
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Optimization (Cont)
• Convolution

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

⬣ What optimizer should we use?

⬣ Different optimizers make different
weight updates depending on the
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima

Optimizers

Loss Landscape

Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

There is little direct theory and a lot of
intuition/rules of thumbs instead

⬣ Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

Loss Landscape

It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point

Noisy Gradients

⬣ We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

⬣ This is an unbiased
estimator but can have
high variance

⬣ This results in noisy steps
in gradient descent

Loss Surface Geometry

Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

⬣ But they disagree (it’s min for
one, max for another)

Plateau

Saddle Point

Adding Momentum

⬣ Gradient descent takes a step in the
steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

⬣ Generalizes SGD ()

𝒊 𝒊 𝟏
𝒊

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0,)

𝒊 𝒊 𝟏 𝒊 Update Weights

Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

Equivalent Momentum Update

Equivalent formulation:

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0)

𝒊 𝒊 𝟏 𝒊 Update Weights

Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new
point

⬣ We know velocity is probably a
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Momentum

Hessian and Loss Curvature

⬣ Various mathematical ways to
characterize the loss landscape

⬣ If you liked Jacobians… meet the

⬣ Gives us information about the
curvature of the loss surface

First
order

Second
order

Condition Number

Condition number is the ratio of
the largest and smallest eigenvalue

⬣ Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

Idea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in
many cases but with much more
tuning

Per-Parameter Learning Rate

Adagrad

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

As gradients are
accumulated learning

rate will go to zero

RMSProp

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Solution: Keep a moving
average of squared
gradients!

Does not saturate the
learning rate

Adam

Combines ideas from
above algorithms

Maintains both first
and second moment
statistics for gradients

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊

𝒊

But unstable in the beginning
(one or both of moments will be
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015

Adam

Solution: Time-varying bias
correction

Typically 𝟏 𝟐

So 𝒊 will be small number
divided by (1-0.9=0.1) resulting
in more reasonable values (and

𝒊 larger)

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊 𝟏
𝒊

𝒊

Behavior of Optimizers

Optimizers behave differently
depending on landscape

Different behaviors such as
overshooting, stagnating, etc.

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

⬣ See: Luo et al., Adaptive
Gradient Methods with
Dynamic Bound of Learning
Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/

Learning Rate Schedules

First order optimization methods have
learning rates

Theoretical results rely on annealed
learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training
Loss

Regularization

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2: 𝒊
𝟐 𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒊
𝟐 𝟐

Regularization

Many standard regularization methods still apply!

L1 Regularization

where is element-wise

Problem: Network can learn to rely strong on a few features that work
really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input
layer hidden

layer 1
hidden
layer 2

output
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

An idea: For each node, keep its output with probability

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

⬣ In practice, implement
with a mask calculated
each iteration

⬣ During testing, no
nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝟏𝟏

𝟐𝟏

𝟑𝟏

𝟒𝟏

input
layer hidden

layer 1
hidden
layer 2

output
layer

⬣ During training, each node has an
expected nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have
similar train and test-time
input/output distributions!

Solution: During test time, scale
outputs (or equivalently weights) by

⬣ i.e. 𝒕𝒆𝒔𝒕

⬣ Alternative: Scale by
𝟏

𝒑
at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝟏𝟏

𝟐𝟏

𝟑𝟏

𝟒𝟏

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should
not rely too heavily on particular
features

⬣ If it does, it has probability
of losing that feature in an
iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should
not rely too heavily on particular
features

⬣ If it does, it has probability
of losing that feature in an
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Convolution
& Pooling

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Is this necessary?

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)

Image features are spatially
localized!

Smaller features repeated
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature
tends to appear in one location
vs. another (stationarity)

Locality of Features

Can we induce a bias in the
design of a neural network
layer to reflect this?

Each node only receives input from
𝟏 𝟐 window (image patch)

Region from which a node receives
input from is called its receptive
field

Advantages:

Reduce parameters to 𝟏 𝟐

where is number of output
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐

Nodes in different locations can share
features

No reason to think same feature
(e.g. edge pattern) can’t appear
elsewhere

Use same weights/parameters in
computation graph (shared
weights)

Advantages:

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏

We can learn many such features
for this one layer

Weights are not shared
across different feature
extractors

Parameters: 𝟏 𝟐

where is number of
features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical
operation on two functions and producing a
third function that is typically viewed as a
modified version of one of the original functions,
giving the area overlap between the two
functions as a function of the amount that one of
the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,
statistics, computer vision, image and signal
processing, electrical engineering, and
differential equations.

Visual comparison of convolution and
cross-correlation.

2D Discrete Convolution

1D
Convolution

2D
Convolution

Notation:

𝒌 𝒏 𝒌 𝒏

𝑵 𝟏

𝒏 𝟎

𝟎 𝟎 𝟎

𝟏 𝟏 𝟎 𝟎 𝟏

𝟐 𝟐 𝟎 𝟏 𝟏 𝟎 𝟐

𝟑 𝟑 𝟎 𝟐 𝟏 𝟏 𝟐 𝟎 𝟑

2D Discrete Convolution

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

2D Discrete Convolution

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride
along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾 𝟏
𝟐

,

𝒃
𝑾 𝟏

𝟐

𝑯 𝟏
𝟐

,

𝒂
𝑯 𝟏

𝟐

𝒌𝟐 𝟏
𝟐

,

𝒃
𝒌𝟐 𝟏

𝟐

𝒌𝟏 𝟏
𝟐

,

𝒂
𝑲𝟏 𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and
move back

Cross-correlation: Start in the beginning of
kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

𝒌𝟐 𝟏

𝒃 𝟎

𝒌𝟏 𝟏

𝒂 𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change
does not matter!

Cross-Correlation

K’ X X(0:2,0:2)

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it’s a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

Input &
Output Sizes

Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image

𝑯
=

𝟓

𝟏

𝟐 𝟏

𝟐

𝑯
−

𝒌
𝟏

+
𝟏

𝟐

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size

𝟏

𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝟐

𝑯
+

𝟐

Stride

We can move the filter along the image using larger steps (stride)

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

𝟐

Stride = 2 (every other pixel)

Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏

Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Operation of Multi-Channel Input

Similar to before, we perform element-wise
multiplication between kernel and image
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of
channels in output
is equal to number
of kernels

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example:

𝟏 𝟐 , then

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage

Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2

Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Patch 1
Patch 2

…

Input Matrix Kernel Matrix

Number of Kernels
N

u
m

b
er o

f P
atche

s

k

X

k

K
e

rn
el 1

K
e

rn
el 2

…

