Topics:
e Jacobians

* QOptimization

CS 4803-DL / 7643-A
ZSOLT KIRA

Assignment Due Feb 5th

Resources:
* These lectures
e Matrix calculus for deep learning

* Gradients notes and MLP/RelLU Jacobian notes.
* Assignment (@41) and matrix calculus (@46)

Project: Teaming thread on piazza

Graded Deliverablhdielease Date Jid Due Date ES iy

. Start of Term 10-Jan
SChedUIe' Al 14-Jan 5-Feb
A2 30-Jan 20-Feb
A3 20-Feb B-Mar
Project Proposal b-Feb 13-Mar
Ad 9-Mar 3-Apr

F ruject_ _Repurt A-Apr 1-May

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dlL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

x>

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Tech

‘ _:: Georgia LGJ

oL aL}
oht—1’ ow

We want to to compute: {

dL JL aL
ah%’—l aw | : 0ss
3
! + 9L

We will use the chain rule to do this:

0z dz 0y

h Rule: — .
Calnueax Jy ox

» Computing the Gradients of Loss

oL 6L}
oht—1’ ow

We will use the chain rule to compute: {

|

.] oL dL dhn?’ Gi b ¢
Gradient of loss w.r.t. inputs: = L iven by upstream
P dht~1 ot on‘-1 module (upstream

gradient)
_ : dL _ dL on’
Gradient of loss w.r.t. weights: —— =—— —
oL oL
71 ah’
Oh Oh Calculated
Analytically

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computing the Gradients of Loss

Conventions:
Size of derivatives for scalars, vectors, and matrices:
T

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., U]
and matrix M € Rk**

s [] V“ M
s 9517 9s | 1 0s

052 - 617 - aM

v | vy | '
V' %] v, | ‘
Mol Tensors

Georgia [ﬁ]

Dimensionality of Derivatives Tech ||

y
A X A
N 17 & 4
S c sl
5

) Scalar Case Gegraia)

Vector Case

Jacobian View of Chain Rule Gegrgia |

Graphical View of Chain Rule Gograla

) Chain Rule: Cascaded Gegrgia |

Input; x € RP
Binary label: y € {—1, +1}

Parameters: w € RP

1
Output prediction: p(y = 1|x) = - i T j
e wt X e

1
Loss: L =~ lw||? — Alog(p(y|x))
A

L

Log Loss

Adapted from slide by Marc'Aurelio Ranzato

&0
Linear Classifier: Logistic Regression Ge%;%!$

We have discussed computation
graphs for generic functions

Machine Learning functions _ log< 1 _ >

(input -> model -> loss function) 1+e™?

IS also a computation graph ‘

We can use the computed u 1 p L
gradients from wl x + — = logs(® [—
backprop/automatic U

differentiation to update the
weights!

) Neural Network Computation Graph

L=1

u X p L _ oL 1
p = ——

1+e™ 1
where p = o(w'x) and o(x) = —
Automatic differentiation:
_ _ _ 9L _dL du _ __ T
Carries out this procedure for us W=ow ouow W

on arbitrary graphs

We can do this in a combined way to see all terms

Knows derivatives of primitive together:

functions oL o
o0 0L dp ou _ T _ T T
w= dp Ou ow a(wTx) U(W .X')(l d (W x))x

As a result, we just define these
(forward) functions and don’t

even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

The chain rule can be u X p L
computed as a series of wix [—> e [—log(p) —
scalar, vector, and matrix L
linear algebra operations] [] Cl L]
o 1x1 1x1
1xd
dx1
Extremely efficient in B
graphics processing units w= (,(wrx) a(w'x)(1—a (w'x))x"
(GPUs) o J o A s I
1x1 1x1 Ix1 1xd

>

Vectorized Computations

5 S N i 7. . Lo
wix f—b TR —>1 —log(p) —> wix > » —log(p) P—> B B s 5y
o 0 1
C.] [2 C3 o o%ﬁ
f 1x1 1x1 X 740 o
_ o1 1xd G WP
P=ge=-3 \Z/ 0
“dx1 .
= T =t

where p = a(w'x)

33(4
e alL _ aL d; e /
B=n=2 Z-po1-0) w= a(wa) o(wTx)(1 — o (WTx))xT @% @ =

o] C1] CJ C 1
aw du aw 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms
together:
o)1 o (W Computational / Tensor View Graph View
= 7(170(w x))
.) " dL dL
Th ffectively sh dient fl I th fi
Lt:)s:/ ectively shows gradient flow along path from We want to to compute: { h{ -, OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule -"—" i i—w”l’ "’L-— s

: | 5 '
1
' | oW 1

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Input Function Output

Parameters
Define:
{ _ £—1
o Tpi-1 h* = Wh
hi — Wi h - - :_ T_: -
Wi

K| x1 |h¢| x |hf~1| |Rf1|x1

) Fully Connected (FC) Layer: Forward Function

h* = wh*1

£

62’;—1 — W
_ oL | oL on’

lDzefme:Thf—) o1 9h! ohi1

. W, - -
= (10]

i _ h(f—l),T
aWi

1x |h?~1 1x|h?| |h?|x |h Y

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht1 Jacobian tensor!
But it is sparse — each
ah? . output only affected by
oht-1 w corresponding weight row
Define: oL | oL oA’
L Tpi—1 aw: | an’ ow;
o D e
- 0 -
ahf < onl
L — h(f_l)JT aw,- g
aWi < 0 -

) Fully Connected (FC) Layer

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=(

Input Function Output

|4
Parameters

Forward: h* = max(0, h‘™1)

dL dh’
h€—1 ah€ ah{’—l

Backward: p oL _

AN

|h? x b1

ahf—l

dL (1 ifnt-1>0
0 otherwise

) Jacobian of ReLU

Backpropagation

and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

&@
=@

) Deep Learning = Differentiable Programming Georaif] <

f(x1,%2) = x1x2 + sin(xy)

Example

We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

Assign intermediate variables

Simplify notation:
of

Denote bar as: a; = FPN
3

Start at end and move
backward

f(x1,x2) = x1x5 + sin(x;) a; = oF _ 1

aag
____df _ of daz _ Of d(ay+az) _ Of ., _
a, = = = = 1=a;3
aal 6a3 aal aag aal aag
__ df of daz —_
a, = = = Qa
2 aaz aag aa2 3
P1 af daq _
X =— —=a4q4 Cos\x
2 6a1 6x2 1 (2)
Gradients
a da a d(x1x2 — i
xIZ’Z _Of Qdap _ of 0(x1x2) _ azx from multiple
aaz axz aaz axz paths
summed
__ 3 day __
=— — =0a»X
1 aaz 6x1 272

Example

f(x1,%2) = x1x2 + sin(xy)

__ _df _ Of daz _ of d(ajtay) _ Of e
a, = = = = 1=a;3
aal aag aa1 aag aal aag
. 8f of daz __
a, = = = Qa
2 aaz aag aaz 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(x1,%2) = x1x2 + sin(xy)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

___ df da, Of OA(x1x2) __
= = = a2x1
aaz axz aaz 6x2

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 2 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

&

) Patterns of Gradient Flow: Other Ge%ggé

__ f day

2 =5~ o

Key idea is to explicitly store da; ax, — 1 c€os(xz)
computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

Note that we can also do forward mode
automatic differentiation

t

Start from inputs and propagate gradients W3 = Wi+ W,

forward @

Complexity is proportional to input size
p y p p p W1 = cos(xl)icl Wz = xle + xle

Memory savings (all forward pass, no
need to store activations) @

However, in most cases our inputs X1 X1 X7
(images) are large and outputs
(loss) are small

) Automatic Differentiation

Assume given
dht-1 ahf_ dh? ont1
dx dx Adh'-1 oax

See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

) Forward Mode Autodifferentiation

A graph is created on the fly

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
From pytorch.org

Computation Graphs in PyTorch Ge?ré%é

Convolutional network (AlexNet)

PP Ll

input image

weights

z | A=
Ll | Lals
loss 2
. | Bty *
oy R
& . e
-3
3 ——
ar a .
- I) - S
o e |
2] 4 Figure copyright Alex Krizhevsky, Ilya Sutskever, and
. Geoffrey Hinton, 2012. Reproduced with permission.

"
Guiood Buyood f
Yo __wi
LI L I\
\ [|
| . -
M e N| ik
N = \ N
|\ N
8

Georgia |

Tech|)

Neural Turing Machine

//

input image

Georgia |

Tech|)

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\\)
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 2.0\

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Ge%;gé g

Optimization
of Deep
Neural

Networks
Overview

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X > - >| —log(p) |L*
Model
Input u Loss Function

The Power of Deep Learning

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent
an inherently compositional world

Theoretical evidence that it leads

.. input
to parameter efficiency layer hidden hidden

layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth

There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks

We must design the neural network
architecture:

What modules (layers) should ?
we use”?

How should they be connected
together?

Can we use our domain
knowledge to add architectural
biases?

) Architectural Considerations

Input — —> Predictions
Data

Fully Connected
Neural Network

Example Architectures

Input _ —> Predictions Input —> Predictions
Data Image

Fully Connected Convolutional Neural
Neural Network Networks

Example Architectures

Input _ —> Predictions Input —> Predictions
Data Image

Fully Connected Convolutional Neural
Neural Network Networks

ﬁl':l
1

Different architectures
are suitable for different
applications or types of
input

Recurrent Neural Network

Example Architectures

As in traditional machine
learning, data is key:

Should we pre-process
the data?

Should we normalize it?

Can we augment our data
by adding noise or other
perturbations?

) Data Considerations

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

What optimizer should we use?

Different optimizers make different
weight updates depending on the
gradients

How should we initialize the weights?
What regularizers should we use?

What loss function is appropriate?

) Optimization Considerations

Optimizer
Trajectory

Local
Minima

Machine Learning
Considerations

The practice of machine learning
is complex: For your particular
application you have to trade off all
of the considerations together

Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

Adding appropriate biases
based on knowledge of the
domain

Architectural

Considerations

Determining what modules to use, and how to
connect them is part of the architectural

design
Guided by the type of data used and its
characteristics

Understanding your data is always the
first step!

Lots of data types (modalities) already
have good architectures

Start with what others have
discovered!

The flow of gradients is one of the key
principles to use when analyzing layers

) Designing the Architecture

Combination of linear and
: wiwlwix)) = wix
non-linear layers 1wz (W3 4

Combination of only linear

1
layers has same W x N »| —log(p)
representational power as one 1+e™

linear layer

Non-linear layers are crucial = o

14
oa

Composition of non-linear

o4

layers enables complex
transformations of the o4

S Jr J —

data R

) Linear and Non-Linear Modules

Several aspects that we can analyze:
Min/Max

Correspondence between input &
output statistics

12
10 1
08 A
0.6 4
041
02
0.0 4
-1 T T T T T -0.2

Gradients o[— o] — e
At initialization (e.g. small 0o N
values)]

At extremes

Computational complexity

) Analysis of Non-Linear Function

Min: 0, Max: 1

Output always positive

Derivative

Saturates at both ends

Gradients
Vanishes at both end h! = ¢ (ht™1)
Always positive |—>
5P o(x) = — a?[—JoL
. - 1+e™ =1 9L an’
Computation: Exponential oh v
term dL _ dL oh’

ow 9ht oW

) Sigmoid Function

Min: -1, Max: 1

Centered

Derivative

Saturates at both ends
Gradients
Vanishes at both end

Always positive

Still somewhat
computationally heavy

) Tanh Function

Min: 0, Max: Infinity
Output always positive
No saturation on positive end!
Gradients
0ifx < 0 (dead RelLU)

Constant otherwise (does
not vanish)

Cheap to compute (max)

) Rectified Linear Unit

h! = max(0, h*™1)

Min: -Infinity, Max: Infinity
Learnable parameter!
No saturation
Gradients

No dead neuron

Still cheap to compute

) Leaky ReLU

h'! = max(aht~1, h'~1)

Selecting a Non-Linearity

Which non-linearity should you
select?

Unfortunately, no one activation
function is best for all applications

ReLU is most common starting
point

Sometimes leaky RelLU can
make a big difference

Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:

Computation graph (composition of functions) => Multiplication of Jacobians along
path

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

We now have a generic algorithm! Considerations:
Architecture
Data Considerations
Training and Optimization
Machine Learning Considerations

) Summary Gegraia)

