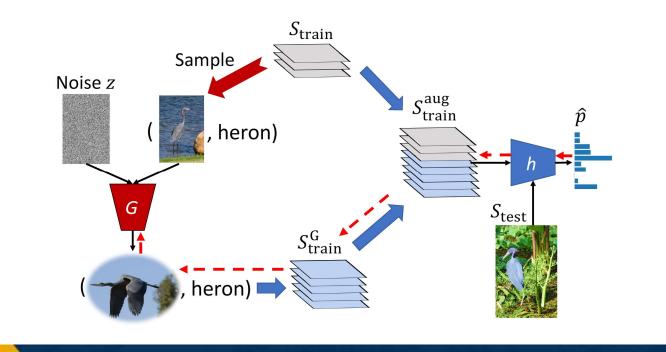
Georg

Mode Collapse

- Optimization of GANs is tricky
 - Not guaranteed to find Nash equilibrium
- Large number of methods to combat:
 - Use history of discriminators
 - Regularization
 - Different divergence measures



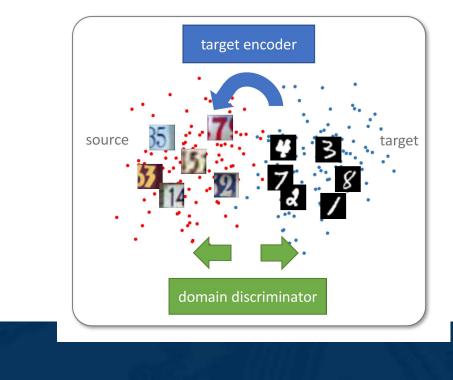
Application: Data Augmentation



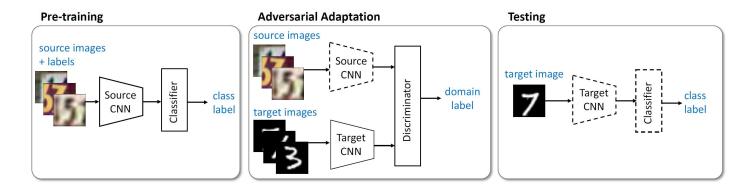
Low-Shot Learning from Imaginary Data, Yu-Xiong Wang, Ross Girshick Martial Hebert, Bharath Hariharan

Application: Domain Adaptation

• Idea: Train a model on *source* data and adapt to *target* data using unlabeled examples from target



Approach



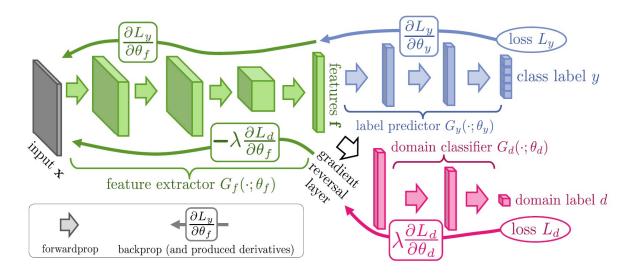
Method	$\begin{array}{c} \text{MNIST} \rightarrow \text{USPS} \\ \textbf{7} \ \textbf{3} \rightarrow \textbf{1} \ \textbf{0} \ \textbf{5} \end{array}$	$\begin{array}{c} \text{USPS} \rightarrow \text{MNIST} \\ \hline \begin{array}{c} 0 \\ 5 \end{array} \rightarrow \hline 7 \\ \hline 7 \\ \hline \end{array} \end{array}$	$\begin{array}{c} \text{SVHN} \rightarrow \text{MNIST} \\ \hline \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \hline \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient reversal	0.771 ± 0.018	0.730 ± 0.020	0.739 [16]
Domain confusion	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (Ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

Aside: Other ways to Align

digital SLR camera

low-cost camera, flash



Generative Adversarial Networks (GANs) can produce amazing images!

Several drawbacks

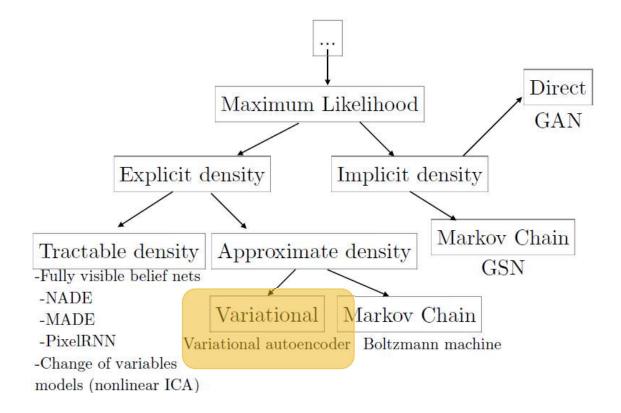
- High-fidelity generation heavy to train
- Training can be unstable
- No explicit model for distribution

Larger number of extensions:

- GANs conditioned on labels or other information
- Adversarial losses for other applications

Summary

Variational Autoencoders (VAEs)



Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Minimize the difference (with MSE)

Low dimensional embedding

Linear layers with reduced dimension or Conv-2d layers with stride

Linear layers with increasing dimension or Conv-2d layers with bilinear upsampling

What is this? Hidden/Latent variables Factors of variation that produce an image: (digit, orientation, scale, etc.)

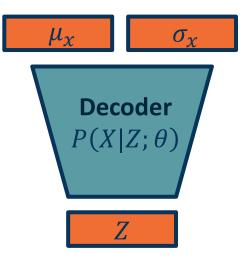
$$P(X) = \int P(X|Z;\theta)P(Z)dZ$$

- We cannot maximize this likelihood due to the integral
- Instead we maximize a variational *lower bound* (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

Formalizing the Generative Model

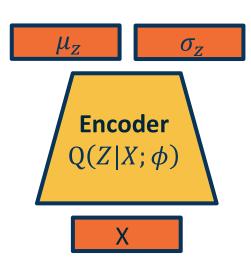
- We can combine the probabilistic view, sampling, autoencoders, and approximate optimization
- Just as before, sample Z from simpler distribution
- We can also output parameters of a probability distribution!
 - **Example**: μ , σ of Gaussian distribution
 - For multi-dimensional version output diagonal covariance



• How can we maximize $P(X) = \int P(X|Z;\theta)P(Z)dZ$

Variational Autoencoder: Decoder

 We can combine the probabilistic view, sampling, autoencoders, and approximate optimization



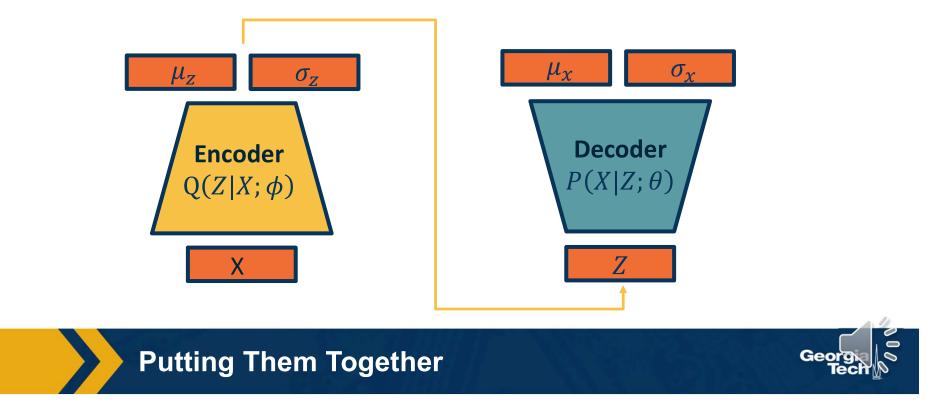
- Given an image, estimate Z
- Again, output parameters of a distribution

Variational Autoencoder: Encoder

• We can tie the encoder and decoder together into a probabilistic autoencoder

• Given data (X), estimate μ_z , σ_z and sample from $N(\mu_z, \sigma_z)$

• Given Z, estimate μ_x , σ_x and sample from $N(\mu_x, \sigma_x)$



How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

 $\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeur g

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \end{split}$$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg

0

0

Geo

Maximizing Likelihood

Aside: KL Divergence (distance measure for distributions), always >= 0

 $KL(p||q) = H_c(p,q) - H(p) = \sum p(x)\log p(x) - \sum p(x)\log q(x)$

Definition of Expectation

$$\mathbb{E}[f] = \mathbb{E}_{x \sim q}[f(x)] = \sum_{x \in \Omega} q(x) f(x)$$

$$KL(a||b) = E[\log a(x)] - E[\log b(x)] = E[\log \frac{a(x)}{b(x)}]$$

00

Geor

Maximizing Likelihood

ate of this term sampling. (Sampling differentiable through reparam. trick, see paper.) prior) has nice closed-form solution!

term :(But we know KL divergence always >= 0.

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeur g

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi) \right]}_{Variational lower bound} \left(\text{``ELBO''} \right) \\ \end{split}$$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg

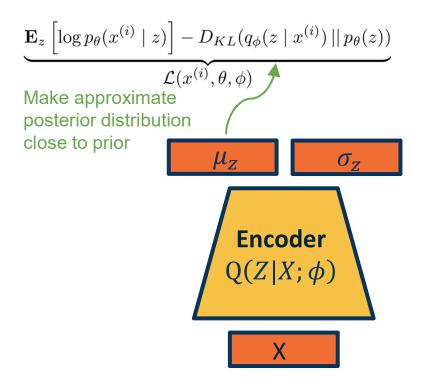
0

0

Geo

Maximizing Likelihood

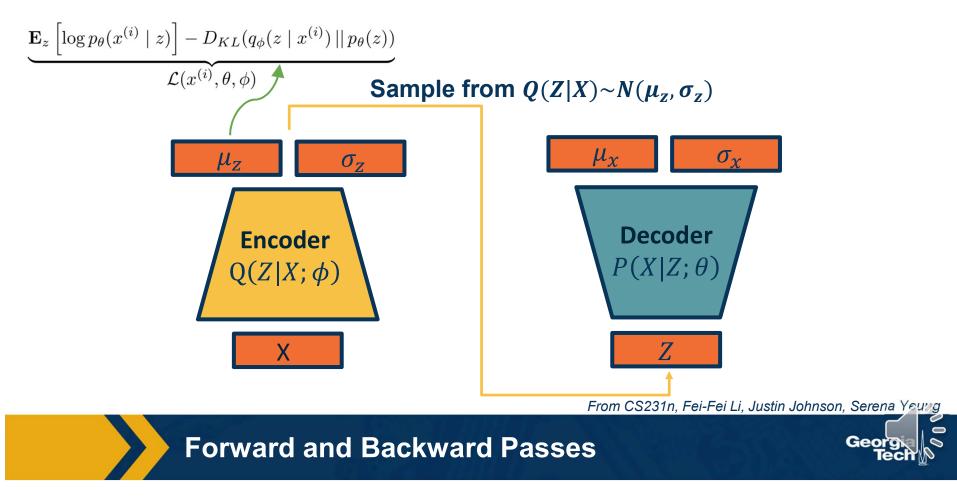
Putting it all together: maximizing the likelihood lower bound

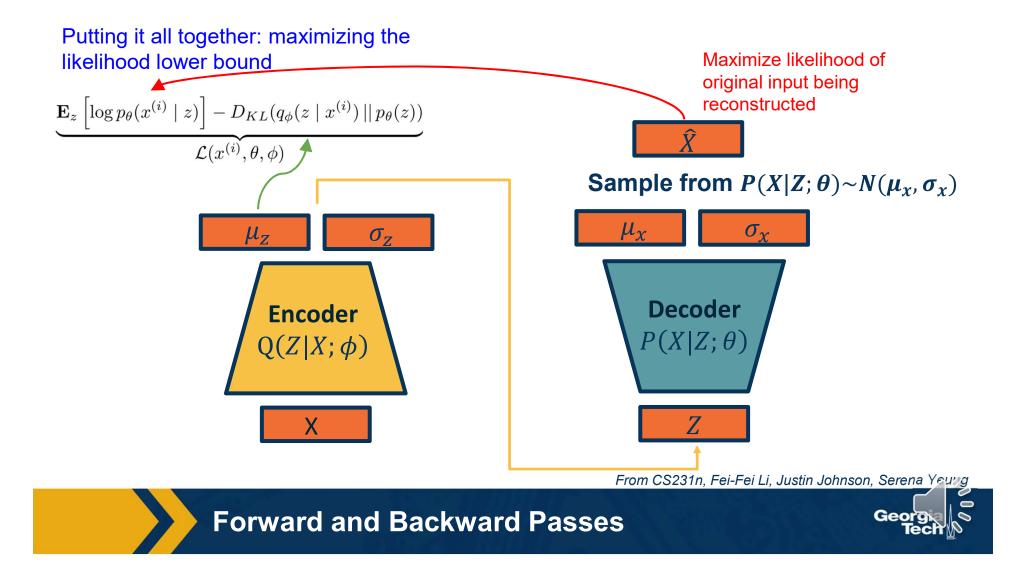


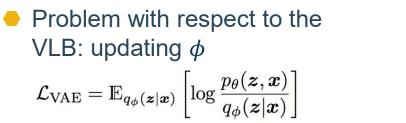
From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeur g

Forward and Backward Passes

Putting it all together: maximizing the likelihood lower bound

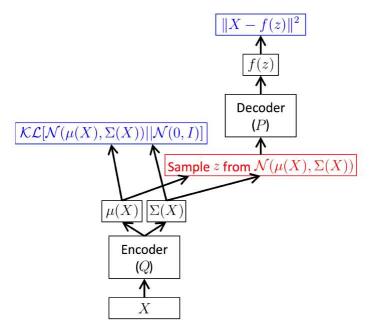






 $= -D_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z})) + \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}$

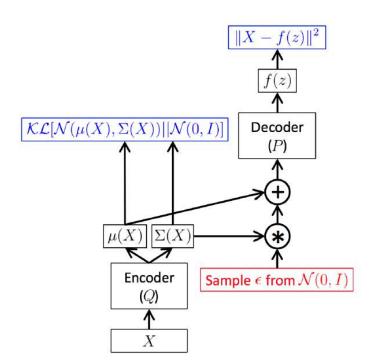
• $Z \sim Q(Z|X; \phi)$: need to differentiate through the sampling process w.r.t ϕ (encoder is probabilistic)



From: Tutorial on Variational Autoencoders <u>https://arxiv.org/abs/1606.05908</u>

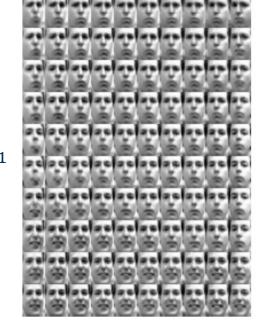
From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

- Solution: make the randomness independent of encoder output, making the encoder deterministic
- Gaussian distribution example:
 - Previously: encoder output = random variable $z \sim N(\mu, \sigma)$
 - Now encoder output = distribution parameter [μ, σ]
 - $z = \mu + \epsilon * \sigma, \epsilon \sim N(0,1)$



From: Tutorial on Variational Autoencoders <u>https://arxiv.org/abs/1606.05908</u>

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/



*Z*₂

Kingma & Welling, Auto-Encoding Variational Bayes

Interpretability of Latent Vector

Ø

 Z_1

- Variational Autoencoders (VAEs) provide a principled way to perform approximate maximum likelihood optimization
 - Requires some assumptions (e.g. Gaussian distributions)
- Samples are often not as competitive as GANs
- Latent features (learned in an unsupervised way!) often good for downstream tasks:
 - Example: World models for reinforcement learning (Ha et al., 2018)

Several ways to learn generative models via deep learning

PixelRNN/CNN:

- Simple tractable densities we can model via a NN and optimize
- Slow generation limited scaling to large complex images

Generative Adversarial Networks (GANs):

- Pro: Amazing results across many image modalities
- Con: Unstable/difficult training process, computationally heavy for good results
- Con: Limited success for discrete distributions (language)
- Con: Hard to evaluate (implicit model)

Variational Autoencoders:

- Pro: Principled mathematical formulation
- Pro: Results in disentangled latent representations
- Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018

