CS 4803-DL / 7643-A: LECTURE 22 DANFEI XU

Topics:

- Self-supervised Learning
 - Pretext task from image transformation
 - Contrastive learning

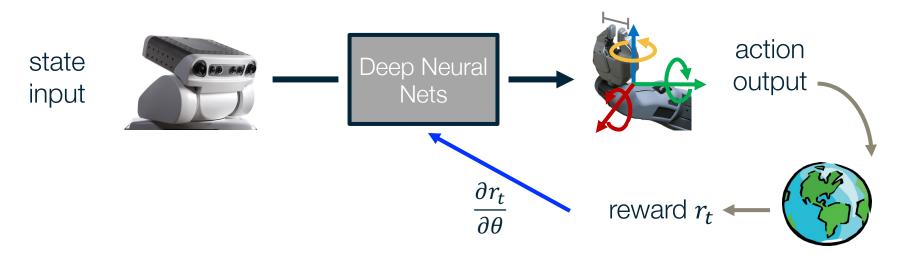
Administrative

Final project report due EOD Dec 4th, grace period EOD Dec 6th

Poster session Dec 6th 12:30-2pm

- Two sessions, 35min each. You'll get assigned at the event.
- Check out other posters if you are presenting at a different session.
- We will have hors d'oeuvre and dessert available.
- We will announce a **best project award** at the end of the poster session (1:45-2pm).
- The event is open to the GT community. Expect many attendees, so bring your best work. And tell your friends to come too!

Deep Learning for Decision Making

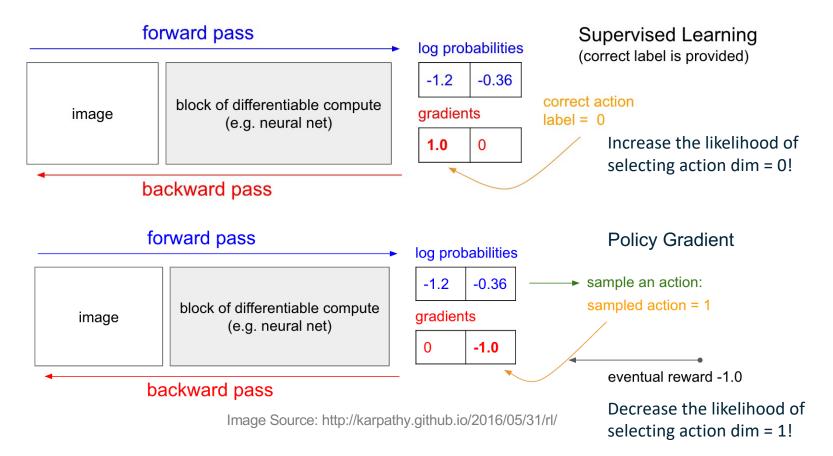


Problem: we don't know the correct action label to supervise the output!

All we know is the step-wise task reward

Can we directly backprop reward???

Policy Gradient: Just backprop from reward (sort of)!



Brief derivation of policy gradient (REINFORCE) $\pi_{\theta}(\tau) = p(s_0) \prod p_{\theta} \left(a_t \mid s_t \right) \cdot p\left(s_{t+1} \mid s_t, a_t \right)$ $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau)]$ $\nabla_{\theta} \left[\log p(s_0) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t | s_t) + \sum_{t=1}^{T} \frac{\log p(s_{t+1} | s_t, a_t)}{\log p(s_{t+1} | s_t, a_t)} \right]$ Doesn't depend on Transition probabilities! $= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \cdot \sum_{t=1}^{T} \mathcal{R}(s_t, a_t) \right]$ $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ \mathbf{S}_t \mathbf{a}_t

Can use continuous action space!

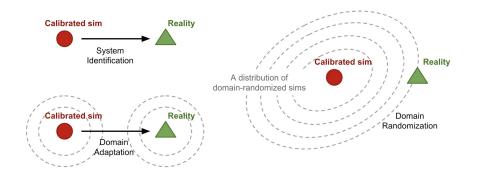
Policy Gradient Methods

- REINFORCE: $\nabla_{\theta} J(\pi_{\theta}) = E_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) R(s, a)]$
- Actor-critic (AC): $\nabla_{\theta} J(\pi_{\theta}) = E_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q(s,a)]$
- Advantage Actor-critic (A2C): $\nabla_{\theta} J(\pi_{\theta}) = E_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)A(s,a)]$

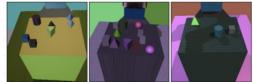
Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Idea: domain randomization



https://lilianweng.github.io/posts/2019-05-05-domain-randomization/



Recap: Reinforcement Learning

- It turns out we *can* directly backprop from reward (sort of)!
- Naïve policy gradient (REINFORCE) has high variance due to the use of episodic reward. Credit assignment is hard.
- Use Action Value Function (Q) instead!
 - Actor-Critic: learn Q value function jointly with policy
 - Advantage Actor-Critic: estimate advantage A using V value function
- Advanced policy gradient methods: TRPO, PPO
- Still pretty expensive to train! Mostly used in simulation.

Supervised Learning

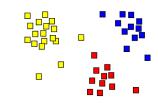
- Train Input: {X, Y}
- Learning output: $f: X \rightarrow Y, P(y|x)$
- e.g. classification

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, generative modeling

Reinforcement Learning

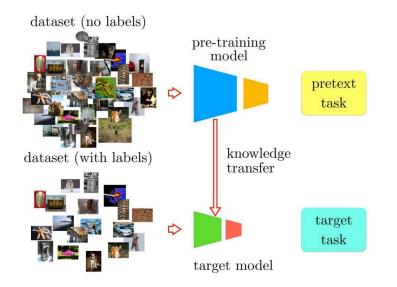
- Evaluative feedback in the form of reward
- No supervision on the right action



Self-supervised Learning

In short: still supervised learning, with two important distinctions:

- 1. Learn from labels generated *autonomously* instead of human annotations.
- 2. The goal is to learn *good representations* for *other target tasks*.



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

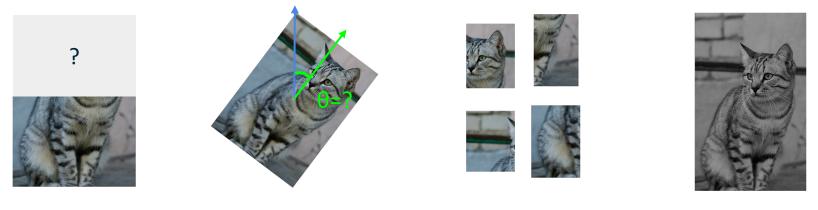


image completion

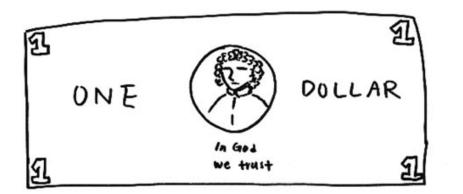
rotation prediction

"jigsaw puzzle"

colorization

- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

Generative vs. Self-supervised Learning



Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein, 2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

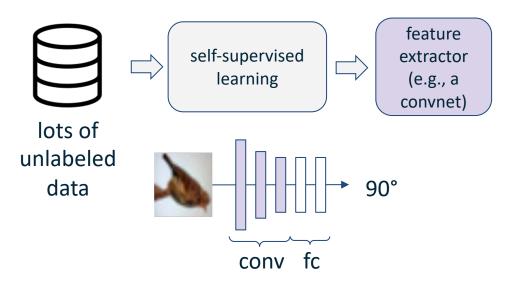
Source: Anand, 2020

How to evaluate a self-supervised learning method?

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

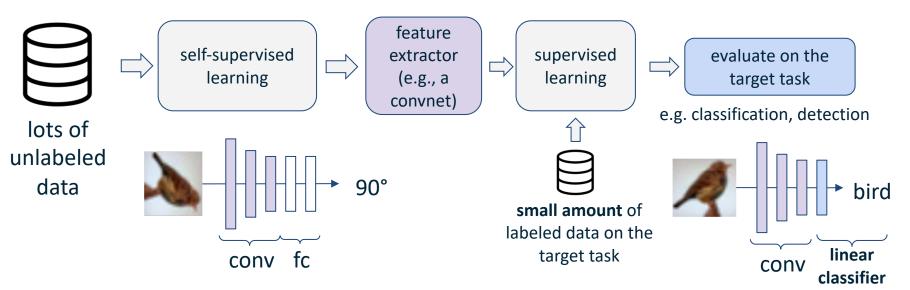
Evaluate the learned feature encoders on downstream *target tasks*

How to evaluate a self-supervised learning method?



1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

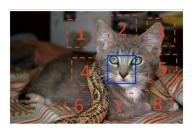
How to evaluate a self-supervised learning method?



1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

Broader picture Today's lecture

computer vision



Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

Language Models are Few-Shot Learners

	Tom B. Brow	vn"	Benjamin	Mann*	Nick F	Ryder* Mel	anie Subbiah*
J	lared Kaplan [†]	Prafulla	Dhariwal	Arvind Neela	kantan	Pranav Shyam	Girish Sastry
A	manda Askell	Sandhini	Agarwal	Ariel Herbert	Voss	Gretchen Krueger	Tom Henighan
	Rewon Child	Aditya	Ramesh	Daniel M. Zie	gler	Jeffrey Wu	Clemens Winter
	Christopher He	sse	Mark Chen	Eric Sig	er	Mateusz Litwin	Scott Gray
	Benjan	nin Chess		Jack Clark		Christopher	Berner
	Sam McCan	dlish	Alec Ra	dford	Ilya Su	itskever I	Dario Amodei

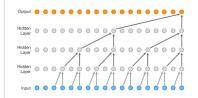
OpenAI

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art finetuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

speech synthesis



Wavenet (van den Oord et al., 2016)

. . .

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Pretext task: predict rotations

 90° rotation

 270° rotation

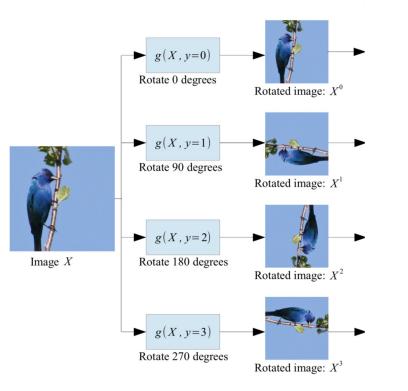
 180° rotation

 0° rotation

 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

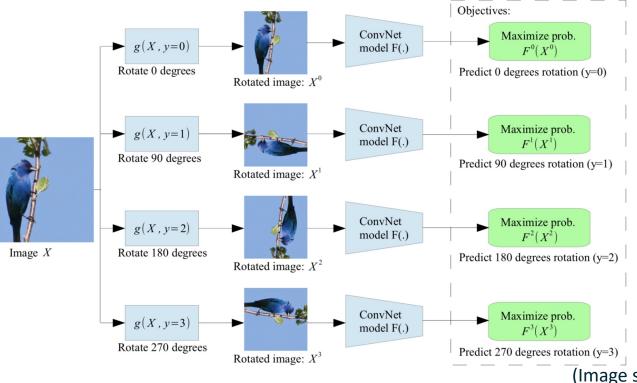
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

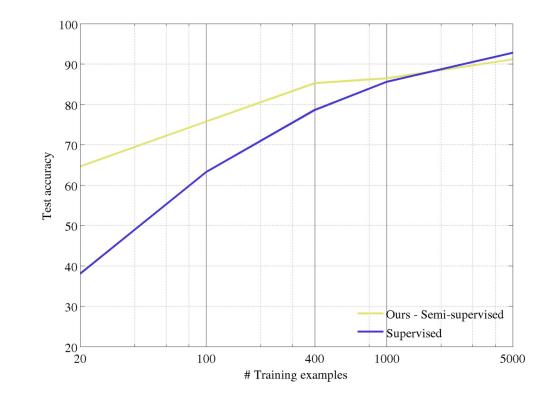
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Evaluation on semi-supervised learning



Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

Transfer learned features to supervised learning

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)	
Trained layers		all	all	all	
ImageNet labels	78.9	79.9	56.8	48.0	
Random		53.3	43.4	19.8	
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6	
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9		
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7	
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4		
Context (Doersch et al., 2015)	55.1	65.3	51.1		
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9	
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6	
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4		
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0	
ColorProxy (Larsson et al., 2017)		65.9		38.4	
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6	
(Ours) RotNet	70.87	72.97	54.4	39.1	

Pretrained with full
 ImageNet supervision
 No pretraining

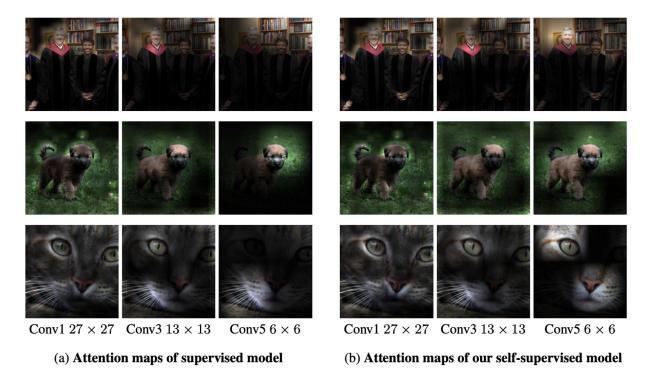
Self-supervised learning on ImageNet (entire training set) with AlexNet.

Finetune on labeled data from **Pascal VOC 2007**.

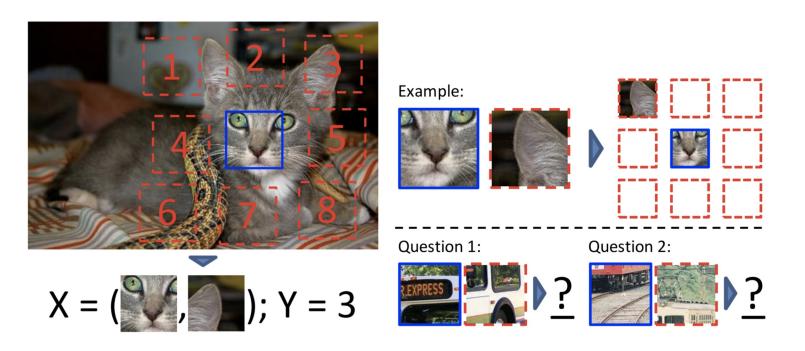
Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

Visualize learned visual attentions

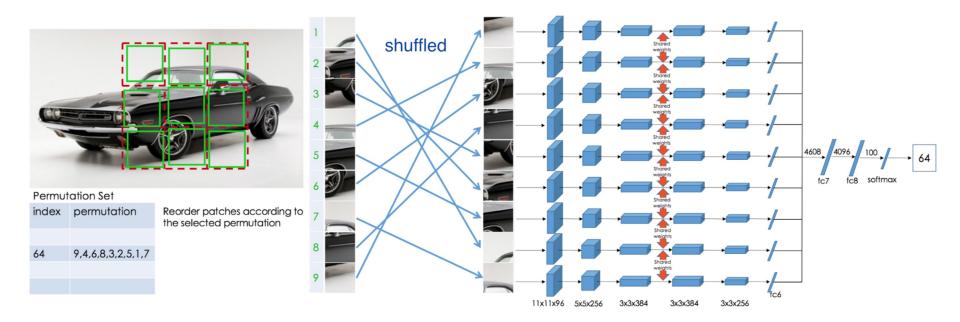


Pretext task: predict relative patch locations



(Image source: Doersch et al., 2015)

Pretext task: solving "jigsaw puzzles"



(Image source: Noroozi & Favaro, 2016)

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	$3 \mathrm{~days}$	1000 class labels	78.2%	$\mathbf{56.8\%}$	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch $et al.$ [10]	4 weeks	$\operatorname{context}$	55.3%	46.6%	-
Pathak et al. [30]	14 hours	$\operatorname{context}$	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{~days}$	$\operatorname{context}$	67.6%	$\mathbf{53.2\%}$	37.6%

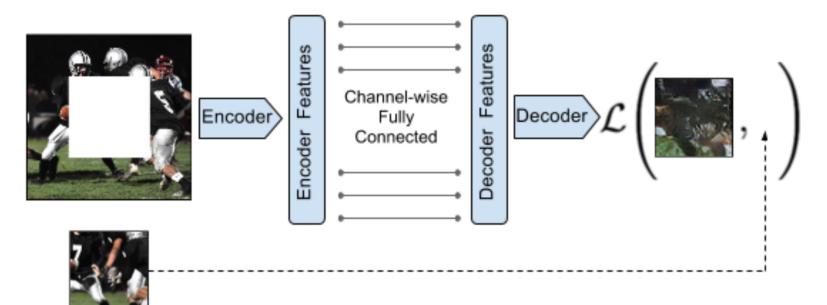
"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

Pretext task: predict missing pixels (inpainting)

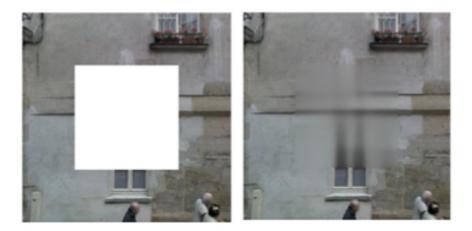
Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Learning to inpaint by reconstruction



Learning to reconstruct the missing pixels

Inpainting evaluation



Input (context)

reconstruction

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= ||M*(x-F_{ heta}((1-M)*x))||_2^2 \ L_{adv} &= \max_D \mathbb{E}[\log(D(x))] + \log(1-D(F(((1-M)*x)))] \end{aligned}$$

Adversarial loss between "real" images and inpainted images

Inpainting evaluation

Input (context)

reconstruction

adversarial

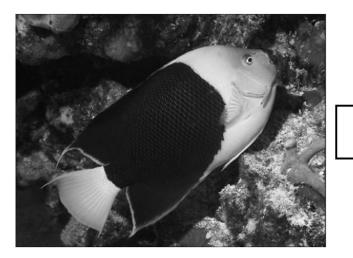
recon + adv

Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal et al. [1]	egomotion	10 hours	52.9%	41.8%	-
Wang <i>et al</i> . [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

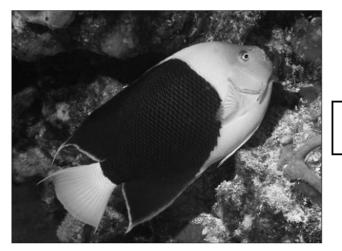
Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Pretext task: image coloring

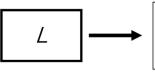


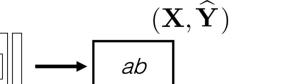
Grayscale image: L channelColor information: ab channels $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$ $\mathcal{L} \longrightarrow \square \mathcal{F} \square \mathcal{F} \square \mathcal{F}$ abSource: Richard Zhang / Phillip Isola

Pretext task: image coloring



Grayscale image: \mathcal{L} channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

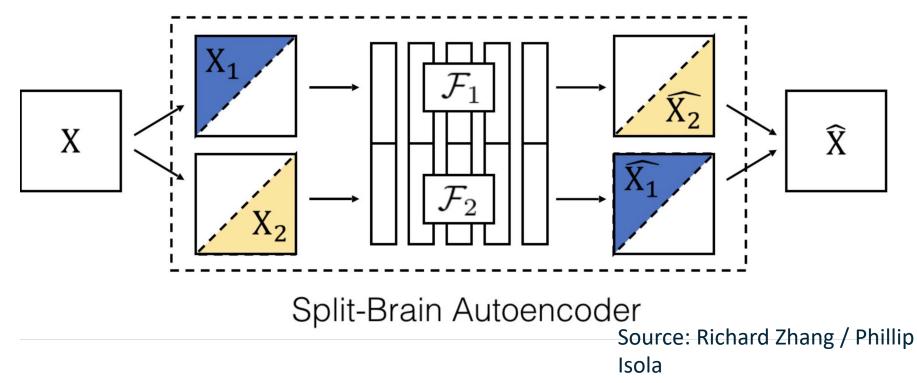




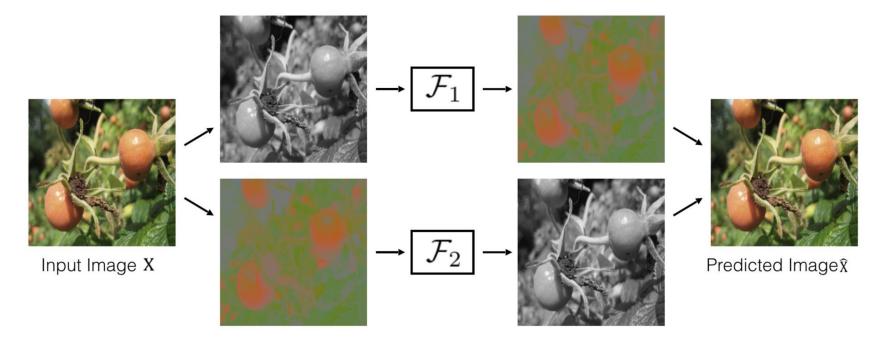
Source: Richard Zhang / Phillip Isola

Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions

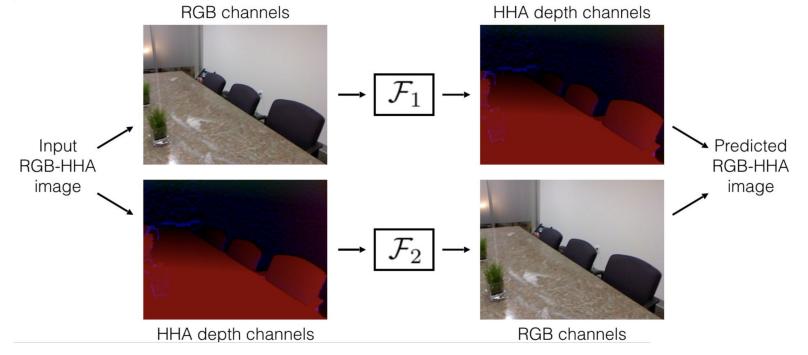


Learning features from colorization: Split-brain Autoencoder



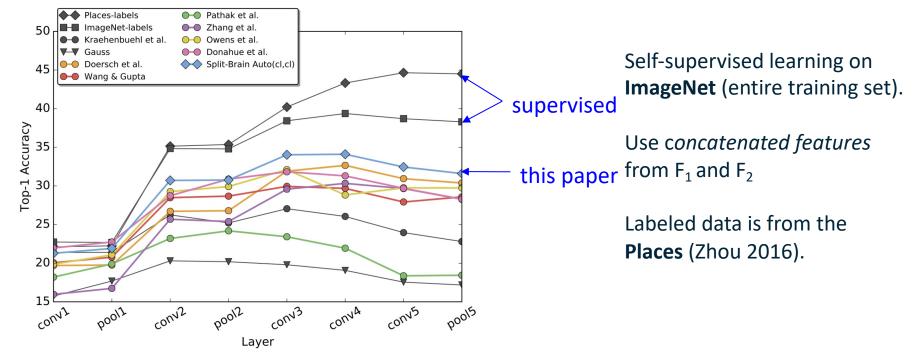
Source: Richard Zhang / Phillip Isola

Learning features from colorization: Split-brain Autoencoder



Source: Richard Zhang / Phillip Isola

Transfer learned features to supervised learning



Source: Zhang et al., 2017

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

Pretext task: image coloring

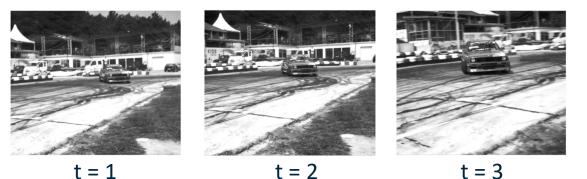
Source: Richard Zhang / Phillip Isola

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

t = 0



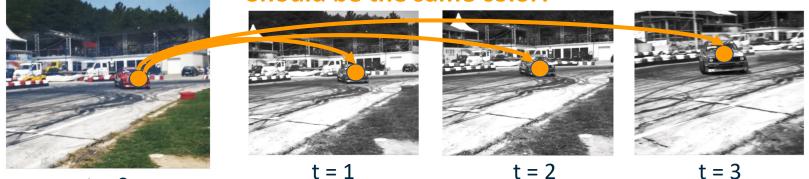
Source: Vondrick et al., 2018

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

how should I color these frames? Should be the same color!

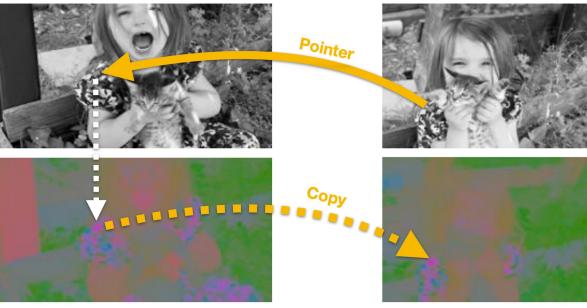


t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

Source: Vondrick et al., 2018

Reference Frame



Input Frame

Learning objective:

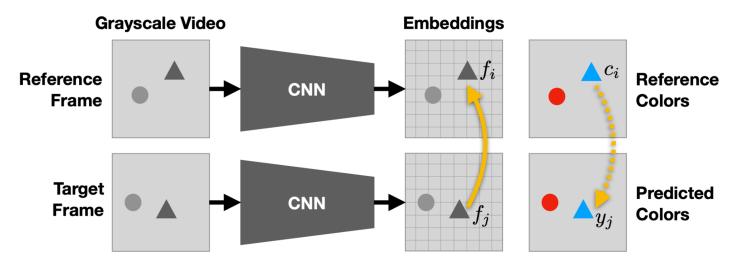
Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

Source: <u>Vondrick et al.,</u> <u>2018</u>

Reference Colors

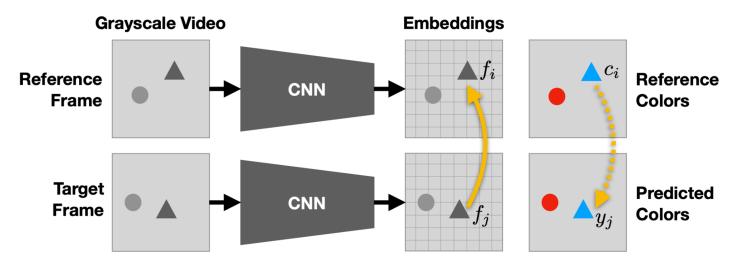
Target Colors



attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

Source: Vondrick et al., 2018



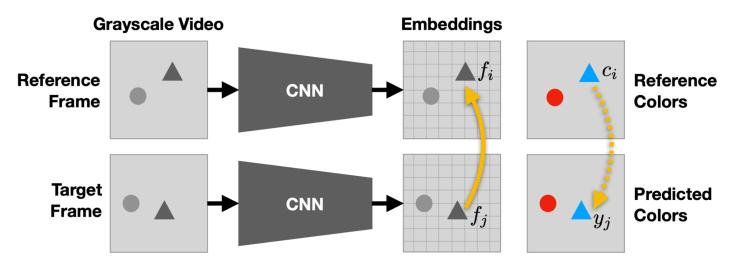
attention map on the reference frame

predicted color = weighted sum of the reference color

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

Source: Vondrick et al., 2018



attention map on the reference frame

predicted color = weighted sum of the reference color

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{\theta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}\right)$$
Source: Vondrick et al.,
2018

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google AI blog post

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: <u>Google AI blog</u> <u>post</u>

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Tracking emerges from colorization Propagate pose keypoints using learned attention

Source: Google AI blog post

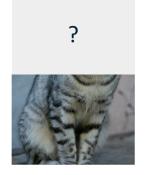
Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Pretext tasks from image transformations



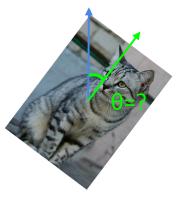


image completion

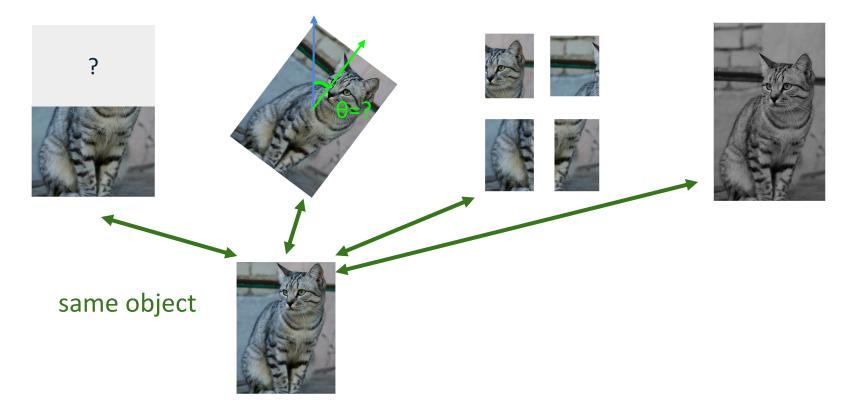
rotation prediction

"jigsaw puzzle"

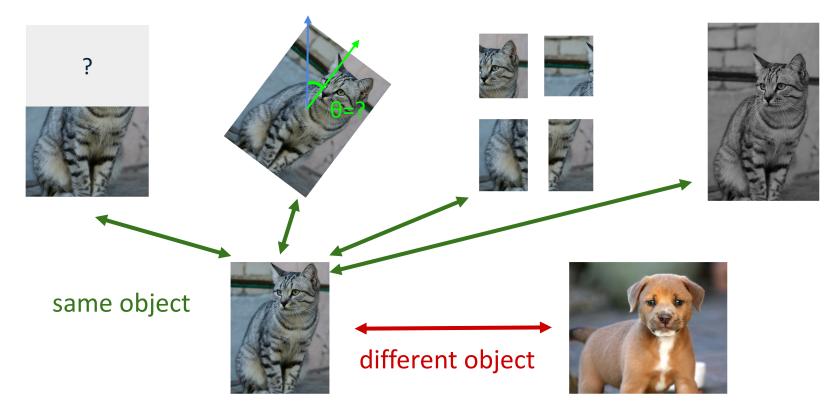
colorization

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

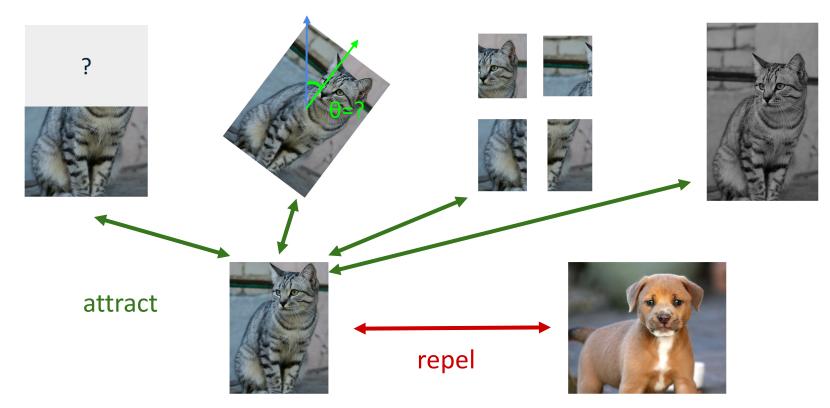
A more general pretext task?



A more general pretext task?



Contrastive Representation Learning



Today's Agenda

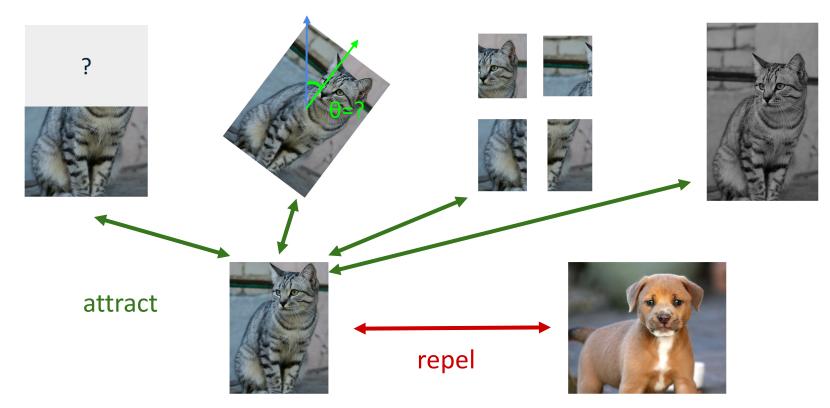
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

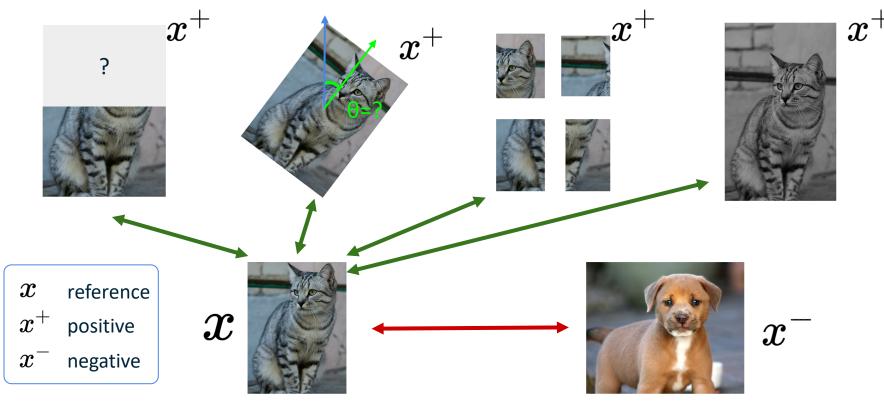
Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning



Contrastive Representation Learning



What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder function** f that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-). A formulation of contrastive learning Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
$$\underset{x \quad x^+}{\overset{x \quad x^+}{\overset{x^+}}} \qquad \overbrace{x}^{N-1} \underbrace{x^-_1}_{\overset{x^-}{\overset{x^-}}} \underbrace{x^-_2}_{\overset{x^-}{\overset{x^-}}} \underbrace{x^-_2} \underbrace{x^-_2}_{\overset{x^-}{\overset{x^-}}} \underbrace{x^-_2} \underbrace{x^-_2}_{\overset{x^-}{\overset{x^-}}} \underbrace{x^-_2} \underbrace{x$$

 x_3

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive score for the N-1 negative pair

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive score for the N-1 negative pair

This seems familiar ...

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

A formulation of contrastive learning Loss function given 1 positive sample and N - 1 negative samples: $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$ $MI[f(x), f(x^+)] - \log(N) \ge -L$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

SimCLR: A Simple Framework for Contrastive Learning

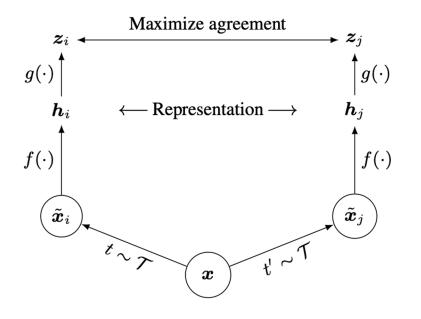
Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network *h(·)* to project features to a space where contrastive learning is applied

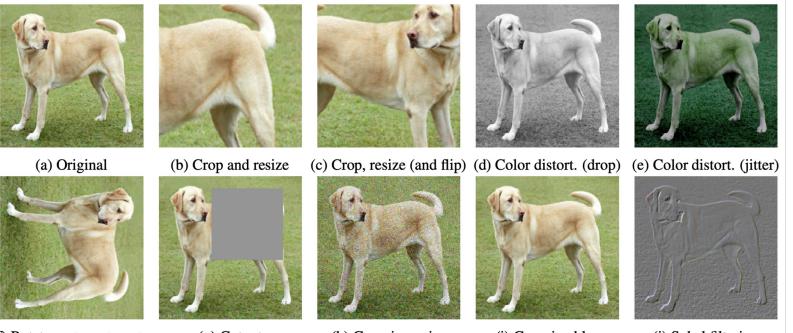
Generate positive samples through data augmentation:

• random cropping, random color distortion, and random blur.





SimCLR: generating positive samples from data augmentation



(f) Rotate $\{90^{\circ}, 180^{\circ}, 270^{\circ}\}$

(g) Cutout

(h) Gaussian noise

n noise (i) **C**

(i) Gaussian blur

(j) Sobel filtering Source: Chen et al.,

2020

SimCLR

Generate a positive pair by sampling data augmentation functions Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ # representation $h_{2k-1} = f(\tilde{x}_{2k-1})$ $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

Source: <u>Chen et al.</u>, 2020

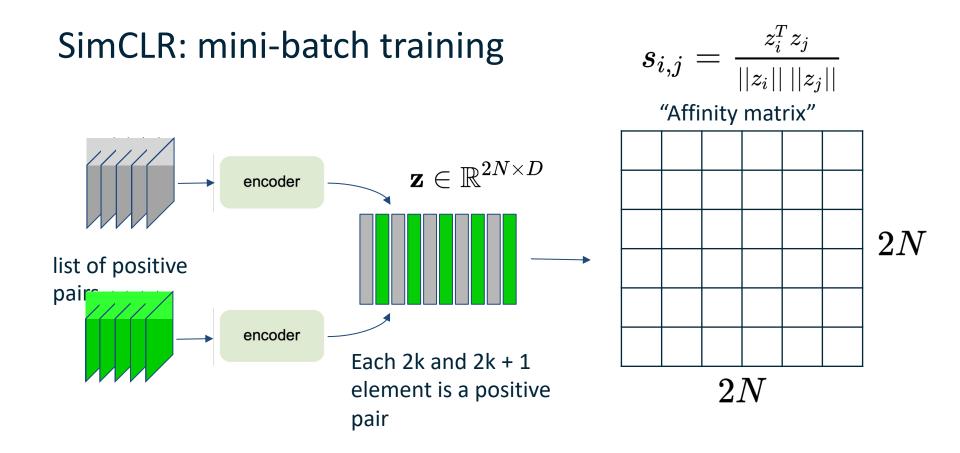
SimCLR

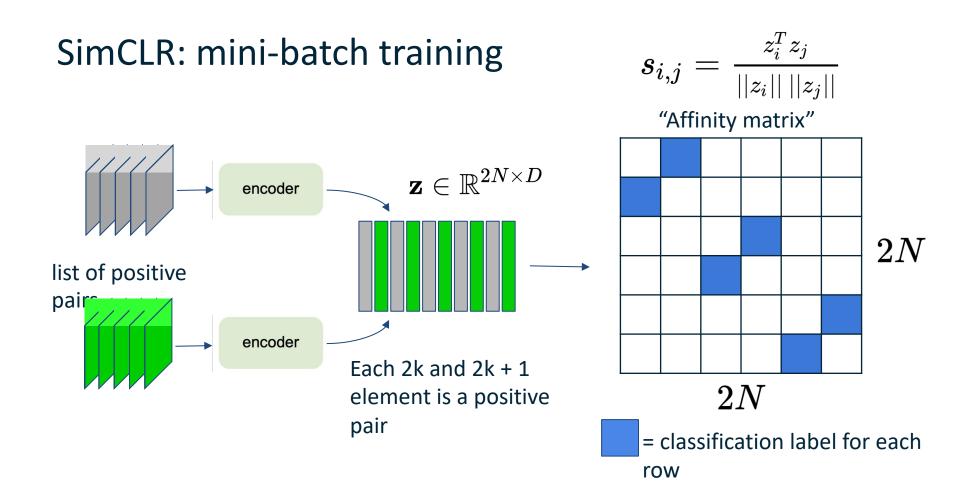
Generate a positive pair by sampling data augmentation functions Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ # representation $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the batch $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ as x⁻ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

Source: <u>Chen et al.</u>, 2020

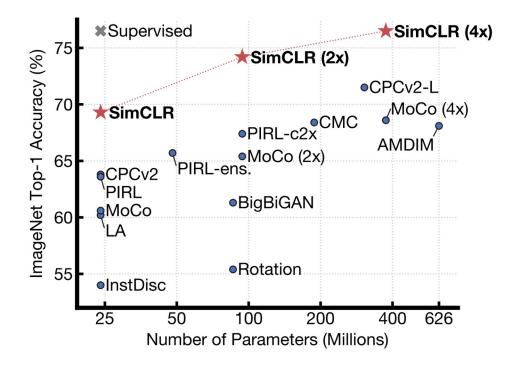
Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair # representation $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive Iterate through and use define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the batch each of the 2N sample as • $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ as x⁻ reference, compute update networks f and q to minimize \mathcal{L} average loss end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

Source: <u>Chen et al.</u>, 2020





Training linear classifier on SimCLR features



Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

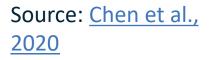
Semi-supervised learning on SimCLR features

Method	Architecture	1%	fraction 10%			
		Top 5				
Supervised baseline	ResNet-50	48.4	80.4			
Methods using other labe	l-propagation:					
Pseudo-label	ResNet-50	51.6	82.4			
VAT+Entropy Min.	ResNet-50	47.0	83.4			
UDA (w. RandAug)	ResNet-50	-	88.5			
FixMatch (w. RandAug)	ResNet-50	-	89.1			
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2			
Methods using representation learning only:						
InstDisc	ResNet-50	39.2	77.4			
BigBiGAN	RevNet-50 $(4 \times)$	55.2	78.8			
PIRL	ResNet-50	57.2	83.8			
CPC v2	ResNet-161(*)	77.9	91.2			
SimCLR (ours)	ResNet-50	75.5	87.8			
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2			
SimCLR (ours)	ResNet-50 (4 \times)	85.8	92.6			

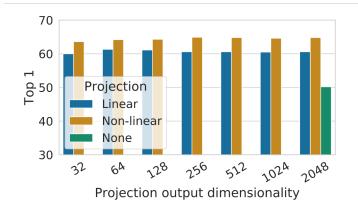
Table 7. ImageNet accuracy of models trained with few labels.

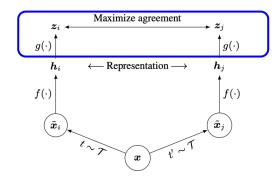
Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.



SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

Source: <u>Chen et al.</u>, 2020

SimCLR design choices: large batch size

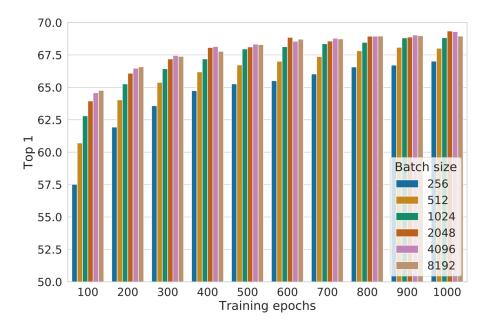
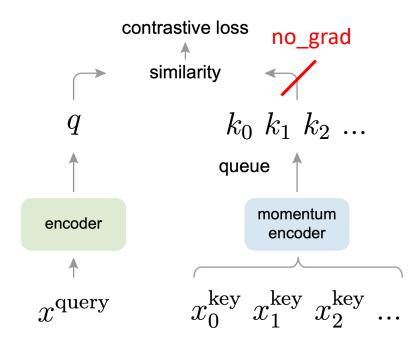


Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

Momentum Contrastive Learning (MoCo)

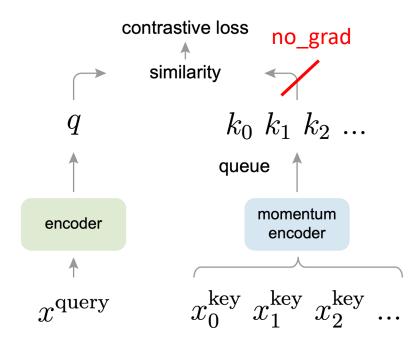


Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple mini-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

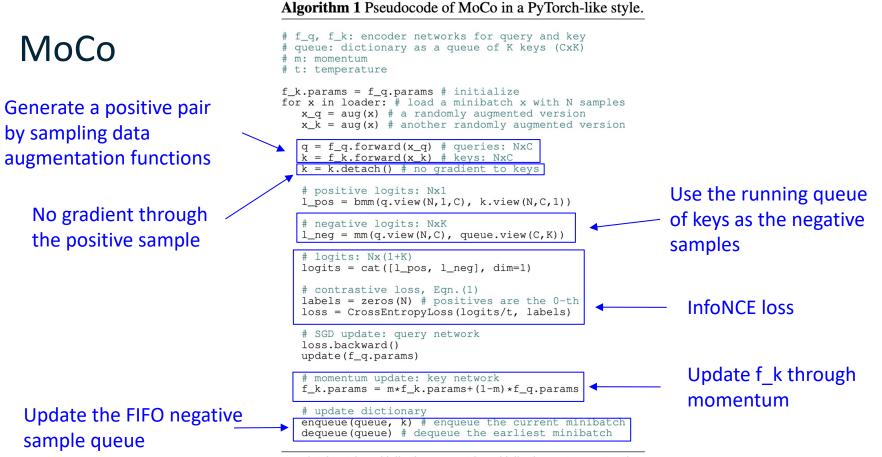
Momentum Contrastive Learning (MoCo)



Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules: $\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$

Source: He et al., 2020



bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Source: He et al., 2020

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	\checkmark	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "MLP": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train				ImageNet	
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longer unsupervised training follow:						
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** \times **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

Source: <u>Chen et al.</u>, 2020

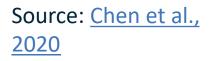
MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

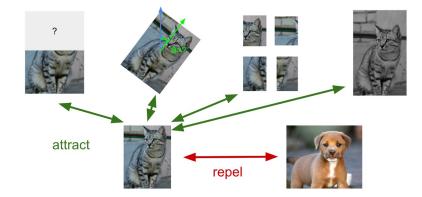
Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch. † : based on our estimation.

Key takeaways:

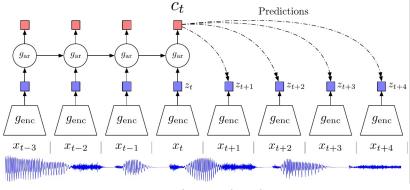
- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)



Instance vs. Sequence Contrastive Learning



Instance-level contrastive learning: contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo



Source: van den Oord et al., 2018

Sequence-level contrastive learning: contrastive learning based on sequential / temporal orders. Example: Contrastive Predictive Coding (CPC)

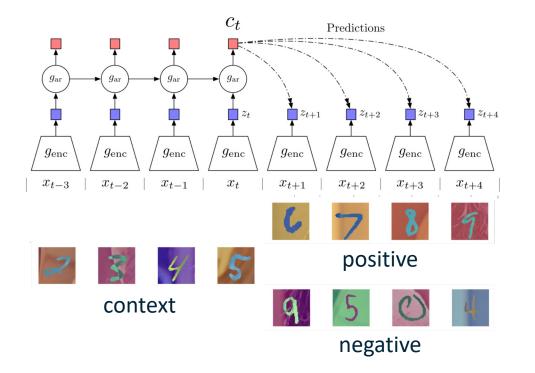


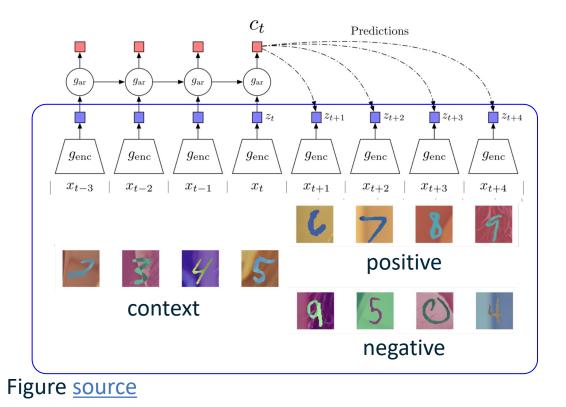
Figure source

Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Source: <u>van den Oord et al.,</u> <u>2018</u>,



1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: <u>van den Oord et al.,</u> <u>2018</u>,

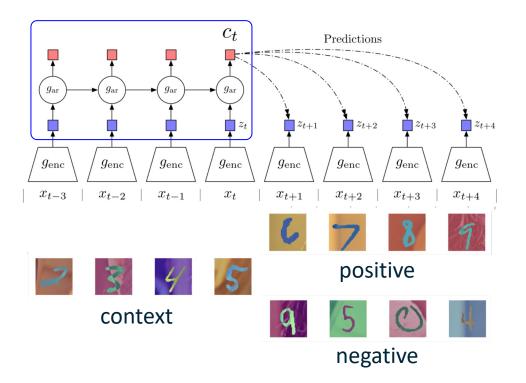


Figure source

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{qr}).

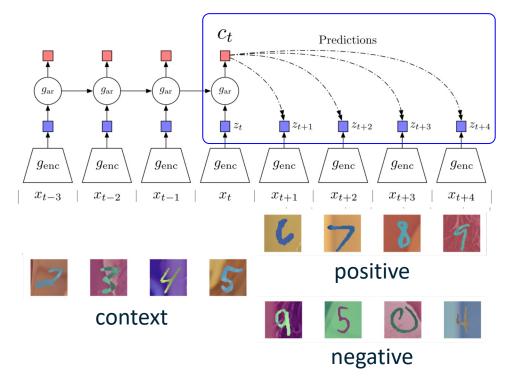


Figure source

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{qr}).

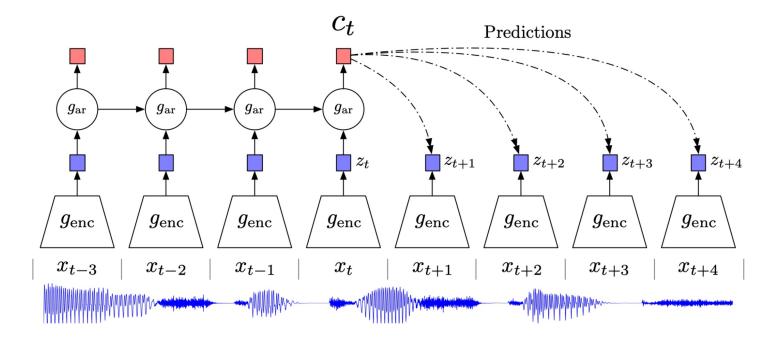
3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

, where W_k is a trainable matrix.

Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling audio sequences



Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling audio sequences

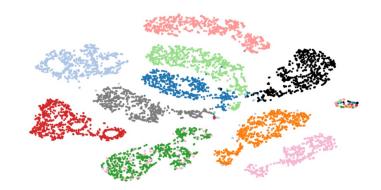


Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

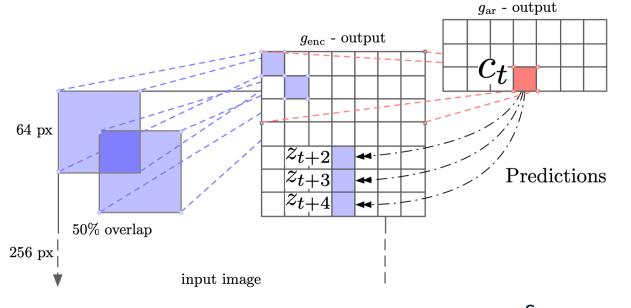
Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset) Source: van den Oord et al.,

<u>2018</u>,

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.



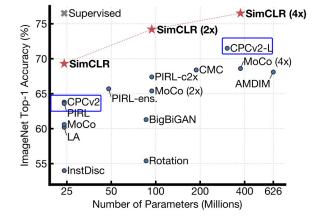
Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext taskbased self-supervised learning method.
- Doesn't do as well compared to newer instancebased contrastive learning methods on image feature learning.



Source: <u>van den Oord et al.,</u> 2018.

A general formulation for contrastive learning:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

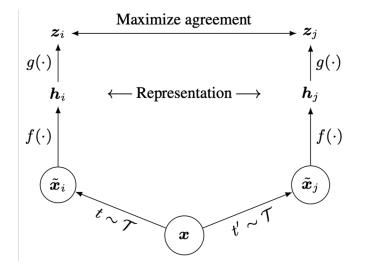
InfoNCE loss: N-way classification among positive and negative samples $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

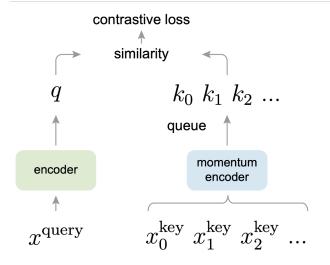
SimCLR: a simple framework for contrastive representation learning

- **Key ideas**: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint



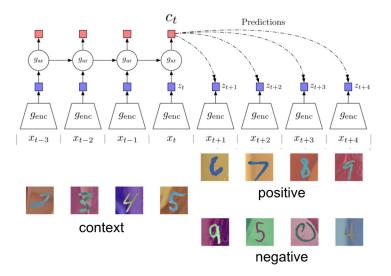
MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning



CPC: sequence-level contrastive learning

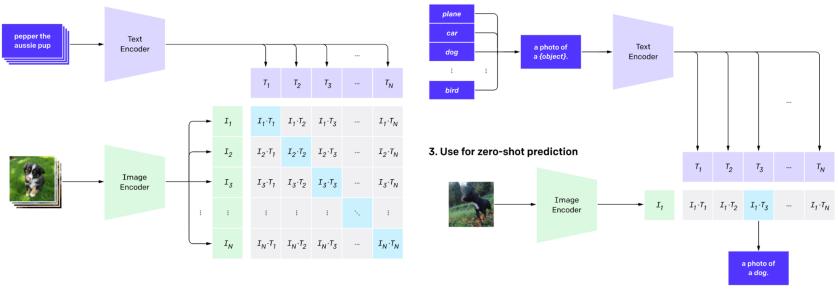
- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instancelevel methods.



Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training

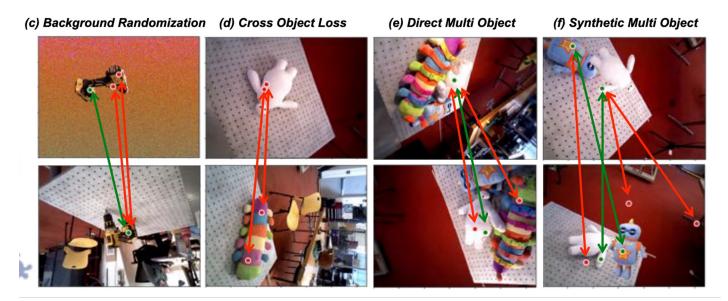


2. Create dataset classifier from label text

CLIP (Contrastive Language-Image Pre-training) Radford et al., 2021

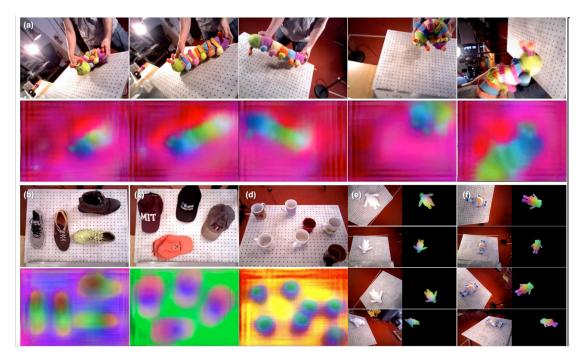
Other examples

Contrastive learning on pixel-wise feature descriptors



Dense Object Net, Florence et al., 2018

Other examples



Dense Object Net, Florence et al., 2018

Final Lecture: Robot Learning Overview and Deep Learning Frontiers