Topics:

• Convolutional Neural Networks Architectures (cont.)
• Training Neural Networks (Part 1)
Administrative

• PS2/HW2 out: **Most difficult assignment. Start early!**
• Project proposal due Sep 27th
CNN Architectures

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....
- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet
- EfficientNet
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Lin et al
- Sanchez & Perronnin
- Krizhevsky et al (AlexNet)
- Zeiler & Fergus
- Simonyan & Zisserman (VGG)
- Szegedy et al (GoogLeNet)
- He et al (ResNet)
- Shao et al
- Hu et al (SENet)
- Russakovsky et al

Year

- 2010: 28.2
- 2011: 25.8
- 2012: 16.4
- 2013: 11.7
- 2014: 7.3
- 2014: 6.7
- 2015: 3.6
- 2016: 3
- 2017: 2.3
- Human: 5.1

Layers

- Shallow: 8 layers
- 19 layers
- 22 layers
- 152 layers
- 152 layers
- 152 layers
Comparing complexity...

Comparing complexity...

Inception-v4: Resnet + Inception!

Comparing complexity...

VGG: most parameters, most operations

Comparing complexity...

Comparing complexity...

AlexNet:
Smaller compute, still memory heavy, lower accuracy

Comparing complexity...

ResNet:
Moderate efficiency depending on model, highest accuracy

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Lin et al (2010, 28.2)
- Sanchez & Perronnin (2011, 25.8)
- Krizhevsky et al (AlexNet, 2012, 16.4)
- Zeiler & Fergus (2013, 11.7)
- Simonyan & Zisserman (VGG, 2014, 7.3)
- Szegedy et al (GoogLeNet, 2014, 6.7)
- He et al (ResNet, 2015, 3.6)
- Shao et al (2016, 3)
- Hu et al (SENet, 2017, 2.3)
- Russakovsky et al (Human, 5.1)

Network ensembling

- 152 layers (2015, 3.6)
- 152 layers (2016, 3)
- 152 layers (2017, 2.3)
Improving ResNets...

“Good Practices for Deep Feature Fusion”
[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, Wide Resnet models
- ILSVRC’16 classification winner

<table>
<thead>
<tr>
<th></th>
<th>Inception-v3</th>
<th>Inception-v4</th>
<th>Inception-Resnet-v2</th>
<th>Resnet-200</th>
<th>Wrn-68-3</th>
<th>Fusion (Val.)</th>
<th>Fusion (Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Err. (%)</td>
<td>4.20</td>
<td>4.01</td>
<td>3.52</td>
<td>4.26</td>
<td>4.65</td>
<td>2.92 (-0.6)</td>
<td>2.99</td>
</tr>
</tbody>
</table>
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Lin et al
- Sanchez & Perronnin
- Krizhevsky et al (AlexNet)
- Zeiler & Fergus
- Simonyan & Zisserman (VGG)
- Szegedy et al (GoogLeNet)
- He et al (ResNet)
- Russakovsky et al
- Hu et al (SENet)

Adaptive feature map reweighting

- 8 layers
- 8 layers
- 19 layers
- 22 layers
- 152 layers
- 152 layers
- 152 layers
- 152 layers

shallow
Improving ResNets...

Squeeze-and-Excitation Networks (SENet)
[Hu et al. 2017]

- Add a “feature recalibration” module that learns to adaptively reweight feature maps
- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC’17 classification winner (using ResNeXt-152 as a base architecture)
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- **2010**: Lin et al., shallow, 8 layers
- **2011**: Sanchez & Perronnin, 16.4
- **2012**: Krizhevsky et al. (AlexNet), 11.7
- **2013**: Zeiler & Fergus, 7.3
- **2014**: Simonyan & Zisserman (VGG), 6.7
- **2014**: Szegedy et al. (GoogLeNet), 3.6
- **2015**: He et al. (ResNet), 3
- **2016**: Shao et al., 2.3
- **2017**: Hu et al. (SENet), 5.1
- **2018**: Russakovsky et al., 152 layers
- **2019**: 152 layers
- **2020**: 152 layers
- **2021**: 152 layers
- **Human**: 5.1
Completion of the challenge: Annual ImageNet competition no longer held after 2017 -> now moved to Kaggle.
But research into CNN architectures is still flourishing
Improving ResNets...

Identity Mappings in Deep Residual Networks
[He et al. 2016]

- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network
- Gives better performance
Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)
Improving ResNets...
Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

- Also from creators of ResNet
- Increases width of residual block through multiple parallel pathways (“cardinality”)
- Parallel pathways similar in spirit to Inception module
Other ideas...

Densely Connected Convolutional Networks (DenseNet)

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Showed that shallow 50-layer network can outperform deeper 152 layer ResNet
Learning to search for network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- “Controller” network that learns to design a good network architecture (output a string corresponding to network design)
- Iterate:
 1) Sample an architecture from search space
 2) Train the architecture to get a “reward” R corresponding to accuracy
 3) Compute gradient of sample probability, and scale by R to perform controller parameter update (i.e. increase likelihood of good architecture being sampled, decrease likelihood of bad architecture)
Learning to search for network architectures...

Learning Transferable Architectures for Scalable Image Recognition

[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a large dataset like ImageNet is expensive
- Design a search space of building blocks (“cells”) that can be flexibly stacked
- NASNet: Use NAS to find best cell structure on smaller CIFAR-10 dataset, then transfer architecture to ImageNet
- Many follow-up works in this space e.g. AmoebaNet (Real et al. 2019) and ENAS (Pham, Guan et al. 2018)
But sometimes smart heuristic is better than NAS ...

EfficientNet: Smart Compound Scaling

[Tan and Le. 2019]

- Increase network capacity by scaling width, depth, and resolution, while balancing accuracy and efficiency.
- Search for optimal set of compound scaling factors given a compute budget (target memory & flops).
- Scale up using smart heuristic rules

\[
\text{depth: } d = \alpha^\phi \\
\text{width: } w = \beta^\phi \\
\text{resolution: } r = \gamma^\phi \\
\text{s.t. } \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 \\
\alpha \geq 1, \beta \geq 1, \gamma \geq 1
\]
Efficient networks...

https://openai.com/blog/ai-and-efficiency/
Today’s Lecture

Transformer

https://paperswithcode.com/sota/image-classification-on-imagenet
What we have learned so far …

Deep Neural Networks:
• What they are (composite parametric, non-linear functions)
• Where they come from (biological inspiration, brief history of ANN)
• How they are optimized, in principle (analytical gradient via computational graphs, backpropagation)
• What they look like in practice (Deep ConvNets for vision)
Next few lectures:

Training Deep Neural Networks
- Details of the non-linear activation functions
- Data normalization
- Weight Initialization
- Batch Normalization
- Regularization
- Advanced Optimization
- Data Augmentation
- Transfer learning
- Hyperparameter Tuning
- Model Ensemble
Today: Training Deep NNs (Part 1)

- Details of the non-linear activation functions
- Data normalization
- Weight Initialization
Activation Functions
Activation Functions

Sigmoid
\[\sigma(x) = \frac{1}{1+e^{-x}} \]

tanh
\[\tanh(x) \]

ReLU
\[\text{max}(0, x) \]

Leaky ReLU
\[\text{max}(0.1x, x) \]

Maxout
\[\text{max}(w_1^T x + b_1, w_2^T x + b_2) \]

ELU
\[\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
\end{cases} \]
Activation Functions

- Sigmoid
 - Squashes numbers to range $[0,1]$
 - Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]
Activation Functions

Sigmoid

Formula: \[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
The image illustrates the sigmoid gate with the following equation:

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

The derivative of the loss function with respect to the input is given by:

\[\frac{\partial L}{\partial x} = \frac{\partial \sigma}{\partial x} \cdot \frac{\partial L}{\partial \sigma} \]

And the derivative of the sigmoid function with respect to the input is:

\[\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x)) \]
What happens when x = -10?

\[
\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)
\]
What happens when $x = -10$?

$$\sigma(x) = \sim 0$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x)) = 0(1 - 0) = 0$$
What happens when $x = -10$?
What happens when $x = 10$?

\[\sigma(x) = \sim 1 \]
\[\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x)) = 1(1 - 1) = 0 \]
What happens when $x = -10$?

What happens when $x = 10$?

Non-zero but small: still problematic, causes vanishing gradient
Why is this a problem?
If all the gradients flowing back will be zero and weights will never change
Activation Functions

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Consider what happens when the input to a neuron is always positive...

\[
f \left(\sum_i w_i x_i + b \right)
\]

What can we say about the gradients on \(w \)?

\[
\frac{\partial L}{\partial w} = \sigma \left(\sum_i w_i x_i + b \right) \left(1 - \sigma \left(\sum_i w_i x_i + b \right) \right) x \times \text{upstream_gradient}
\]
Consider what happens when the input to a neuron is always positive...

$$f \left(\sum_i w_i x_i + b \right)$$

What can we say about the gradients on \(w \)?

We know that local gradient of sigmoid is always positive

$$\frac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b)) x \times \text{upstream_gradient}$$
Consider what happens when the input to a neuron is always positive...

$$f \left(\sum_i w_i x_i + b \right)$$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive.
We are assuming x is always positive.
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?

We know that local gradient of sigmoid is always positive

We are assuming \(x \) is always positive

So!! Sign of gradient for all \(w_i \) is the same as the sign of upstream scalar gradient!

(local gradient cannot change the sign of global gradient)

\[
\frac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x \times \text{upstream_gradient}
\]
Consider what happens when the input to a neuron is always positive...

$$f \left(\sum_i w_i x_i + b \right)$$

What can we say about the gradients on w?
Always all positive or all negative :(
Consider what happens when the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(Minibatches help to average out the gradient, but still not great)
Activation Functions

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. \(\exp()\) is a bit compute expensive

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]
Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

Worst problem in practice: Saturated neurons “kill” the gradients / vanishing gradient
Activation Functions

- Squashes numbers to range $[-1, 1]$
- zero centered (nice)
- still kills gradients when saturated :

$tanh(x)$

[LeCun et al., 1991]
Activation Functions

- Computes \(f(x) = \max(0,x) \)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
Activation Functions

ReLU
(Rectified Linear Unit)

- Computes $f(x) = \max(0,x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
Activation Functions

- Computes $f(x) = \max(0, x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

 hint: what is the gradient when $x < 0$?

ReLU
(Rectified Linear Unit)
Activation Functions

ReLU
(Rectified Linear Unit)

- Computes $f(x) = \max(0, x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when $x < 0$? Always 0, A.K.A. “dead ReLU”
Activation Functions

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

\[f(x) = \max(0.01x, x) \]
Activation Functions

Leaky ReLU

\[f(x) = \max(0.01x, x) \]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

\[f(x) = \max(\alpha x, x) \]

backprop into \(\alpha \) (parameter)

[Mass et al., 2013]
[He et al., 2015]
Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Negative saturation encodes presence of features (all goes to \(\alpha\), not magnitude
- Same in backprop
- Compared with Leaky ReLU: more robust to noise

\[
f(x) = \begin{cases}
 x & \text{if } x > 0 \\
 \alpha (\exp(x) - 1) & \text{if } x \leq 0
\end{cases}
\]

(Alpha default = 1)
Activation Functions

Scaled Exponential Linear Units (SELU)

- Scaled version of ELU that works better for deep networks
- "Self-normalizing" property

\[f(x) = \begin{cases}
\lambda x & \text{if } x > 0 \\
\lambda \alpha (e^x - 1) & \text{otherwise}
\end{cases} \]

[Klambauer et al. ICLR 2017]
Activation Functions

Scaled Exponential Linear Units (SELU)

- Scaled version of ELU that works better for deep networks
- “Self-normalizing” property;
- Can train deep SELU networks without BatchNorm
 - (will discuss more later)

\[f(x) = \begin{cases} \lambda x & \text{if } x > 0 \\ \lambda \alpha (e^x - 1) & \text{otherwise} \end{cases} \]

\[
\alpha = 1.6732632423543772848170429916717 \\
\lambda = 1.0507009873554804934193349852946
\]

Derivation takes 91 pages of math in appendix...

(Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017)
TLDR: In practice:

- Many possible choices beyond what we’ve talked here, but …
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU
 - To squeeze out some marginal gains
- Don’t use sigmoid or tanh
Data Preprocessing
Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)
Remember: Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?

Always all positive or all negative :((this is also why you want zero-mean data!)
Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)
Data Preprocessing

In practice, you could also **PCA** and **Whitening** of the data

original data
(data has diagonal covariance matrix)

decorrelated data
(covariance matrix is the identity matrix)

whitened data
Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize
TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the per-pixel mean (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers,

- Subtract per-channel mean and
 Divide by per-channel std (e.g. ResNet)
 (mean along each channel = 3 numbers)
Weight Initialization
Q: what happens when \(W = \) same initial value is used?
Q: what happens when $W=$same initial value is used?
A: All output will be the same! $w_1^T x = w_2^T x$ if $w_1 = w_2$
Q: what happens when W=same initial value is used?
A: All output will be the same! $w_1^T x = w_2^T x$ if $w_1 = w_2$

Want to maintain variance through the layers.

![Diagram of a neural network with input, hidden, and output layers](image)
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(\text{Din, Dout}) \]
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(\text{Din}, \text{Dout}) \]

Works ~okay for small networks, but problems with deeper networks.
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Forward pass for a 6-layer net with hidden size 4096
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

What will happen to the activations for the last layer?
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Forward pass for a 6-layer net with hidden size 4096
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

Hint: \[
\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)
\]
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Forward pass for a 6-layer net with hidden size 4096
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

A: All zero, no learning =(

![Activation histograms for different layers](image_url)
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Increase std of initial weights from 0.01 to 0.05
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

Initialize with higher values
What will happen to the activations for the last layer?
Weight Initialization: Activation statistics

```
dims = [4096] * 7  # Increase std of initial weights from 0.01 to 0.05
hs = []

x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations saturate

Q: What do the gradients look like?
Weight Initialization: Activation statistics

```python
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations saturate

Q: What do the gradients look like?

A: Local gradients all zero, no learning =((
Weight Initialization: Activation statistics

```
dims = [4096] * 7  # Increase std of initial weights from 0.01 to 0.05
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
x = np.tanh(x.dot(W))
hs.append(x)
```

All activations saturate

Q: What do the gradients look like?

More generally, gradient explosion.
Weight Initialization: “Xavier” Initialization

```python
dims = [4096] * 7
hs = []
std = 1/sqrt(Din)
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
x = np.tanh(x.dot(W))
hs.append(x)
```

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
x = np.tanh(x.dot(W))
hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  # “Xavier” initialization: std = 1/sqrt(Din)
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is `filter_size^2 * input_channels`

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  # "Xavier" initialization: std = 1/sqrt(Din)
hs = []            
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is $\text{filter_size}^2 \times \text{input_channels}$

Let: $y = x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din}$

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7
hs = []

std = 1/sqrt(Din)
x = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is filter_size^2 * input_channels

Let: \(y = x_1w_1 + x_2w_2 + \ldots + x_{Din}w_{Din} \)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = \ldots = \text{Var}(x_{Din}) \)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

Let: \(y = x_1w_1 + x_2w_2 + \ldots + x_{Din}w_{Din} \)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = \ldots = \text{Var}(x_{Din}) \)

We want: \(\text{Var}(y) = \text{Var}(x_i) \)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  
hs = []  
x = np.random.randn(16, dims[0])  
for Din, Dout in zip(dims[:-1], dims[1:]):  
    W = np.random.randn(Din, Dout) / np.sqrt(Din)  
    x = np.tanh(x.dot(W))  
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is \(\text{filter}_\text{size}^2 \times \text{input_channels}\)

Let: \(y = x_1w_1 + x_2w_2 + \ldots + x_{\text{Din}}w_{\text{Din}}\)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = \ldots = \text{Var}(x_{\text{Din}})\)

We want: \(\text{Var}(y) = \text{Var}(x_i)\)

\[
\text{Var}(y) = \text{Var}(x_1w_1 + x_2w_2 + \ldots + x_{\text{Din}}w_{\text{Din}}) \\
\text{[substituting value of y]}
\]

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  # "Xavier" initialization: std = 1/sqrt(Din)
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size^2 * input_channels

Let: \(y = x_1w_1 + x_2w_2 + \ldots + x_{Din}w_{Din} \)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = \ldots = \text{Var}(x_{Din}) \)

We want: \(\text{Var}(y) = \text{Var}(x_i) \)

\[
\text{Var}(y) = \text{Var}(x_1w_1 + x_2w_2 + \ldots + x_{Din}w_{Din}) \\
= \sum \text{Var}(x_iw_i) = \text{Din} \text{Var}(x_iw_i)
\]

[Assume all \(x_i, w_i \) are iid] \(\sigma_{x+y}^2 = \sigma_x^2 + \sigma_y^2 \)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

Let: \(y = x_1w_1 + x_2w_2 + \ldots + x_{Din}w_{Din} \)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = \ldots = \text{Var}(x_{Din}) \)

We want: \(\text{Var}(y) = \text{Var}(x_i) \)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

Xavier initialization:
\[
\text{std} = \frac{1}{\sqrt{\text{Din}}}
\]

Just right: Activations are nicely scaled for all layers!

For conv layers, Din is \(\text{filter}_\text{size}^2 \times \text{input_channels}\)

```
# Assume: Var(x1) = Var(x2) = ... = Var(xDin)

Let: \(y = x_1w_1 + x_2w_2 + ... + x_{\text{Din}}w_{\text{Din}}\)

Assume: \(\text{Var}(x_1) = \text{Var}(x_2) = ... = \text{Var}(x_{\text{Din}})\)

We want: \(\text{Var}(y) = \text{Var}(x_i)\)

So, \(\text{Var}(y) = \text{Var}(x_i)\) only when \(\text{Var}(w_i) = 1/\text{Din}\)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

```python
import numpy as np

dims = [4096] * 7
hs = []

x = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):
 W = np.random.randn(Din, Dout) / np.sqrt(Din)
 x = np.tanh(x.dot(W))
 hs.append(x)
```
Change from tanh to ReLU

dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.maximum(0, x.dot(W))
hs.append(x)
Weight Initialization: What about ReLU?

Xavier assumes zero centered activation function

Activations collapse to zero again, no learning =(

```python
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
 W = np.random.randn(Din, Dout) / np.sqrt(Din)
 x = np.maximum(0, x.dot(W))
 hs.append(x)
```
Weight Initialization: Kaiming / MSRA Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
 W = np.random.randn(Din, Dout) * np.sqrt(2/Din)
 x = np.maximum(0, x.dot(W))
hs.append(x)
```

Issue: Half of the activation get killed.
Solution: make the non-zero output variance twice as large as input

Proper initialization is an active area of research...

*Understanding the difficulty of training deep feedforward neural networks* by Glorot and Bengio, 2010

*Exact solutions to the nonlinear dynamics of learning in deep linear neural networks* by Saxe et al, 2013

*Random walk initialization for training very deep feedforward networks* by Sussillo and Abbott, 2014

*Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification* by He et al., 2015

*Data-dependent Initializations of Convolutional Neural Networks* by Krähenbühl et al., 2015

*All you need is a good init*, Mishkin and Matas, 2015

*Fixup Initialization: Residual Learning Without Normalization*, Zhang et al, 2019

*The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks*, Frankle and Carbin, 2019
Summary

Training Deep Neural Networks

- Details of the non-linear activation functions
  - Sigmoid, Tanh, ReLU, LeakyRELU, ELU, SELU
- Data normalization
  - Zero-centering, decorrelation, image normalization
- Weight Initialization
  - Constant init, random init, Xavier Init, Kaiming Init
Next time:

**Training** Deep Neural Networks
- Details of the non-linear activation functions
- Data normalization
- Weight Initialization
- Batch Normalization
- Advanced Optimization
- Regularization
- Data Augmentation
- Transfer learning
- Hyperparameter Tuning
- Model Ensemble