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The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 

parameters for just one layer

More parameters => More 

data needed

Is this necessary? 

1024 x 1024

Pixel Image

~1M element

Vector (M)

Fully-

Connected

Layer (N)



Image features are spatially 

localized!

Smaller features repeated 

across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 

tends to appear in one location 

vs. another (stationarity)

Locality of Features

Can we induce a bias in the 

design of a neural network 

layer to reflect this?



Each node only receives input from 

𝑲𝟏 × 𝑲𝟐 window (image patch)

Region from which a node receives 

input from is called its  receptive 

field

Advantages: 

Reduce parameters to (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑵 where 𝑵 is number of output 

nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝑲𝟏

𝑲𝟐



Nodes in different locations can share 

features

No reason to think same feature 

(e.g. edge pattern) can’t appear 

elsewhere

Use same weights/parameters in 

computation graph (shared 

weights)

Advantages: 

Reduce parameters to (𝑲𝟏× 𝑲𝟐 + 𝟏)

Explicitly maintain spatial 

information

Idea 2: Shared Weights

𝑲𝟏

𝑲𝟐

𝑲𝟏



We can learn many such features 

for this one layer

Weights are not shared 

across different feature 

extractors

Parameters:  (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑴 where 𝑴 is number of 

features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution
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This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional 

analysis, convolution is a mathematical 

operation on two functions f and g producing a 

third function that is typically viewed as a 

modified version of one of the original functions, 

giving the area overlap between the two 

functions as a function of the amount that one of 

the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 

statistics, computer vision, image and signal 

processing, electrical engineering, and 

differential equations. 

Visual comparison of convolution and 

cross-correlation.



2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D 

Convolution

2D 

Convolution

Notation: 𝑭 ⊗ (𝑮 ⊗ 𝑰) = (𝑭 ⊗ 𝑮) ⊗ 𝑰

𝒚𝒌 = 

𝒏=𝟎

𝑵−𝟏

𝒉𝒏 ∙ 𝒙𝒌−𝒏

𝒚𝟎 = 𝒉𝟎 ∙ 𝒙𝟎

𝒚𝟏 = 𝒉𝟏 ∙ 𝒙𝟎 + 𝒉𝟎 ∙ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ∙ 𝒙𝟎 + 𝒉𝟏 ∙ 𝒙𝟏 + 𝒉𝟎 ∙ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ∙ 𝒙𝟎 + 𝒉𝟐 ∙ 𝒙𝟏 + 𝒉𝟏 ∙ 𝒙𝟐 + 𝒉𝟎 ∙ 𝒙𝟑

⋮



2D Discrete Convolution
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2D 

Convolution

⋮

Image Kernel 

(or filter)

Output / 

filter / 

feature map



2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D 

Convolution

⋮

Image Kernel 

(or filter)

Output / 

filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 

along image



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

= 

𝒂=−
𝑯−𝟏

𝟐

𝑯−𝟏
𝟐

,



𝒃=−
𝑾−𝟏

𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃 𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐, −𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐, −𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 +
𝒙 −𝟐, 𝟏 𝒌 𝟐, −𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐, −𝟐 +…



= 

𝒂=−
𝑲𝟏−𝟏

𝟐

𝒌𝟏−𝟏
𝟐 ,



𝒃=−
𝒌𝟐−𝟏

𝟐

𝒌𝟐−𝟏
𝟐 ,

𝒙 𝒓 − 𝒂, 𝒄 − 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

( −
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)



Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and 

move back

Cross-correlation: Start in the beginning of 

kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 

along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’  =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏



= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 

does not matter!



Cross-Correlation

K’  =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation
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Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 

operations

Why bother with this and not just say it’s a 

linear layer with small receptive field?

There is a duality between them during 

backpropagation

Convolutions have various 

mathematical properties people care 

about

This is historically how it was inspired

?



Input & 

Output Sizes



Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



Valid Convolution

Output size of vanilla convolution operation is 𝑯 − 𝒌𝟏 + 𝟏 × 𝑾 − 𝒌𝟐 + 𝟏

This is called a “valid” convolution and only applies kernel within image 

𝑾 = 𝟓

𝑯
=

𝟓

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏,
𝒌𝟐 − 𝟏)

𝑯
−

𝒌
𝟏

+
𝟏

𝑾 − 𝒌𝟐 + 𝟏



Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝑾 + 𝟐 − 𝒌𝟐 + 𝟏
𝑾 + 𝟐

𝑯
+

𝟐

0 …

…



Stride

We can move the filter along the image using larger steps (stride) 

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑾

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

(𝑾 − 𝒌𝟐)/𝟐 + 𝟏

Stride = 2 (every other pixel)



Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input 

𝑾

𝑯



Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three 

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

𝒌𝟐
𝟑

𝒌
𝟏

Kernel

Feature Map

𝟏

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏



Operation of Multi-Channel Input

Similar to before, we perform element-wise 

multiplication between kernel and image 

patch, summing them up (dot product)

Except with 𝒌𝟏 ∗ 𝒌𝟐 ∗ 𝟑 values

We have shown inputs as a one-channel image but in reality they have three 

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Number of 

channels in output 

is equal to number 

of kernels

𝑾

𝟑

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage



Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Input Image

Im2col

=>

Patch 1

Patch 2
…Patch

1

Patch

2



Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Patch 1

Patch 2
…

Input Matrix Kernel Matrix

Number of Kernels

N
u

m
b

e
r o

f P
a

tc
h

e
s

k

X

k

K
e

rn
e

l 1

K
e

rn
e

l 2

…



Backwards 

Pass for 

Convolution 

Layer



Backwards Pass for Conv Layers

It is instructive to calculate the 

backwards pass of a convolution 

layer

Similar to fully connected layer, 

will be simple vectorized linear 

algebra operation! 

We will see a duality between 

cross-correlation and convolution 

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’  =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏



Recap: Cross-Correlation 

= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)



Iterators

= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝒓

𝒄

𝒂

𝒃

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 

2 pixels on right/bottom) to make output the same size 



Gradient Terms and Notation

𝝏𝑳

𝝏𝒚
Assume size 𝑯 × 𝑾 (add padding, change 

convention a bit for convenience)

𝒚 = 𝑯 × 𝑾

𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

to access element

?



Backpropagation Chain Rule

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝒌

𝝏𝑳

𝝏𝒌
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒌

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)



Gradient for 

Convolution 

Layer



What a Kernel Pixel Affects at Output

𝝏𝑳

𝝏𝒌
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒌

Gradient for weight update

Calculate one pixel at a time

What does this weight 

affect at the output?

Everything!

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)



Chain Rule over all Output Pixels

Need to incorporate all upstream 

gradients:
Chain Rule:

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
= 

𝒓=𝟎

𝑯−𝟏



𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over 

all output 

pixels

Upstream 

gradient 

(known)

We will 

compute

𝝏𝑳

𝝏𝒚(𝟎, 𝟎)
,

𝝏𝑳

𝝏𝒚(𝟎, 𝟏)
, … ,

𝝏𝑳

𝝏𝒚(𝑯, 𝑾)



Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

=?
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

?



Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar? 

Cross-correlation 

between upstream 

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
= 

𝒓=𝟎

𝑯−𝟏



𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b



Forward and Backward Duality

…

Does this look familiar? 

Cross-correlation 

between upstream 

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c

r,c

a,b

a,b

𝝏𝑳

𝝏𝒚



What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 

affect at the output?

Neighborhood around it 

(where part of the kernel 

touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒙
=

𝝏𝑳

𝝏𝒚

𝝏𝒚

𝝏𝒙

r’,c’

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)



Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯



Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

This is where the 

corresponding locations 

are for the output

(𝒓′ − 𝒌𝟏 + 𝟏,
𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ? )

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

Let’s derive it 

analytically this time (as 

opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Calculating the Gradient

Plug in what we actually wanted :

𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃 = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) = 

𝒂′=𝟎

𝒌𝟏−𝟏



𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ − 𝒂 + 𝒂′, 𝒄′ − 𝒃 + 𝒃′ 𝒌(𝒂′, 𝒃′)

(we want term with 𝒙 𝒓′, 𝒄′ in it; 

this happens when 𝐚 = 𝐚′ and 𝐛 = 𝐛′)

𝒚 𝒓′, 𝒄′ = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) = 

𝒂′=𝟎

𝒌𝟏−𝟏



𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ + 𝒂′, 𝒄′ + 𝒃′ 𝒌(𝒂′, 𝒃′)

Definition of cross-correlation (use a′, 𝑏′ to distinguish from prior variables):

What is k(𝒂, 𝒃)
𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙(𝒓′, 𝒄′)
=



Backwards is Convolution

Plugging in to earlier equation:

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
𝒌(𝒂, 𝒃)

Does this look familiar? 

Convolution between 

upstream gradient and 

kernel!

(can implement by 

flipping kernel and 

cross- correlation)

Again, all operations can be 

implemented via matrix 

multiplications (same as FC layer)!



Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called 

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-matrix 

multiplication)



Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Convolutional Neural Networks



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾− 𝟏

𝟐

−
𝑯− 𝟏

𝟐
,−

𝑾− 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

= 

𝒂=−
𝑯−𝟏
𝟐

𝑯−𝟏
𝟐

,



𝒃=−
𝑾−𝟏
𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃 𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐,−𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐,−𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 +
𝒙 −𝟐, 𝟏 𝒌 𝟐,−𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐,−𝟐 +…



= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 

does not matter!



Cross-Correlation

K’  =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 

operations

Why bother with this and not just say it’s a 

linear layer with small receptive field?

There is a duality between them during 

backpropagation

Convolutions have various 

mathematical properties people care 

about

This is historically how it was inspired

?



Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+
𝟐
−
𝒌
𝟏
+
𝟏

𝑾+ 𝟐 − 𝒌𝟐 + 𝟏
𝑾+ 𝟐

𝑯
+
𝟐

0 …

…



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾− 𝒌𝟐 + 𝟏𝑯
−
𝒌
𝟏
+
𝟏

Number of 

channels in output 

is equal to number 

of kernels

𝑾

𝟑

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾− 𝒌𝟐 + 𝟏𝑯
−
𝒌
𝟏
+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage



Chain Rule over all Output Pixels

Need to incorporate all upstream 

gradients:
Chain Rule:

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
= 

𝒓=𝟎

𝑯−𝟏



𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over 

all output 

pixels

Upstream 

gradient 

(known)

We will 

compute

𝝏𝑳

𝝏𝒚(𝟎, 𝟎)
,

𝝏𝑳

𝝏𝒚(𝟎, 𝟏)
, … ,

𝝏𝑳

𝝏𝒚(𝑯,𝑾)



Chain Rule over all Output Pixels

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a,b

r,c

=?
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

?

Reasoning:
• Cross-correlation is just “dot product” of kernel and input patch (weighted sum)

• When at pixel 𝒚 𝒓, 𝒄 , kernel is on input x such that 𝒌 𝟎, 𝟎 is multiplied by x 𝒓, 𝒄
• But we want derivative w.r.t. 𝒌 𝒂, 𝒃

• 𝒌 𝟎, 𝟎 ∗ 𝒙(𝒓, 𝒄), 𝒌 𝟏, 𝟏 ∗ 𝒙(𝒓 + 𝟏, 𝒄 + 𝟏), 𝒌 𝟐, 𝟐 ∗ 𝒙 𝒓 + 𝟐, 𝒄 + 𝟐 => in 

general 𝒌 𝒂, 𝒃 ∗ 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
• Just like before in fully connected layer, partial derivative w.r.t. 𝒌 𝒂, 𝒃 only

has this term (other x terms go away because not multiplied by 𝒌 𝒂, 𝒃 ). 



Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar? 

Cross-correlation 

between upstream 

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
= 

𝒓=𝟎

𝑯−𝟏



𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b



Forward and Backward Duality

…

Does this look familiar? 

Cross-correlation 

between upstream 

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c

r,c

a,b

a,b

𝝏𝑳

𝝏𝒚



What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 

affect at the output?

Neighborhood around it 

(where part of the kernel 

touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏,𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒙
=
𝝏𝑳

𝝏𝒚

𝝏𝒚

𝝏𝒙

r’,c’

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)



Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯



Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

This is where the 

corresponding locations 

are for the output

(𝒓′ − 𝒌𝟏 + 𝟏,
𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ? )

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ ?



Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ? )

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ 𝒚 𝒓′ − 𝟏, 𝒄′ − 𝟏
…

𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝒂, 𝒃 ⇒ 𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

Let’s derive it 

analytically this time (as 

opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Calculating the Gradient

Plug in what we actually wanted :

𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃 = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) = 

𝒂′=𝟎

𝒌𝟏−𝟏



𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ − 𝒂 + 𝒂′, 𝒄′ − 𝒃 + 𝒃′ 𝒌(𝒂′, 𝒃′)

(we want term with 𝒙 𝒓′, 𝒄′ in it; 

this happens when 𝐚 = 𝐚′ and 𝐛 = 𝐛′)

𝒚 𝒓′, 𝒄′ = (𝒙 ∗ 𝒌)(𝒓′, 𝒄′) = 

𝒂′=𝟎

𝒌𝟏−𝟏



𝒃′=𝟎

𝒌𝟐−𝟏

𝒙 𝒓′ + 𝒂′, 𝒄′ + 𝒃′ 𝒌(𝒂′, 𝒃′)

Definition of cross-correlation (use a′, 𝑏′ to distinguish from prior variables):

What is k(𝒂, 𝒃)
𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙(𝒓′, 𝒄′)
=



Backwards is Convolution

Plugging in to earlier equation:

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

= 

𝒂=𝟎

𝒌𝟏−𝟏



𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
𝒌(𝒂, 𝒃)

Does this look familiar? 

Convolution between 

upstream gradient and 

kernel!

(can implement by 

flipping kernel and 

cross- correlation)

Again, all operations can be 

implemented via matrix 

multiplications (same as FC layer)!



Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called 

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-

matrix multiplication)



Pooling 

Layers



Pooling Layers

Dimensionality reduction 

is an important aspect of 

machine learning

Can we make a layer to 

explicitly down-sample

image or feature maps?

Yes! We call one class of 

these operations pooling

operations 

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d



Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑾 = 𝟓

𝑯
=
𝟓

X(𝟎: 𝟐, 𝟎: 𝟐) =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

max(0:2,0:2) = 𝟐𝟎𝟎

How many learned 

parameters does 

this layer have?

None!



Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑾 = 𝟓

𝑯
=
𝟓

X(𝟎: 𝟐, 𝟎: 𝟐) =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

average(0:2,0:2) =
𝟏

𝑵


𝒊



𝒋

𝒙(𝒊, 𝒋) = 𝟗𝟎



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=
𝟓



Invariance 

This combination adds some invariance to translation of the features 

If feature (such as beak) translated a little bit, output values still 

remain the same

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=
𝟓



Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the 

same translation

𝑾 = 𝟓

𝑯
=
𝟓



Simple 

Convolutional 

Neural 

Networks



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=
𝟓



Alternating Convolution and Pooling

Image

Convolution +

Non-Linear

Layer

Pooling

Layer

Convolution +

Non-Linear

Layer

Useful, 

lower-

dimensional 

features

Convolutional Neural Networks (CNNs)



Adding a Fully Connected Layer

Image
Pooling

Layer

Fully 

Connected 

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss



Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Receptive Fields

Image
Pooling

Layer

Fully 

Connected 

Layers

Loss



Typical Depiction of CNNs 

Input

Image
PredictionsCNN

Convolutional Neural

Networks

Input

Image
Predictions



LeNet Architecture

These architectures have existed since 1980s

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



Handwriting Recognition

Image Credit:

Yann LeCun



Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:

Yann LeCun



(Some) Rotation Invariance

Image Credit:

Yann LeCun



(Some) Scale Invariance

Image Credit:

Yann LeCun



Advanced 

Convolutional 

Networks



From: https://paperswithcode.com

The Importance of Benchmarks



AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Parameters and Memory

Most memory usage in 

convolution layers

Most parameters in FC 

layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



VGG – Key Characteristics

Key aspects:

Repeated application of: 

3x3 conv (stride of 1, padding 

of 1)

2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1 

convolutions

3x3 

convolutions

5x5 

convolutions

3x3 max 

pooling

Previous layer



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition 

Key idea: Allow information from a layer to propagate 

to any future layer (forward)

Same is true for gradients! 

weight layer

weight layer

+
relu

relu

identity

𝒙

𝒙
𝑭 𝒙

𝑭 𝒙 + 𝒙



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 

architectures:

Evolutionary learning 

and reinforcement 

learning

Prune over-

parameterized 

networks

Learning of 

repeated blocks

typical



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications
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