Topics:

- Gradient Descent
- Neural Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

- Assignment 1 out!
- Due date extended to Feb $5^{\text {th }}$ ($7^{\text {th }}$ with grace period)
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Piazza
- Be active!!!
- Office hours
- Lots of special topics (e.g. PS0, Assignment 1, research paper discussion, etc.)
- Note: Course starting to get math heavy!
- Input (and representation)
- Functional form of the model
- Including parameters
- Performance measure to improve
- Loss or objective function
- Algorithm for finding best parameters
- Optimization algorithm

Data: Image

Features: Histogram

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Stretch pixels into column

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Example

Softmax Classifier (Multinomial Logistic Regression)

Often, we add a regularization term to the loss function

$$
\begin{gathered}
\text { L1 Regularization } \\
L_{i}=\left|y-W x_{i}\right|^{2}+|W|
\end{gathered}
$$

Example regularizations:

- L1/L2 on weights (encourage small values)

Gradient Descent

- Input (and representation)
- Functional form of the model
- Including parameters
- Performance measure to improve
- Loss or objective function

Algorithm for finding best parameters

- Optimization algorithm

Data: Image

Features: Histogram

Given a model and loss function, finding the best set of weights is a search problem

- Find the best combination of weights that minimizes our loss function

Several classes of methods:

- Random search
- Genetic algorithms (population-based search)
- Gradient-based optimization

In deep learning, gradient-based methods are dominant although not the only approach possible

$$
\left[\begin{array}{ccccc}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{21} & w_{22} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

As weights change, the loss changes as well

- This is often somewhatsmooth locally, so small changes in weights produce small changes in the loss

We can therefore think about iterative algorithms that take current values of weights and modify them a bit

- We can find the steepest descent direction by computing the derivative (gradient):

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
- As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
- Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

Derivatives

This idea can be turned into an algorithm (gradient descent)

- Choose a model: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\mathrm{Wx}$
- Choose loss function: $\boldsymbol{L}_{\boldsymbol{i}}=\left|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right|^{2}$
- Calculate partial derivative for each parameter: $\frac{\partial L}{\partial w_{i}}$
- Update the parameters: $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}-\frac{\partial L}{\partial w_{i}}$
- Add learning rate to prevent too big of a step: $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}-\boldsymbol{\alpha} \frac{\partial L}{\partial w_{i}}$
- Repeat (from Step 3)

Gradient Descent
http://demonstrations.wolfram.com/VisualizingTheGradientVector/

negative gradient direction

Gradient Descent

Often, we only compute the gradients across a small subset of data

- Full Batch Gradient Descent

$$
L=\frac{1}{N} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

$$
L=\frac{1}{M} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

- Where M is a subset of data
- We iterate over mini-batches:
- Get mini-batch, compute loss, compute derivatives, and take a set

Mini-Batch Gradient Descent

Gradient descent is guaranteed to converge under some conditions

- For example, learning rate has to be appropriately reduced throughout training
- It will converge to a local minima
- Small changes in weights would not decrease the loss
- It turns out that some of the local minima that it finds in practice (if trained well) are still pretty good!

Gradient Descent Properties

We know how to compute the model output and loss function

Several ways to compute $\frac{\partial L}{\partial w_{i}}$

- Manual differentiation
- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation

Computing Gradients

current W:	gradient dW:
[0.34,	
-1.11,	$?$,
0.78,	$?$,
0.12,	$?$,
0.55,	$?$,
2.81,	$?$,
-3.1,	$?$,
-1.5,	$?$,
$0.33, \ldots]$	$?, \ldots]$

current $\mathbf{W}:$	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient $\mathbf{d W}$:
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	$[?$,
-1.11,	-1.11,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?, \ldots]$
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$	
loss 1.25347	loss 1.25322	

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient dW:
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	$[-2.5$,
-1.11,	-1.11,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$(1.2532-1.25347) / 0.0001$
0.55,	0.55,	$=-2.5$
2.81,	2.81,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?, \ldots]$
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$	
loss 1.25347	loss 1.25353	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	0.6,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$(1.25353-1.25347) / 0.0001$
2.81,	2.81,	$=0.6$
-3.1,	-3.1,	$\frac{d f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}}{h}$
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	
loss 1.25347	loss 1.25353	

current $\mathbf{W}:$	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient $\mathbf{d W}$:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W:	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	0,
0.12,	0.12,	$?$,
0.55,	0.55,	$(1.25347-1.25347) / 0.0001$
2.81,	2.81,	$=0$
-3.1,	-3.1,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25347	

Numerical vs Analytic Gradients

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient.
This is called a gradient check.

We know how to compute the model output and loss function

Several ways to compute $\frac{\partial L}{\partial w_{i}}$

- Manual differentiation
- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation

Computing Gradients

For some functions, we can analytically derive the partial derivative

Example:

Derivation of Update Rule

Function
Loss
$f\left(w, x_{i}\right)=w^{T} x_{i} \quad\left(y_{i}-w^{T} x_{i}\right)^{2}$
(Assume \boldsymbol{w} and $\mathbf{x}_{\mathbf{i}}$ are column vectors, so same as $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}$)

$$
\begin{gathered}
\text { Update Rule } \\
w_{j} \leftarrow w_{j}+2 \alpha \sum_{k=1}^{N} \delta_{k} x_{k j}
\end{gathered}
$$

For some functions, we can analytically derive the partial derivative

Example:

Derivation of Update Rule

Function
$f\left(w, x_{i}\right)=w^{T} x_{i}$

Loss
$\left(y_{i}-w^{T} x_{i}\right)^{2}$
(Assume \boldsymbol{w} and $\mathbf{x}_{\mathbf{i}}$ are column vectors, so same as $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}$)
Dataset: N examples (indexed by k)

$$
\begin{gathered}
\text { Update Rule } \\
w_{j} \leftarrow w_{j}+2 \alpha \sum_{k=1}^{N} \delta_{k} x_{k j}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{j}}=\sum_{k=1}^{N} \frac{\partial}{\partial w_{j}}\left(y_{k}-w^{T} x_{k}\right)^{2} \\
&=\sum_{k=1}^{N} 2\left(y_{k}-w^{T} x_{k}\right) \frac{\partial}{\partial w_{j}}\left(y_{k}-w^{T} x_{k}\right) \\
&=-2 \sum_{k=1}^{N} \delta_{k} \frac{\partial}{\partial w_{j}} w^{T} x_{k} \\
& \begin{array}{c}
\ldots \text { where } \ldots \\
\delta_{k}=y_{k}-w^{T} x_{k}
\end{array} \\
&=-2 \sum_{k=1}^{N} \delta_{k} \frac{\partial}{\partial w_{j}} \sum_{i=1}^{m} w_{i} x_{k i} \\
&=-2 \sum_{k=1}^{N} \delta_{k} x_{k j}
\end{aligned}
$$

If we add a non-linearity (sigmoid), derivation is more complex

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

First, one can derive that: $\sigma^{\prime}(\boldsymbol{x})=\boldsymbol{\sigma}(\boldsymbol{x})(\mathbf{1}-\boldsymbol{\sigma}(\boldsymbol{x}))$

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\sigma\left(\sum_{k} w_{k} x_{k}\right) \\
\mathrm{L} & =\sum_{i}\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)^{2} \\
\frac{\partial L}{\partial w_{j}} & =\sum_{i} 2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)\left(-\frac{\partial}{\partial w_{j}} \sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \\
& =\sum_{i}-2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \sigma^{\prime}\left(\sum_{k} w_{k} x_{i k}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{i k} \\
& =\sum_{i}-2 \delta_{i} \sigma\left(\mathbf{d}_{i}\right)\left(1-\sigma\left(\mathbf{d}_{i}\right)\right) x_{i j}
\end{aligned}
$$

The sigmoid perception update rule:

$$
\text { where } \quad \delta_{i}=y_{i}-\mathbf{f}\left(x_{i}\right) \quad d_{i}=\sum w_{k} x_{i k}
$$

$$
\begin{gathered}
w_{j} \leftarrow w_{j}+2 \eta \sum_{k=1}^{N} \delta_{i} \sigma_{i}\left(1-\sigma_{i}\right) x_{i j} \\
\text { where } \sigma_{i}=\sigma\left(\sum_{j=1}^{m} w_{j} x_{i j}\right) \\
\delta_{i}=y_{i}-\sigma_{i}
\end{gathered}
$$

Adding a Non-Linear Function

Neural Network View of a Linear Classifier

A linear classifier can be broken down into:

- Input
- A function of the input
- A loss function

It's all just one function that can be decomposed into building blocks

A simple neural network has similar structure as our linear classifier:

- A neuron takes input (firings) from other neurons (-> input to linear classifier)
- The inputs are summed in a weighted manner (-> weighted sum)
- Learning is through a modification of the weights
- If it receives enough input, it "fires" (threshold or if weighted sum plus bias is high enough)

Impulses carried toward cell body

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Origins of the Term Neural Network

As we did before, the output of a neuron can be modulated by a non-linear function (e.g. sigmoid)
1.0
0.0
0.0
0.0
0.0

0.0 \sum_{-10}| Sigmoid |
| :---: |
| Activation |
| Function |
| 1 |
| $1+e^{-x}$ |

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS $231 n$

Adding Non-Linearities

We can have multiple neurons connected to the same input

Corresponds to a multi-class classifier

- Each output node outputs the score for a class

$$
f(x, W)=\sigma(W x+b)\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{21} & w_{22} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

- Often called fully connected layers

Also called a linear projection layer

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS $231 n$

Connecting Many Neurons

- Each input/output is a neuron (node)
- A linear classifier (+ optional nonlinearity) is called a fully connected layer
- Connections are represented as edges
- Output of a particular neuron is referred to as activation
- This will be expanded as we view
 computation in a neural network as a graph

We can stack multiple layers together

- Input to second layer is output of first layer
Called a 2-layered neural network (input is not counted)
Because the middle layer is neither input or output, and we don't know what their values represent, we call them hidden layers
- We will see that they end up learning effective features

This increases the representational power
 of the function!

- Two layered networks can represent any continuous function

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Connecting Many Layers

The same two-layered neural network corresponds to adding another weight matrix

- We will prefer the linear algebra view, but use some terminology from neural networks (\& biology)

$$
\begin{array}{ccc}
x & W_{1} & W_{2} \\
& = \\
f\left(x, W_{1}, W_{2}\right) & =\sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)
\end{array}
$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Large (deep) networks can be built by adding more and more layers
Three-layered neural networks can represent any function

- The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them without edges:

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Adding More Layers!

Computation Graphs

Functions can be made arbitrarily complex (subject to memory and computational limits), e.g.:

$$
f(x, W)=\sigma\left(W _ { 5 } \sigma \left(W _ { 4 } \sigma \left(W_{3} \sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)\right.\right.\right.
$$

We can use any type of differentiable function (layer) we want!

- At the end, add the loss function

Composition can have some structure

Adding Even More Layers

- Components of parametric classifiers:
- Input/Output: Image/Label
- Model (function): Linear Classifier + Softmax
- Loss function: Cross-Entropy
- Optimizer: Gradient Descent
- Ways to compute gradients
- Numerical
- Analytical
- Key idea: Can we do this across an arbitrary composition of functions (computation graph)?

Summary

