
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Jacobians
• Optimization

• Assignment Due Feb 5th
• Resources:

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment (@41) and matrix calculus (@46)

• Project: Teaming thread on piazza

• Schedule:

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

⬣ We want to to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ
Loss⬣ 𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

Given by upstream
module (upstream
gradient)

Calculated
Analytically

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×κ

M

M

𝟏

𝟐

𝟏

𝟐

Tensors

Scalar Case

Vector Case

Jacobian View of Chain Rule

Graphical View of Chain Rule

Chain Rule: Cascaded

⬣ Input: 𝑫

⬣ Binary label:

⬣ Parameters: 𝑫

⬣ Output prediction:
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss:
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato

We have discussed computation
graphs for generic functions

Machine Learning functions
(input -> model -> loss function)
is also a computation graph

We can use the computed
gradients from
backprop/automatic
differentiation to update the
weights!

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙

Automatic differentiation:

⬣ Carries out this procedure for us
on arbitrary graphs

⬣ Knows derivatives of primitive
functions

⬣ As a result, we just define these
(forward) functions and don’t
even need to specify the
gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆ି𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from
L to w

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆ି𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

𝟏

𝝈 𝒘𝑻𝒙
𝑻 𝑻 𝑻

1xd1x11x11x1

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Fully Connected (FC) Layer: Forward Function

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

𝒊
𝑻

κ κି𝟏κ κି𝟏

Define:

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾κ

κష𝟏

κି𝟏 κ

κ

κି𝟏

κି𝟏 κ κି𝟏κ

Define:

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse – each
output only affected by
corresponding weight row

κ

κష𝟏

𝒊
κ

κ

𝒊

𝝏𝒉𝒊
κ

𝝏𝒘𝒊

κି𝟏 κ κି𝟏κ

Define:

Full Jacobian of ReLU layer is large
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero
because it is element-wise

⬣ An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

⬣ Gradient will be zero if input
<= 0

Jacobian of ReLU

𝒉κି𝟏 𝒉κ

𝑾

FunctionInput Output

Parameters

Forward: κ κି𝟏

Backward:
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

|𝒉κ × 𝒉κି𝟏|

κି𝟏

κି𝟏

Backpropagation
and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

⬣ Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for
efficient computation

⬣ We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

2 1

𝟏 𝟐 𝟏 𝟐 𝟐 We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

⬣ Assign intermediate variables

Simplify notation:

Denote bar as: ଷ
డ௙

డ௔య

⬣ Start at end and move
backward

Example

𝟑

𝟐𝟏

Example

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients
from multiple
paths
summed

Path 1
(P1)

Path 2
(P2)

Patterns of Gradient Flow: Addition

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏ା𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Multiplication

1 2

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

Several other patterns as well, e.g.:

Max operation selects which path to
push the gradients through

⬣ Gradient flows along the path
that was “selected” to be max

⬣ This information must be
recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep
neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

5 1

5

gradient

gradient

⬣ Key idea is to explicitly store
computation graph in
memory and corresponding
gradient functions

⬣ Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

Computational Implementation

𝟐
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
𝟏 𝟐

1

𝟑

𝟐𝟏

2

Note that we can also do forward mode
automatic differentiation

Start from inputs and propagate gradients
forward

Complexity is proportional to input size

⬣ Memory savings (all forward pass, no
need to store activations)

⬣ However, in most cases our inputs
(images) are large and outputs
(loss) are small

Automatic Differentiation

1 2

𝒘̇𝟑 = 𝒘̇𝟏+ 𝒘̇𝟐

𝒙̇𝟏 𝒙̇𝟏 𝒙̇𝟐

𝒘̇𝟏 = 𝐜𝐨𝐬(𝒙𝟏)𝒙̇𝟏 𝒘̇𝟐 = 𝒙̇𝟏𝒙𝟐 + 𝒙𝟏𝒙̇𝟐

Forward Mode Autodifferentiation

g
κ κ

κି𝟏

κି𝟏κି𝟏

Assume given

See https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

𝒉 𝒙

MM MM

Add

Tanh

A graph is created on the fly
Back-propagation uses the

dynamically built graph

From pytorch.org

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Computation graphs are not
limited to mathematical
functions!

⬣ Can have control flows (if
statements, loops) and
backpropagate through
algorithms!

⬣ Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Optimization
of Deep
Neural

Networks
Overview

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

⬣ Structure the model to represent
an inherently compositional world

⬣ Theoretical evidence that it leads
to parameter efficiency

⬣ Gentle dimensionality reduction
(if done right)

Importance of Depth

input
layer hidden

layer 1
hidden
layer 2

output
layer

Designing Deep Neural Networks

There are still many design
decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and
Optimization

⬣ Machine Learning
Considerations

?

Local
Minima

We must design the neural network
architecture:

⬣ What modules (layers) should
we use?

⬣ How should they be connected
together?

⬣ Can we use our domain
knowledge to add architectural
biases?

Architectural Considerations

?

Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions

Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Recurrent Neural Network

Convolutional Neural
Networks

Input
Image

Predictions

Different architectures
are suitable for different
applications or types of
input

As in traditional machine
learning, data is key:

⬣ Should we pre-process
the data?

⬣ Should we normalize it?

⬣ Can we augment our data
by adding noise or other
perturbations?

Data Considerations

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

⬣ What optimizer should we use?

⬣ Different optimizers make different
weight updates depending on the
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima

The practice of machine learning
is complex: For your particular
application you have to trade off all
of the considerations together

⬣ Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

⬣ Adding appropriate biases
based on knowledge of the
domain

Machine Learning
Considerations

Architectural
Considerations

Determining what modules to use, and how to
connect them is part of the architectural
design

⬣ Guided by the type of data used and its
characteristics

⬣ Understanding your data is always the
first step!

⬣ Lots of data types (modalities) already
have good architectures

⬣ Start with what others have
discovered!

⬣ The flow of gradients is one of the key
principles to use when analyzing layers

Designing the Architecture

?

⬣ Combination of linear and
non-linear layers

⬣ Combination of only linear
layers has same
representational power as one
linear layer

⬣ Non-linear layers are crucial

⬣ Composition of non-linear
layers enables complex
transformations of the
data

Linear and Non-Linear Modules

𝑻
ି𝒖

𝟏
𝑻

𝟐
𝑻

𝟑
𝑻

𝟒
𝑻x

Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input &
output statistics

⬣ Gradients

⬣ At initialization (e.g. small
values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function

⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential
term

Sigmoid Function

Sigmoid

Derivative

κ κି𝟏

ି𝒙
𝝏𝑳

𝝏𝒉κି𝟏

𝝏𝑳

𝝏𝒉κ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾

⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat
computationally heavy

Tanh Function

tanh
Derivative

κ κି𝟏

⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ (dead ReLU)

⬣ Constant otherwise (does
not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

κ κି𝟏

⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

κ κି𝟏 κି𝟏

Selecting a Non-Linearity

Which non-linearity should you
select?

⬣ Unfortunately, no one activation
function is best for all applications

⬣ ReLU is most common starting
point

⬣ Sometimes leaky ReLU can
make a big difference

⬣ Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed

Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Computation graph (composition of functions) => Multiplication of Jacobians along
path

• Automatic differentiation:

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass

• We now have a generic algorithm! Considerations:
⬣ Architecture
⬣ Data Considerations
⬣ Training and Optimization
⬣ Machine Learning Considerations

