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Even given a good neural network 
architecture, we need a good optimization 
algorithm to find good weights

⬣ What optimizer should we use? 

⬣ Different optimizers make different 
weight updates depending on the 
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima



Optimizers



Loss Landscape

Deep learning involves complex, 
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result 

There is little direct theory and a lot of 
intuition/rules of thumbs instead

⬣ Some insight can be gained via 
theory for simpler cases (e.g.
convex settings)



Loss Landscape

It used to be thought that 
existence of local minima is 
the main issue in optimization

There are other more 
impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point



Noisy Gradients

⬣ We use a subset of the 
data at each iteration to 
calculate the loss (& 
gradients)

⬣ This is an unbiased 
estimator but can have 
high variance

⬣ This results in noisy steps 
in gradient descent



Loss Surface Geometry

Several loss surface geometries 
are difficult for optimization

Several types of minima: Local 
minima, plateaus, saddle points

Saddle points are those where the 
gradient of orthogonal directions 
are zero

⬣ But they disagree (it’s min for 
one, max for another)

Plateau

Saddle Point



Adding Momentum

⬣ Gradient descent takes a step in the 
steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling 
down loss surface, and use 
momentum to pass flat surfaces

⬣ Generalizes SGD ( )

𝒊 𝒊 𝟏
𝒊

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0, )

𝒊 𝒊 𝟏 𝒊 Update Weights



Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with 
some theoretical analysis (under assumptions)



Equivalent Momentum Update

Equivalent formulation:

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0)

𝒊 𝒊 𝟏 𝒊 Update Weights



Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity 
with current gradient, go along velocity 
first and then calculate gradient at new 
point

⬣ We know velocity is probably a 
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Note there are several equivalent 
formulations across deep learning 
frameworks!

Resource: 
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Momentum



Hessian and Loss Curvature

⬣ Various mathematical ways to 
characterize the loss landscape

⬣ If you liked Jacobians… meet the

⬣ Gives us information about the 
curvature of the loss surface

First 
order

Second 
order



Condition Number

Condition number is the ratio of 
the largest and smallest eigenvalue 

⬣ Tells us how different the 
curvature is along different 
dimensions

If this is high, SGD will make big
steps in some dimensions and 
small steps in other dimension

Second-order optimization methods 
divide steps by curvature, but 
expensive to compute



Idea: Have a dynamic learning rate 
for each weight

Several flavors of optimization 
algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in 
many cases but with much more 
tuning

Per-Parameter Learning Rate



Adagrad

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Idea: Use gradient statistics 
to reduce learning rate across 
iterations

Denominator: Sum up 
gradients over iterations

Directions with high 
curvature will have higher 
gradients, and learning rate 
will reduce 

Duchi, et al., “Adaptive Subgradient Methods for Online 
Learning and Stochastic Optimization”

As gradients are 
accumulated learning 

rate will go to zero



RMSProp

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Solution: Keep a moving 
average of squared 
gradients!

Does not saturate the 
learning rate



Adam

Combines ideas from 
above algorithms

Maintains both first 
and second moment 
statistics for gradients

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊

𝒊

But unstable in the beginning 
(one or both of moments will be 
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015



Adam

Solution: Time-varying bias 
correction

Typically 𝟏 𝟐

So 𝒊 will be small number 
divided by (1-0.9=0.1) resulting 
in more reasonable values (and 

𝒊 larger)

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊 𝟏
𝒊

𝒊



Behavior of Optimizers

Optimizers behave differently 
depending on landscape

Different behaviors such as 
overshooting, stagnating, etc. 

Plain SGD+Momentum can 
generalize better than adaptive 
methods, but requires more tuning 

⬣ See: Luo et al., Adaptive 
Gradient Methods with 
Dynamic Bound of Learning 
Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/



Learning Rate Schedules

First order optimization methods have 
learning rates

Theoretical results rely on annealed 
learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler 
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training
Loss



Regularization



Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2:  𝒊
𝟐 𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒊
𝟐 𝟐

Regularization

Many standard regularization methods still apply!

L1 Regularization

where is element-wise 



Problem: Network can learn to rely strong on a few features that work 
really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

An idea: For each node, keep its output with probability 

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



⬣ In practice, implement 
with a mask calculated 
each iteration

⬣ During testing, no 
nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝟏𝟏

𝟐𝟏

𝟑𝟏

𝟒𝟏

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



⬣ During training, each node has an 
expected nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have 
similar train and test-time 
input/output distributions! 

Solution: During test time, scale 
outputs (or equivalently weights) by 

⬣ i.e. 𝒕𝒆𝒔𝒕

⬣ Alternative: Scale by 
𝟏 

𝒑
at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝟏𝟏

𝟐𝟏

𝟑𝟏

𝟒𝟏

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Interpretation 1: The model should 
not rely too heavily on particular 
features

⬣ If it does, it has probability 
of losing that feature in an 
iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Interpretation 1: The model should 
not rely too heavily on particular 
features

⬣ If it does, it has probability 
of losing that feature in an 
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Convolution
& Pooling



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed

Is this necessary? 

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Image features are spatially 
localized!

Smaller features repeated 
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in one location 
vs. another (stationarity)

Locality of Features

Can we induce a bias in the 
design of a neural network 
layer to reflect this?



Each node only receives input from 
𝟏 𝟐 window (image patch)

Region from which a node receives 
input from is called its  receptive 
field

Advantages: 

Reduce parameters to 𝟏 𝟐

where is number of output 
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐



Nodes in different locations can share 
features

No reason to think same feature 
(e.g. edge pattern) can’t appear 
elsewhere

Use same weights/parameters in 
computation graph (shared 
weights)

Advantages: 

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial 
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏



We can learn many such features 
for this one layer

Weights are not shared 
across different feature 
extractors

Parameters:  𝟏 𝟐

where is number of 
features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical 
operation on two functions and producing a 
third function that is typically viewed as a 
modified version of one of the original functions, 
giving the area overlap between the two 
functions as a function of the amount that one of 
the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 
statistics, computer vision, image and signal 
processing, electrical engineering, and 
differential equations. 

Visual comparison of convolution and 
cross-correlation.



2D Discrete Convolution

1D 
Convolution

2D 
Convolution

Notation:

𝒌 𝒏 𝒌 𝒏

𝑵 𝟏

𝒏 𝟎

𝟎 𝟎 𝟎

𝟏 𝟏 𝟎 𝟎 𝟏

𝟐 𝟐 𝟎 𝟏 𝟏 𝟎 𝟐

𝟑 𝟑 𝟎 𝟐 𝟏 𝟏 𝟐 𝟎 𝟑



2D Discrete Convolution

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map



2D Discrete Convolution

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 
along image



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾 𝟏
𝟐

,

𝒃
𝑾 𝟏

𝟐

𝑯 𝟏
𝟐

,

𝒂
𝑯 𝟏

𝟐



𝒌𝟐 𝟏
𝟐

,

𝒃
𝒌𝟐 𝟏

𝟐

𝒌𝟏 𝟏
𝟐

,

𝒂
𝑲𝟏 𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

( −
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)



Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and 
move back

Cross-correlation: Start in the beginning of 
kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)



𝒌𝟐 𝟏

𝒃 𝟎

𝒌𝟏 𝟏

𝒂 𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 
does not matter!



Cross-Correlation

K’  X X(0:2,0:2)

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 
operations

Why bother with this and not just say it’s a 
linear layer with small receptive field?

There is a duality between them during 
backpropagation

Convolutions have various 
mathematical properties people care 
about

This is historically how it was inspired



Input & 
Output Sizes



Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image 

𝑯
=

𝟓

𝟏

𝟐 𝟏

𝟐

𝑯
−

𝒌
𝟏

+
𝟏

 

𝟐



Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size 

𝟏

𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

 

𝟐

𝑯
+

𝟐



Stride

We can move the filter along the image using larger steps (stride) 

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

 

𝟐

Stride = 2 (every other pixel)



Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input 



Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏

Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏



Operation of Multi-Channel Input

Similar to before, we perform element-wise 
multiplication between kernel and image 
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of 
channels in output 
is equal to number 
of kernels

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example: 

𝟏 𝟐 , then  

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage



Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2



Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Patch 1
Patch 2

…

Input Matrix Kernel Matrix

Number of Kernels
N

u
m

b
er o

f P
atche

s

k

X

k

K
e

rn
el 1

K
e

rn
el 2

…


