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CS 4803-DL / 7643-A: LECTURE 22
DANFEI XU

Topics:
• Self-supervised Learning

• Pretext task from image transformation
• Contrastive learning



Deep Learning for Decision Making

Administrative

Final project report due EOD Dec 4th, grace period EOD Dec 6th

Poster session Dec 6th 12:30-2pm
• Two sessions, 35min each. You’ll get assigned at the event.
• Check out other posters if you are presenting at a different session.
• We will have hors d'oeuvre and dessert available.
• We will announce a best project award at the end of the poster session (1:45-2pm).
• The event is open to the GT community. Expect many attendees, so bring your best 

work. And tell your friends to come too!



Deep Learning for Decision Making

Deep Neural 
Nets

state 
input

action 
output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟!

All we know is the step-wise task reward

Can we directly backprop reward???

𝜕𝑟!
𝜕𝜃



Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient

Policy Gradient: Just backprop from reward (sort of)!

Increase the likelihood of 
selecting action dim = 0!

Decrease the likelihood of 
selecting action dim = 1!



Deriving The Policy Gradient
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Doesn’t depend on 
Transition probabilities!

Can use continuous action space!

Brief derivation of policy gradient (REINFORCE)



Policy Gradient Methods

• REINFORCE: ∇"𝐽 𝜋" = Ε#∼%![∇"log 𝜋" 𝑎 𝑠 𝑅 𝑠, 𝑎 ]

• Actor-critic (AC): ∇"𝐽 𝜋" = Ε#∼%![∇"log 𝜋" 𝑎 𝑠 𝑄 𝑠, 𝑎 ]

• Advantage Actor-critic (A2C): ∇"𝐽 𝜋" = Ε#∼%![∇"log 𝜋" 𝑎 𝑠 𝐴 𝑠, 𝑎 ]



Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world! 

Idea: domain randomization

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/



Recap: Reinforcement Learning

• It turns out we can directly backprop from reward (sort of)!
• Naïve policy gradient (REINFORCE) has high variance due to the use of 

episodic reward. Credit assignment is hard.
• Use Action Value Function (Q) instead!
– Actor-Critic: learn Q value function jointly with policy
– Advantage Actor-Critic: estimate advantage A using V value function

• Advanced policy gradient methods: TRPO, PPO
• Still pretty expensive to train! Mostly used in simulation.



Reinforcement 
Learning

⬣ Evaluative 
feedback in the 
form of reward

⬣ No supervision on 
the right action

Unsupervised 
Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 
density estimation, 
generative modeling

Supervised 
Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe
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Self-supervised Learning
In short: still supervised learning, with two important distinctions:
1. Learn from labels generated autonomously instead of human annotations.
2. The goal is to learn good representations for other target tasks.

Source: Noroozi et al., 2018
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Self-supervised pretext tasks

?

Example: learn to predict image transformations / complete corrupted images

image completion

θ=?

rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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Generative vs. Self-supervised Learning

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a 
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn high-level 
semantic features with pretext tasks instead

Source: Anand, 2020

https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
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How to evaluate a self-supervised learning method?
We usually don’t care about the performance of the self-supervised learning 
task, e.g., we don’t care if the model learns to predict image rotation 
perfectly.

Evaluate the learned feature encoders on downstream target tasks
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How to evaluate a self-supervised learning method?

lots of 
unlabeled 

data

self-supervised 
learning

feature 
extractor

(e.g., a 
convnet) 

90°

conv fc

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations
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How to evaluate a self-supervised learning method?

lots of 
unlabeled 

data

self-supervised 
learning

feature 
extractor

(e.g., a 
convnet) 

small amount of 
labeled data on the 

target task

supervised 
learning

evaluate on the 
target task

e.g. classification, detection

90°

conv fc

bird

conv linear 
classifier

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations

2. Attach a shallow network on the 
feature extractor; train the shallow 
network on the target task with small 
amount of labeled data
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Broader picture
language modeling

GPT3 (Brown, Mann, Ryder, 
Subbiah et al., 2020)

speech synthesis

Wavenet (van den Oord et al., 
2016)

computer vision

robot / reinforcement learning 

Dense Object Net (Florence 
and Manuelli et al., 2018)

Doersch et al., 2015

...

Today’s lecture



17

Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring 

Contrastive representation learning
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring 

Contrastive representation learning
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it 
has the “visual commonsense” of what the object should look like 
unperturbed.

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict rotations

Self-supervised 
learning by rotating the 
entire input images. 

The model learns to 
predict which rotation 
is applied (4-way 
classification)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict rotations

Self-supervised 
learning by rotating the 
entire input images. 

The model learns to 
predict which rotation 
is applied (4-way 
classification)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728


22

Evaluation on semi-supervised learning

(Image source: Gidaris et al. 2018)

Self-supervised learning on 
CIFAR10 (entire training set).

Freeze conv1 + conv2
Learn conv3 + linear layers with 
subset of labeled CIFAR10 data 
(classification).

https://arxiv.org/abs/1803.07728


23

Transfer learned features to supervised learning

source: Gidaris et al. 2018

Self-supervised learning on 
ImageNet (entire training 
set) with AlexNet.

Finetune on labeled data 
from Pascal VOC 2007.

Pretrained with full 
ImageNet supervision
No pretraining

Self-supervised learning with rotation 
prediction

https://arxiv.org/abs/1803.07728
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Visualize learned visual attentions

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728
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Pretext task: predict relative patch locations 

(Image source: Doersch et al., 2015)

https://arxiv.org/abs/1505.05192
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Pretext task: solving “jigsaw puzzles”

(Image source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246
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Transfer learned features to supervised learning

(source: Noroozi & Favaro, 2016)

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 
2016). Doersch et al. is the method with relative patch location

https://arxiv.org/abs/1603.09246
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Pretext task: predict missing pixels (inpainting)

Source: Pathak et al., 
2016

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

https://arxiv.org/pdf/1604.07379.pdf
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Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels
Source: Pathak et al., 

2016

https://arxiv.org/pdf/1604.07379.pdf
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Inpainting evaluation

Source: Pathak et al., 
2016

Input (context) reconstruction

https://arxiv.org/pdf/1604.07379.pdf
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Learning to inpaint by reconstruction

Source: Pathak et al., 
2016

Loss = reconstruction + adversarial learning

Adversarial loss between “real” images and inpainted images

https://arxiv.org/pdf/1604.07379.pdf
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Inpainting evaluation

Source: Pathak et al., 
2016

Input (context) reconstruction adversarial recon + adv

https://arxiv.org/pdf/1604.07379.pdf
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Source: Pathak et al., 

2016

Transfer learned features to supervised learning

Self-supervised learning on ImageNet training set, transfer to classification 
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation 
(Pascal VOC 2012)

https://arxiv.org/pdf/1604.07379.pdf


34

Pretext task: image coloring

Source: Richard Zhang / Phillip 
Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip 
Isola
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Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip 
Isola

Idea: cross-channel predictions
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Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip 
Isola
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Learning features from colorization: 
Split-brain Autoencoder

Source: Richard Zhang / Phillip 
Isola
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Source: Zhang et al., 2017

Transfer learned features to supervised learning

Self-supervised learning on 
ImageNet (entire training set).

Use concatenated features
from F1 and F2

Labeled data is from the 
Places (Zhou 2016).

supervised

this paper

https://arxiv.org/abs/1611.09842


40

Pretext task: image coloring

Source: Richard Zhang / Phillip 
Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip 
Isola
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Pretext task: video coloring

Source: Vondrick et al., 
2018

t = 1 t = 2 t = 3

...

reference frame

t = 0

how should I color these frames?

Idea: model the temporal coherence of colors in videos

https://arxiv.org/abs/1806.09594


43

Pretext task: video coloring

Source: Vondrick et al., 
2018

t = 1 t = 2 t = 3

...

reference frame

t = 0

how should I color these frames?

Idea: model the temporal coherence of colors in videos

Should be the same color!

Hypothesis: learning to color video frames should allow model to learn to 
track regions or objects without labels!

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 
2018

Learning objective: 

Establish mappings 
between reference and 
target frames in a learned 
feature space. 

Use the mapping as 
“pointers” to copy the 
correct color (LAB).

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 
2018

attention map on the reference 
frame

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 
2018

attention map on the reference 
frame

predicted color = weighted 
sum of the reference color

https://arxiv.org/abs/1806.09594
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Learning to color videos

Source: Vondrick et al., 
2018

attention map on the reference 
frame

predicted color = weighted 
sum of the reference color

loss between predicted color 
and ground truth color

https://arxiv.org/abs/1806.09594
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Colorizing videos (qualitative)

reference frame

Source: Google AI blog 
post

target frames (gray) predicted color

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google AI blog 
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
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Tracking emerges from colorization
Propagate segmentation masks using learned attention

Source: Google AI blog 
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html


51

Tracking emerges from colorization
Propagate pose keypoints using learned attention

Source: Google AI blog 
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html


52

Summary: pretext tasks from image transformations

● Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization.

● The models are forced learn good features about natural images, e.g., 
semantic representation of an object category, in order to solve the pretext 
tasks.

● We don’t care about the performance of these pretext tasks, but rather how 
useful the learned features are for downstream tasks (classification, detection, 
segmentation).
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Summary: pretext tasks from image transformations

● Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization.

● The models are forced learn good features about natural images, e.g., 
semantic representation of an object category, in order to solve the pretext 
tasks.

● We don’t care about the performance of these pretext tasks, but rather how 
useful the learned features are for downstream tasks (classification, detection, 
segmentation).

● Problems: 1) coming up with individual pretext tasks is tedious, and 2) the 
learned representations may not be general.
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Pretext tasks from image transformations

?

image 
completion

θ=?

rotation 
prediction

“jigsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?
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A more general pretext task?

?

θ=?

same object
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A more general pretext task?

?

θ=?

same object

different object



57

Contrastive Representation Learning

?

θ=?

attract

repel
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Contrastive Representation Learning

?

θ=?

attract

repel
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Contrastive Representation Learning

?

θ=?

reference

positive

negative
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A formulation of contrastive learning
What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder 
function f that yields high score for positive pairs (x, x+) and low 
scores for negative pairs (x, x-).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
Cross entropy loss for a N-way softmax classifier!
I.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound
Detailed derivation: Poole et al., 2019

https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf


67

SimCLR: A Simple Framework for Contrastive Learning

Source: Chen et al., 
2020

Use a projection network h(·) to project 
features to a space where contrastive learning 
is applied

Generate positive samples through data 
augmentation:

● random cropping, random color 
distortion, and random blur.

Cosine similarity as the score function:

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: generating positive samples from data 
augmentation

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

Generate a positive pair 
by sampling data 
augmentation functions

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

Iterate through and use 
each of the 2N sample as 
reference, compute 
average loss

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: mini-batch training

list of positive 
pairs

Each 2k and 2k + 1 
element is a positive 
pair

“Affinity matrix”
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SimCLR: mini-batch training

list of positive 
pairs

= classification label for each 
row 

Each 2k and 2k + 1 
element is a positive 
pair

“Affinity matrix”
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Training linear classifier on SimCLR features

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Freeze feature encoder, train a linear 
classifier on top with labeled data.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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Semi-supervised learning on SimCLR features

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10% 
of labeled data on ImageNet.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: projection head

Linear / non-linear projection heads improve 
representation learning.

A possible explanation: 
● contrastive learning objective may discard 

useful information for downstream tasks
● representation space z is trained to be 

invariant to data transformation. 
● by leveraging the projection head g(ᐧ), more 

information can be preserved in the h
representation space

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: large batch size

Large training batch size is crucial for 
SimCLR!

Large batch size causes large memory 
footprint during backpropagation: 
requires distributed training on TPUs 
(ImageNet experiments) 

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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Momentum Contrastive Learning (MoCo)
Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple mini-batch size with the 
number of keys: can support a large 
number of negative samples.

no_grad

Source: He et al., 2020

https://arxiv.org/abs/1911.05722
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Momentum Contrastive Learning (MoCo)
Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the number 
of keys: can support a large number of 
negative samples.

no_grad

Source: He et al., 2020

● The key encoder is slowly progressing through 
the momentum update rules:

https://arxiv.org/abs/1911.05722
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MoCo
Generate a positive pair 
by sampling data 
augmentation functions

No gradient through 
the positive sample 

Use the running queue 
of keys as the negative 
samples

InfoNCE loss

Update f_k through 
momentum

Update the FIFO negative 
sample queue

Source: He et al., 2020

https://arxiv.org/abs/1911.05722
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“MoCo V2”

A hybrid of ideas from SimCLR and MoCo:
● From SimCLR: non-linear projection head and strong data 

augmentation.
● From MoCo: momentum-updated queues that allow training on a 

large number of negative samples (no TPU required!).

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2
Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 
2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with negative 
sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 
2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with negative 
sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

● … all with much smaller memory 
footprint! (“end-to-end” means SimCLR 
here)

https://arxiv.org/pdf/2002.05709.pdf
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Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning: 
contrastive learning based on 
positive & negative instances.

Examples: SimCLR, MoCo

Sequence-level contrastive learning: 
contrastive learning based on 
sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018

https://arxiv.org/abs/1807.03748
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

Contrastive: contrast between “right” 
and “wrong” sequences using 
contrastive learning.

Predictive: the model has to predict 
future patterns given the current 
context.

Coding: the model learns useful 
feature vectors, or “code”, for 
downstream tasks, similar to other 
self-supervised methods.context

positive

negative

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

2. Summarize context (e.g., half of a 
sequence) into a context code ct using 
an auto-regressive model (gar).

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

2. Summarize context (e.g., half of a 
sequence) into a context code ct using 
an auto-regressive model (gar).

3. Compute InfoNCE loss between the 
context ct and future code zt+k using 
the following time-dependent score 
function:

, where Wk is a trainable matrix.

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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CPC example: modeling audio sequences

Source: van den Oord et al., 
2018, 

https://arxiv.org/abs/1807.03748
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CPC example: modeling audio sequences

Linear classification on trained 
representations (LibriSpeech 
dataset) Source: van den Oord et al., 

2018, 

https://arxiv.org/abs/1807.03748
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CPC example: modeling visual context

Source: van den Oord et al., 
2018, 

Idea: split image into patches, model rows of patches from top to bottom as a 
sequence. I.e., use top rows as context to predict bottom rows.

https://arxiv.org/abs/1807.03748


93

CPC example: modeling visual context

Source: van den Oord et al., 
2018, 

● Compares favorably with other pretext task-
based self-supervised learning method.

● Doesn’t do as well compared to newer instance-
based contrastive learning methods on image 
feature learning.

https://arxiv.org/abs/1807.03748
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Summary: Contrastive Representation Learning
A general formulation for contrastive learning:

InfoNCE loss: N-way classification among positive and negative samples

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

https://arxiv.org/abs/1807.03748


95

Summary: Contrastive Representation Learning
SimCLR: a simple framework for contrastive 
representation learning

● Key ideas: non-linear projection head to allow 
flexible representation learning

● Simple to implement, effective in learning visual 
representation

● Requires large training batch size to be effective; 
large memory footprint
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum 
sample encoder

● Decouples negative sample size from minibatch 
size; allows large batch training without TPU

● MoCo-v2 combines the key ideas from SimCLR, 
i.e., nonlinear projection head, strong data 
augmentation, with momentum contrastive 
learning 
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
● Contrast “right” sequence with “wrong” 

sequence.
● InfoNCE loss with a time-dependent score 

function.
● Can be applied to a variety of learning 

problems, but not as effective in learning 
image representations compared to instance-
level methods.
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Other examples

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Contrastive learning between image and natural language sentences
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Other examples

Dense Object Net, Florence et al., 2018

Contrastive learning on pixel-wise feature descriptors
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Other examples

Dense Object Net, Florence et al., 2018



Deep Learning for Decision Making

Final Lecture: Robot Learning Overview and Deep Learning Frontiers


