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Topics:
• Jacobians
• Optimization



• Assignment Due Feb 5th
• Resources: 

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes. 
• Assignment (@41) and matrix calculus (@46)

• Project: Teaming thread on piazza

• Schedule: 



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3
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Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3
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Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



⬣ We want to to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss
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⬣ We will use the chain rule to compute: 
𝝏𝑳

𝝏𝒉κష𝟏
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𝝏𝑾

⬣ Gradient of loss w.r.t. inputs: 
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⬣ Gradient of loss w.r.t. weights: 
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Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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Given by upstream 
module (upstream 
gradient)

Calculated 
Analytically



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×κ

M

M

𝟏

𝟐

𝟏

𝟐

Tensors



Scalar Case



Vector Case



Jacobian View of Chain Rule



Graphical View of Chain Rule



Chain Rule: Cascaded



⬣ Input: 𝑫

⬣ Binary label: 

⬣ Parameters: 𝑫

⬣ Output prediction: 
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss: 
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato



We have discussed computation 
graphs for generic functions

Machine Learning functions 
(input -> model -> loss function) 
is also a computation graph

We can use the computed 
gradients from 
backprop/automatic 
differentiation to update the 
weights! 

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙



Automatic differentiation:

⬣ Carries out this procedure for us 
on arbitrary graphs

⬣ Knows derivatives of primitive 
functions

⬣ As a result, we just define these 
(forward) functions and don’t 
even need to specify the 
gradient (backward) functions!

Example Gradient Computations
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We can do this in a combined way to see all terms 
together:

𝒘ഥ =
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This effectively shows gradient flow along path from 
L to w



The chain rule can be 
computed as a series of 
scalar, vector, and matrix 
linear algebra operations

Extremely efficient in 
graphics processing units 
(GPUs)

Vectorized Computations

𝒘𝑻𝒙
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Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Fully Connected (FC) Layer: Forward Function 

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

𝒊
𝑻

κ κି𝟏κ κି𝟏

Define: 



Fully Connected (FC) Layer
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Fully Connected (FC) Layer
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Note doing this on full W
matrix would result in 
Jacobian tensor!

But it is sparse – each 
output only affected by 
corresponding weight row

κ
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𝒊
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κ
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Define: 



Full Jacobian of ReLU layer is large 
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 
because it is element-wise

⬣ An output value affected only by 
corresponding input value

Max function funnels gradients 
through selected max

⬣ Gradient will be zero if input 
<= 0

Jacobian of ReLU

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

Forward: κ κି𝟏

Backward: 
𝝏𝑳
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Backpropagation
and Automatic 
Differentiation



Backpropagation does not really spell out how to efficiently 
carry out the necessary computations

But the idea can be applied to any directed acyclic graph 
(DAG)

⬣ Graph represents an ordering constraining which paths 
must be calculated first

Given an ordering, we can then iterate from the last module 
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for 
efficient computation

⬣ We will do this automatically by computing backwards 
function for primitives and as you write code, express the 
function with them

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



2 1

𝟏 𝟐 𝟏 𝟐 𝟐 We want to find the partial 
derivative of output f (output) 
with respect to all intermediate 
variables

⬣ Assign intermediate variables

Simplify notation: 

Denote bar as: ଷ
డ௙

డ௔య

⬣ Start at end and move 
backward

Example

𝟑

𝟐𝟏



Example

2 1
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=
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= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
  

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients 
from multiple 
paths 
summed

Path 1
(P1)

Path 2
(P2)



Patterns of Gradient Flow: Addition

2 1
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Addition operation distributes gradients 
along all paths!



Patterns of Gradient Flow: Multiplication

1 2
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Multiplication operation is a gradient 
switcher (multiplies it by the values of 
the other term)



Several other patterns as well, e.g.:

Max operation selects which path to 
push the gradients through

⬣ Gradient flows along the path 
that was “selected” to be max 

⬣ This information must be 
recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep 
neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

5 1

5

gradient

gradient



⬣ Key idea is to explicitly store 
computation graph in 
memory and corresponding 
gradient functions

⬣ Nodes broken down to basic  
primitive computations 
(addition, multiplication, log, 
etc.) for which 
corresponding derivative is 
known

Computational Implementation

𝟐
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
𝟏 𝟐

1

𝟑

𝟐𝟏

2



Note that we can also do forward mode 
automatic differentiation

Start from inputs and propagate gradients 
forward

Complexity is proportional to input size

⬣ Memory savings (all forward pass, no 
need to store activations)

⬣ However, in most cases our inputs 
(images) are large and outputs 
(loss) are small

Automatic Differentiation

1 2

𝒘̇𝟑 = 𝒘̇𝟏+ 𝒘̇𝟐

𝒙̇𝟏 𝒙̇𝟏 𝒙̇𝟐

𝒘̇𝟏 = 𝐜𝐨𝐬(𝒙𝟏)𝒙̇𝟏 𝒘̇𝟐 = 𝒙̇𝟏𝒙𝟐 + 𝒙𝟏𝒙̇𝟐



Forward Mode Autodifferentiation

g
κ κ

κି𝟏

κି𝟏κି𝟏

Assume given

See https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf



Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20)) 

𝒉 𝒙

MM MM

Add

Tanh

A graph is created on the fly
Back-propagation uses the 

dynamically built graph

From pytorch.org



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



⬣ Computation graphs are not 
limited to mathematical 
functions!

⬣ Can have control flows (if 
statements, loops) and 
backpropagate through 
algorithms!

⬣ Can be done dynamically so 
that gradients are computed, 
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0



Optimization  
of Deep 
Neural 

Networks 
Overview



Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function



A network with two or more hidden 
layers is often considered a deep
model

Depth is important:

⬣ Structure the model to represent 
an inherently compositional world 

⬣ Theoretical evidence that it leads 
to parameter efficiency

⬣ Gentle dimensionality reduction 
(if done right)

Importance of Depth

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Designing Deep Neural Networks

There are still many design 
decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 
Optimization

⬣ Machine Learning 
Considerations

?

Local
Minima



We must design the neural network 
architecture:

⬣ What modules (layers) should 
we use? 

⬣ How should they be connected 
together?

⬣ Can we use our domain 
knowledge to add architectural 
biases?

Architectural Considerations

?



Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data



Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions



Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Recurrent Neural Network

Convolutional Neural
Networks

Input
Image

Predictions

Different architectures 
are suitable for different 
applications or types of 
input



As in traditional machine 
learning, data is key:

⬣ Should we pre-process
the data? 

⬣ Should we normalize it?

⬣ Can we augment our data 
by adding noise or other 
perturbations? 

Data Considerations



Even given a good neural network 
architecture, we need a good optimization 
algorithm to find good weights

⬣ What optimizer should we use? 

⬣ Different optimizers make different 
weight updates depending on the 
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima



The practice of machine learning 
is complex: For your particular 
application you have to trade off all 
of the considerations together

⬣ Trade-off between model 
capacity (e.g. measured by # of 
parameters) and amount of data

⬣ Adding appropriate biases 
based on knowledge of the 
domain

Machine Learning 
Considerations



Architectural 
Considerations



Determining what modules to use, and how to 
connect them is part of the architectural 
design

⬣ Guided by the type of data used and its 
characteristics

⬣ Understanding your data is always the 
first step!

⬣ Lots of data types (modalities) already 
have good architectures

⬣ Start with what others have 
discovered!

⬣ The flow of gradients is one of the key 
principles to use when analyzing layers

Designing the Architecture

?



⬣ Combination of linear and 
non-linear layers

⬣ Combination of only linear 
layers has same 
representational power as one 
linear layer

⬣ Non-linear layers are crucial 

⬣ Composition of non-linear 
layers enables complex 
transformations of the 
data

Linear and Non-Linear Modules

𝑻
ି𝒖

𝟏
𝑻

𝟐
𝑻

𝟑
𝑻

𝟒
𝑻x



Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input & 
output statistics

⬣ Gradients

⬣ At initialization (e.g. small 
values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function



⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential 
term

Sigmoid Function

Sigmoid

Derivative

κ κି𝟏

ି𝒙
𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾



⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat 
computationally heavy

Tanh Function

tanh
Derivative

κ κି𝟏



⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ (dead ReLU)

⬣ Constant otherwise (does 
not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

κ κି𝟏



⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation 

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

κ κି𝟏 κି𝟏



Selecting a Non-Linearity

Which non-linearity should you 
select?

⬣ Unfortunately, no one activation 
function is best for all applications

⬣ ReLU is most common starting 
point

⬣ Sometimes leaky ReLU can 
make a big difference 

⬣ Sigmoid is typically avoided 
unless clamping to values from 
[0,1] is needed



Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Computation graph (composition of functions) => Multiplication of Jacobians along 
path

• Automatic differentiation: 

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass

• We now have a generic algorithm! Considerations:
⬣ Architecture
⬣ Data Considerations
⬣ Training and Optimization
⬣ Machine Learning Considerations


