Topics:

- Optimization (Cont)
- Convolution

CS 4644-DL / 7643-A ZSOLT KIRA

Even given a good neural network architecture, we need a good optimization algorithm to find good weights

- What optimizer should we use?
- Different optimizers make different weight updates depending on the gradients
- How should we initialize the weights?
- What regularizers should we use?
- What loss function is appropriate?

Optimizer Trajectory

Optimizers

Deep learning involves complex, compositional, non-linear functions

The loss landscape is extremely nonconvex as a result

There is little direct theory and a lot of intuition/rules of thumbs instead

- Some insight can be gained via theory for simpler cases (e.g. convex settings)

It used to be thought that existence of local minima is the main issue in optimization

There are other more impactful issues:

- Noisy gradient estimates
- Saddle points
- Ill-conditioned loss surface

From: Identifying and attacking the saddle point problem in highdimensional non-convex optimization, Dauphi et al., 2014.

- We use a subset of the data at each iteration to calculate the loss (\& gradients)
- This is an unbiased estimator but can have high variance
- This results in noisy steps in gradient descent

Noisy Gradients

Several loss surface geometries are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

- But they disagree (it's min for one, max for another)

- Gradient descent takes a step in the steepest direction (negative gradient)
- Intuitive idea: Imagine a ball rolling down loss surface, and use momentum to pass flat surfaces
$v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial w_{i-1}} \quad \begin{aligned} & \text { Update Velocity } \\ & \text { (starts as } 0, \beta=0.99)\end{aligned}$
$w_{i}=w_{i-1}-\alpha v_{i} \quad$ Update Weights
- Generalizes SGD ($\boldsymbol{\beta}=\mathbf{0}$)

$$
w_{i}=w_{i-1}-\alpha \frac{\partial L}{\partial w_{i}}
$$

- Velocity term is an exponential moving average of the gradient

$$
\begin{gathered}
v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial w_{i-1}} \\
v_{i}=\beta\left(\beta v_{i-2}+\frac{\partial L}{\partial w_{i-2}}\right)+\frac{\partial L}{\partial w_{i-1}} \\
=\beta^{2} v_{i-2}+\beta \frac{\partial L}{\partial w_{i-2}}+\frac{\partial L}{\partial w_{i-1}}
\end{gathered}
$$

- There is a general class of accelerated gradient methods, with some theoretical analysis (under assumptions)

Equivalent formulation:

$$
\begin{array}{cl}
v_{i}=\beta v_{i-1}-\alpha \frac{\partial L}{\partial w_{i-1}} & \begin{array}{l}
\text { Update Velocity } \\
(\text { starts as } 0)
\end{array} \\
w_{i}=w_{i-1}+v_{i} & \text { Update Weights }
\end{array}
$$

Key idea: Rather than combining velocity with current gradient, go along velocity first and then calculate gradient at new point

- We know velocity is probably a reasonable direction

$$
\widehat{w}_{i-1}=w_{i-1}+\beta v_{i-1}
$$

$$
\begin{gathered}
v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial \widehat{w}_{i-1}} \\
w_{i}=w_{i-1}-\alpha v_{i}
\end{gathered}
$$

Momentum update:

Gradient

Nesterov Momentum

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Momentum

Note there are several equivalent formulations across deep learning frameworks!

Resource:

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

- Various mathematical ways to characterize the loss landscape
- If you liked Jacobians... meet the

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

- Gives us information about the
 curvature of the loss surface

Condition number is the ratio of the largest and smallest eigenvalue

- Tells us how different the curvature is along different dimensions

If this is high, SGD will make big steps in some dimensions and small steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate for each weight

Several flavors of optimization algorithms:

- RMSProp
- Adagrad
- Adam

SGD can achieve similar results in many cases but with much more tuning

Idea: Use gradient statistics to reduce learning rate across iterations

Denominator: Sum up gradients over iterations

Directions with high curvature will have higher gradients, and learning rate will reduce

$$
\begin{gathered}
G_{i}=G_{i-1}+\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
w_{i}=w_{i-1}-\frac{\alpha}{\sqrt{G_{i}+\epsilon}} \frac{\partial L}{\partial w_{i-1}}
\end{gathered}
$$

As gradients are accumulated learning rate will go to zero

Duchi, et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"

Solution: Keep a moving average of squared gradients!

Does not saturate the learning rate

$$
\begin{gathered}
G_{i}=\beta G_{i-1}+(1-\beta)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
w_{i}=w_{i-1}-\frac{\alpha}{\sqrt{G_{i}+\epsilon}} \frac{\partial L}{\partial w_{i-1}}
\end{gathered}
$$

Combines ideas from above algorithms

Maintains both first and second moment statistics for gradients

$$
v_{i}=\beta_{1} v_{i-1}+\left(1-\beta_{1}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)
$$

$$
G_{i}=\beta_{2} G_{i-1}+\left(1-\beta_{2}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}
$$

$$
w_{i}=w_{i-1}-\frac{\alpha v_{i}}{\sqrt{G_{i}+\epsilon}}
$$

But unstable in the beginning (one or both of moments will be tiny values)

Solution: Time-varying bias correction

Typically $\boldsymbol{\beta}_{\mathbf{1}}=\mathbf{0 . 9}, \boldsymbol{\beta}_{\mathbf{2}}=\mathbf{0 . 9 9 9}$

So $\widehat{v_{i}}$ will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and $\widehat{\boldsymbol{G}}_{\boldsymbol{i}}$ larger)

$$
\begin{gathered}
v_{i}=\beta_{1} v_{i-1}+\left(1-\beta_{1}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right) \\
G_{i}=\beta_{2} G_{i-1}+\left(1-\beta_{2}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
\widehat{v}_{i}=\frac{v_{i}}{1-\beta_{1}^{t}} \quad \widehat{G_{i}}=\frac{G_{i}}{1-\beta_{2}^{t}} \\
w_{i}=w_{i-1}-\frac{\alpha \widehat{v}_{i}}{\sqrt{\widehat{G}_{i}+\epsilon}}
\end{gathered}
$$

Optimizers behave differently depending on landscape

Different behaviors such as overshooting, stagnating, etc.

Plain SGD+Momentum can generalize better than adaptive methods, but requires more tuning

- See: Luo et al., Adaptive Gradient Methods with Dynamic Bound of Learning Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/\#/

First order optimization methods have learning rates

Theoretical results rely on annealed learning rate

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler

From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Learning Rate Schedules

Regularization

Many standard regularization methods still apply!

$$
\begin{gathered}
\text { L1 Regularization } \\
L=\left|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right|^{2}+\lambda|\boldsymbol{W}| \\
\text { where }|\boldsymbol{W}| \text { is element-wise }
\end{gathered}
$$

Example regularizations:

- L1/L2 on weights (encourage small values)
- L2: $L=\left|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right|^{2}+\lambda|\boldsymbol{W}|^{2}$ (weight decay)
- Elastic L1/L2: $\left|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right|^{2}+\boldsymbol{\alpha}|\boldsymbol{W}|^{2}+\boldsymbol{\beta}|\boldsymbol{W}|$

Problem: Network can learn to rely strong on a few features that work really well

- May cause overfitting if not representative of test data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Preventing Co-Adapted Features

An idea: For each node, keep its output with probability p

- Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration
From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

- In practice, implement with a mask calculated each iteration

During testing, no nodes are dropped

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

- During training, each node has an expected $\boldsymbol{p} *$ fan_in nodes
- During test all nodes are activated
- Principle: Always try to have similar train and test-time input/output distributions!

Solution: During test time, scale outputs (or equivalently weights) by \boldsymbol{p}

- i.e. $\boldsymbol{W}_{\text {test }}=\boldsymbol{p W}$
- Alternative: Scale by $\frac{1}{p}$ at train time

$$
\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31} \\
a_{41}
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Interpretation 1: The model should not rely too heavily on particular features

- If it does, it has probability $\mathbf{1 - p}$ of losing that feature in an iteration

Interpretation 1: The model should not rely too heavily on particular features

- If it does, it has probability $\mathbf{1 - p}$ of losing that feature in an iteration

Interpretation 2: Training 2^{n}
 networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data

Convolution \& Pooling

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Each node only receives input from $\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}$ window (image patch)

- Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to ($\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{2}+$ 1) $* N$ where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Nodes in different locations can share features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $\left(\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+\mathbf{1}\right)$
- Explicitly maintain spatial information

We can learn many such features for this one layer

- Weights are not shared across different feature extractors
- Parameters: $\left(K_{1} \times K_{2}+\right.$ 1) $* \boldsymbol{M}$ where \boldsymbol{M} is number of features we want to learn

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.
Convolution is similar to cross-correlation.
It has applications that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

From https://en.wikipedia.org/wiki/Convolution

Notation: $\quad \boldsymbol{F} \otimes(\boldsymbol{G} \otimes I)=(\boldsymbol{F} \otimes \boldsymbol{G}) \otimes \boldsymbol{I}$

1D
Convolution $\quad y_{k}=\sum_{n=0} h_{n} \cdot x_{k-n}$

2D
Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

2D
Convolution

Output / filter / feature map

1. Flip kernel (rotate 180 degrees)

2. Stride along image

As we have seen:

- Convolution: Start at end of kernel and move back
- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
\begin{aligned}
& K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
& \prod
\end{aligned}
$$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

Input \& Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) - Number of channels in the input image
- out_channels (int) - Number of channels produced by the convolution
- kernel_size (int or tuple) - Size of the convolving kernel
- stride (int or tuple, optional) - Stride of the convolution. Default: 1
- padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $\left(\boldsymbol{H}-\boldsymbol{k}_{1}+\mathbf{1}\right) \times\left(\boldsymbol{W}-\boldsymbol{k}_{2}+\mathbf{1}\right)$

- This is called a "valid" convolution and only applies kernel within image

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride can result in skipped pixels, e.g. stride of 3 for 5×5 input

W

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Image

Kernel

Multi-Channel Inputs

Feature Map

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product)

- Except with $\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}$ values

Image

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}+\mathbf{1}\right)$

- Example:
$k_{1}=3, k_{2}=3, N=4$ input channels $=3$, then $(3 * 3 * 3+1) * 4=112$

Image

Kernels

Feature Maps

Just as before, in practice we can vectorize this operation

- Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Vectorization

Just as before, in practice we can vectorize this operation

- Step 2: Multiple patches by kernels

Input Matrix

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

