
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Convolutional Neural Networks

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of

parameters for just one layer

More parameters => More

data needed

Is this necessary?

1024 x 1024

Pixel Image

~1M element

Vector (M)

Fully-

Connected

Layer (N)

Image features are spatially

localized!

Smaller features repeated

across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature

tends to appear in one location

vs. another (stationarity)

Locality of Features

Can we induce a bias in the

design of a neural network

layer to reflect this?

Each node only receives input from

𝑲𝟏 × 𝑲𝟐 window (image patch)

Region from which a node receives

input from is called its receptive

field

Advantages:

Reduce parameters to (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑵 where 𝑵 is number of output

nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝑲𝟏

𝑲𝟐

Nodes in different locations can share

features

No reason to think same feature

(e.g. edge pattern) can’t appear

elsewhere

Use same weights/parameters in

computation graph (shared

weights)

Advantages:

Reduce parameters to (𝑲𝟏× 𝑲𝟐 + 𝟏)

Explicitly maintain spatial

information

Idea 2: Shared Weights

𝑲𝟏

𝑲𝟐

𝑲𝟏

We can learn many such features

for this one layer

Weights are not shared

across different feature

extractors

Parameters: (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑴 where 𝑴 is number of

features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional

analysis, convolution is a mathematical

operation on two functions f and g producing a

third function that is typically viewed as a

modified version of one of the original functions,

giving the area overlap between the two

functions as a function of the amount that one of

the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,

statistics, computer vision, image and signal

processing, electrical engineering, and

differential equations.

Visual comparison of convolution and

cross-correlation.

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D

Convolution

2D

Convolution

Notation: 𝑭 ⊗ (𝑮 ⊗ 𝑰) = (𝑭 ⊗ 𝑮) ⊗ 𝑰

𝒚𝒌 =

𝒏=𝟎

𝑵−𝟏

𝒉𝒏 ∙ 𝒙𝒌−𝒏

𝒚𝟎 = 𝒉𝟎 ∙ 𝒙𝟎

𝒚𝟏 = 𝒉𝟏 ∙ 𝒙𝟎 + 𝒉𝟎 ∙ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ∙ 𝒙𝟎 + 𝒉𝟏 ∙ 𝒙𝟏 + 𝒉𝟎 ∙ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ∙ 𝒙𝟎 + 𝒉𝟐 ∙ 𝒙𝟏 + 𝒉𝟏 ∙ 𝒙𝟐 + 𝒉𝟎 ∙ 𝒙𝟑

⋮

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D

Convolution

⋮

Image Kernel

(or filter)

Output /

filter /

feature map

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D

Convolution

⋮

Image Kernel

(or filter)

Output /

filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride

along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

=

𝒂=−
𝑯−𝟏

𝟐

𝑯−𝟏
𝟐

,

𝒃=−
𝑾−𝟏

𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃 𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐, −𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐, −𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 +
𝒙 −𝟐, 𝟏 𝒌 𝟐, −𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐, −𝟐 +…

=

𝒂=−
𝑲𝟏−𝟏

𝟐

𝒌𝟏−𝟏
𝟐 ,

𝒃=−
𝒌𝟐−𝟏

𝟐

𝒌𝟐−𝟏
𝟐 ,

𝒙 𝒓 − 𝒂, 𝒄 − 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and

move back

Cross-correlation: Start in the beginning of

kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees

along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’ =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change

does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear

operations

Why bother with this and not just say it’s a

linear layer with small receptive field?

There is a duality between them during

backpropagation

Convolutions have various

mathematical properties people care

about

This is historically how it was inspired

?

Input &

Output Sizes

Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Valid Convolution

Output size of vanilla convolution operation is 𝑯 − 𝒌𝟏 + 𝟏 × 𝑾 − 𝒌𝟐 + 𝟏

This is called a “valid” convolution and only applies kernel within image

𝑾 = 𝟓

𝑯
=

𝟓

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏,
𝒌𝟐 − 𝟏)

𝑯
−

𝒌
𝟏

+
𝟏

𝑾 − 𝒌𝟐 + 𝟏

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝑾 + 𝟐 − 𝒌𝟐 + 𝟏
𝑾 + 𝟐

𝑯
+

𝟐

0 …

…

Stride

We can move the filter along the image using larger steps (stride)

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑾

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

(𝑾 − 𝒌𝟐)/𝟐 + 𝟏

Stride = 2 (every other pixel)

Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

𝑾

𝑯

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

𝒌𝟐
𝟑

𝒌
𝟏

Kernel

Feature Map

𝟏

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Operation of Multi-Channel Input

Similar to before, we perform element-wise

multiplication between kernel and image

patch, summing them up (dot product)

Except with 𝒌𝟏 ∗ 𝒌𝟐 ∗ 𝟑 values

We have shown inputs as a one-channel image but in reality they have three

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Number of

channels in output

is equal to number

of kernels

𝑾

𝟑

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Input Image

Im2col

=>

Patch 1

Patch 2
…Patch

1

Patch

2

Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Patch 1

Patch 2
…

Input Matrix Kernel Matrix

Number of Kernels

N
u

m
b

e
r o

f P
a

tc
h

e
s

k

X

k

K
e

rn
e

l 1

K
e

rn
e

l 2

…

Backwards

Pass for

Convolution

Layer

Backwards Pass for Conv Layers

It is instructive to calculate the

backwards pass of a convolution

layer

Similar to fully connected layer,

will be simple vectorized linear

algebra operation!

We will see a duality between

cross-correlation and convolution

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’ =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏

Recap: Cross-Correlation

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Iterators

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝒓

𝒄

𝒂

𝒃

Some simplification: 1 channel input, 1 kernel (channel output), padding (here

2 pixels on right/bottom) to make output the same size

Gradient Terms and Notation

𝝏𝑳

𝝏𝒚
Assume size 𝑯 × 𝑾 (add padding, change

convention a bit for convenience)

𝒚 = 𝑯 × 𝑾

𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

to access element

?

Backpropagation Chain Rule

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝒌

𝝏𝑳

𝝏𝒌
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒌

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)

Gradient for

Convolution

Layer

What a Kernel Pixel Affects at Output

𝝏𝑳

𝝏𝒌
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒌

Gradient for weight update

Calculate one pixel at a time

What does this weight

affect at the output?

Everything!

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)

Chain Rule over all Output Pixels

Need to incorporate all upstream

gradients:
Chain Rule:

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over

all output

pixels

Upstream

gradient

(known)

We will

compute

𝝏𝑳

𝝏𝒚(𝟎, 𝟎)
,

𝝏𝑳

𝝏𝒚(𝟎, 𝟏)
, … ,

𝝏𝑳

𝝏𝒚(𝑯, 𝑾)

Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

=?
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

?

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar?

Cross-correlation

between upstream

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b

Forward and Backward Duality

…

Does this look familiar?

Cross-correlation

between upstream

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c

r,c

a,b

a,b

𝝏𝑳

𝝏𝒚

What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel

affect at the output?

Neighborhood around it

(where part of the kernel

touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒙
=

𝝏𝑳

𝝏𝒚

𝝏𝒚

𝝏𝒙

r’,c’

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)

Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯

Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

This is where the

corresponding locations

are for the output

(𝒓′ − 𝒌𝟏 + 𝟏,
𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ?)

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

Let’s derive it

analytically this time (as

opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Calculating the Gradient

Plug in what we actually wanted :

𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃 = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) =

𝒂′=𝟎

𝒌𝟏−𝟏

𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ − 𝒂 + 𝒂′, 𝒄′ − 𝒃 + 𝒃′ 𝒌(𝒂′, 𝒃′)

(we want term with 𝒙 𝒓′, 𝒄′ in it;

this happens when 𝐚 = 𝐚′ and 𝐛 = 𝐛′)

𝒚 𝒓′, 𝒄′ = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) =

𝒂′=𝟎

𝒌𝟏−𝟏

𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ + 𝒂′, 𝒄′ + 𝒃′ 𝒌(𝒂′, 𝒃′)

Definition of cross-correlation (use a′, 𝑏′ to distinguish from prior variables):

What is k(𝒂, 𝒃)
𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙(𝒓′, 𝒄′)
=

Backwards is Convolution

Plugging in to earlier equation:

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
𝒌(𝒂, 𝒃)

Does this look familiar?

Convolution between

upstream gradient and

kernel!

(can implement by

flipping kernel and

cross- correlation)

Again, all operations can be

implemented via matrix

multiplications (same as FC layer)!

Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-matrix

multiplication)

Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Convolutional Neural Networks

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾− 𝟏

𝟐

−
𝑯− 𝟏

𝟐
,−

𝑾− 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

=

𝒂=−
𝑯−𝟏
𝟐

𝑯−𝟏
𝟐

,

𝒃=−
𝑾−𝟏
𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃 𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐,−𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐,−𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 +
𝒙 −𝟐, 𝟏 𝒌 𝟐,−𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐,−𝟐 +…

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change

does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear

operations

Why bother with this and not just say it’s a

linear layer with small receptive field?

There is a duality between them during

backpropagation

Convolutions have various

mathematical properties people care

about

This is historically how it was inspired

?

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+
𝟐
−
𝒌
𝟏
+
𝟏

𝑾+ 𝟐 − 𝒌𝟐 + 𝟏
𝑾+ 𝟐

𝑯
+
𝟐

0 …

…

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾− 𝒌𝟐 + 𝟏𝑯
−
𝒌
𝟏
+
𝟏

Number of

channels in output

is equal to number

of kernels

𝑾

𝟑

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾− 𝒌𝟐 + 𝟏𝑯
−
𝒌
𝟏
+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

Chain Rule over all Output Pixels

Need to incorporate all upstream

gradients:
Chain Rule:

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over

all output

pixels

Upstream

gradient

(known)

We will

compute

𝝏𝑳

𝝏𝒚(𝟎, 𝟎)
,

𝝏𝑳

𝝏𝒚(𝟎, 𝟏)
, … ,

𝝏𝑳

𝝏𝒚(𝑯,𝑾)

Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

=?
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

?

Reasoning:
• Cross-correlation is just “dot product” of kernel and input patch (weighted sum)

• When at pixel 𝒚 𝒓, 𝒄 , kernel is on input x such that 𝒌 𝟎, 𝟎 is multiplied by x 𝒓, 𝒄
• But we want derivative w.r.t. 𝒌 𝒂, 𝒃

• 𝒌 𝟎, 𝟎 ∗ 𝒙(𝒓, 𝒄), 𝒌 𝟏, 𝟏 ∗ 𝒙(𝒓 + 𝟏, 𝒄 + 𝟏), 𝒌 𝟐, 𝟐 ∗ 𝒙 𝒓 + 𝟐, 𝒄 + 𝟐 => in

general 𝒌 𝒂, 𝒃 ∗ 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
• Just like before in fully connected layer, partial derivative w.r.t. 𝒌 𝒂, 𝒃 only

has this term (other x terms go away because not multiplied by 𝒌 𝒂, 𝒃).

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar?

Cross-correlation

between upstream

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b

Forward and Backward Duality

…

Does this look familiar?

Cross-correlation

between upstream

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c

r,c

a,b

a,b

𝝏𝑳

𝝏𝒚

What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel

affect at the output?

Neighborhood around it

(where part of the kernel

touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒙
=
𝝏𝑳

𝝏𝒚

𝝏𝒚

𝝏𝒙

r’,c’

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)

Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯

Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

This is where the

corresponding locations

are for the output

(𝒓′ − 𝒌𝟏 + 𝟏,
𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ?)

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ ?

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ?)

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ 𝒚 𝒓′ − 𝟏, 𝒄′ − 𝟏
…

𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝒂, 𝒃 ⇒ 𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

Let’s derive it

analytically this time (as

opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Calculating the Gradient

Plug in what we actually wanted :

𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃 = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) =

𝒂′=𝟎

𝒌𝟏−𝟏

𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ − 𝒂 + 𝒂′, 𝒄′ − 𝒃 + 𝒃′ 𝒌(𝒂′, 𝒃′)

(we want term with 𝒙 𝒓′, 𝒄′ in it;

this happens when 𝐚 = 𝐚′ and 𝐛 = 𝐛′)

𝒚 𝒓′, 𝒄′ = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) =

𝒂′=𝟎

𝒌𝟏−𝟏

𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ + 𝒂′, 𝒄′ + 𝒃′ 𝒌(𝒂′, 𝒃′)

Definition of cross-correlation (use a′, 𝑏′ to distinguish from prior variables):

What is k(𝒂, 𝒃)
𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙(𝒓′, 𝒄′)
=

Backwards is Convolution

Plugging in to earlier equation:

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
𝒌(𝒂, 𝒃)

Does this look familiar?

Convolution between

upstream gradient and

kernel!

(can implement by

flipping kernel and

cross- correlation)

Again, all operations can be

implemented via matrix

multiplications (same as FC layer)!

Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-

matrix multiplication)

Pooling

Layers

Pooling Layers

Dimensionality reduction

is an important aspect of

machine learning

Can we make a layer to

explicitly down-sample

image or feature maps?

Yes! We call one class of

these operations pooling

operations

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑾 = 𝟓

𝑯
=
𝟓

X(𝟎: 𝟐, 𝟎: 𝟐) =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

max(0:2,0:2) = 𝟐𝟎𝟎

How many learned

parameters does

this layer have?

None!

Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑾 = 𝟓

𝑯
=
𝟓

X(𝟎: 𝟐, 𝟎: 𝟐) =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

average(0:2,0:2) =
𝟏

𝑵

𝒊

𝒋

𝒙(𝒊, 𝒋) = 𝟗𝟎

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=
𝟓

Invariance

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still

remain the same

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=
𝟓

Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the

same translation

𝑾 = 𝟓

𝑯
=
𝟓

Simple

Convolutional

Neural

Networks

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=
𝟓

Alternating Convolution and Pooling

Image

Convolution +

Non-Linear

Layer

Pooling

Layer

Convolution +

Non-Linear

Layer

Useful,

lower-

dimensional

features

Convolutional Neural Networks (CNNs)

Adding a Fully Connected Layer

Image
Pooling

Layer

Fully

Connected

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Receptive Fields

Image
Pooling

Layer

Fully

Connected

Layers

Loss

Typical Depiction of CNNs

Input

Image
PredictionsCNN

Convolutional Neural

Networks

Input

Image
Predictions

LeNet Architecture

These architectures have existed since 1980s

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy

Handwriting Recognition

Image Credit:

Yann LeCun

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:

Yann LeCun

(Some) Rotation Invariance

Image Credit:

Yann LeCun

(Some) Scale Invariance

Image Credit:

Yann LeCun

Advanced

Convolutional

Networks

From: https://paperswithcode.com

The Importance of Benchmarks

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling

VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Parameters and Memory

Most memory usage in

convolution layers

Most parameters in FC

layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGG – Key Characteristics

Key aspects:

Repeated application of:

3x3 conv (stride of 1, padding

of 1)

2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1

convolutions

3x3

convolutions

5x5

convolutions

3x3 max

pooling

Previous layer

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition

Key idea: Allow information from a layer to propagate

to any future layer (forward)

Same is true for gradients!

weight layer

weight layer

+
relu

relu

identity

𝒙

𝒙
𝑭 𝒙

𝑭 𝒙 + 𝒙

Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Several ways to learn

architectures:

Evolutionary learning

and reinforcement

learning

Prune over-

parameterized

networks

Learning of

repeated blocks

typical

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications

	L10_ConvPooling
	L11_CNNs

