Topics:

Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

The connectivity in linear layers doesn't always make sense

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of parameters **for just one layer**

More parameters => More data needed

Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
 - Edges
 - Color
 - Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a *bias* in the design of a neural network layer to reflect this?

Each node only receives input from $K_1 \times K_2$ window (image patch)

Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1) * N$ where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Nodes in different locations can **share** features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1)$
- Explicitly maintain spatial information

We can learn **many** such features for this one layer

 Weights are **not** shared across different feature extractors

Parameters: (K₁×K₂ + 1) * M where M is number of features we want to learn

This operation is extremely common in electrical/computer engineering!

w(t) y(t)XA $(z) = e^{-\left(\frac{z}{2} - \frac{z}{2}\right)}$ $Y(z) = (X_{a} + w)(z)$ = $a = -\infty \times (z - a) w(a) da$ = $(4 + x)(z) = 3 \times (a) w(z) da$

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, **convolution** is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.

Convolution is similar to **cross-correlation**.

It has **applications** that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of **convolution** and **cross-correlation**.

From https://en.wikipedia.org/wiki/Convolution

Notation: $F \otimes (G \otimes I) = (F \otimes G) \otimes I$

1D
Convolution
$$y_k = \sum_{n=0}^{N-1} h_n \cdot x_{k-n}$$

$$y_{0} = h_{0} \cdot x_{0}$$

$$y_{1} = h_{1} \cdot x_{0} + h_{0} \cdot x_{1}$$

$$y_{2} = h_{2} \cdot x_{0} + h_{1} \cdot x_{1} + h_{0} \cdot x_{2}$$

$$y_{3} = h_{3} \cdot x_{0} + h_{2} \cdot x_{1} + h_{1} \cdot x_{2} + h_{0} \cdot x_{3}$$

$$\vdots$$

2D Convolution

Image Kernel Output / (or filter) filter / feature map $K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

2D Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

2D Convolution

1. Flip kernel (rotate 180 degrees)

2. Stride along image

 $y(0,0) = x(-2,-2)k(2,2) + x(-2,-1)k(2,1) + x(-2,0)k(2,0) + x(-2,1)k(2,-1) + x(-2,2)k(2,-2) + \dots$

Mathematics of Discrete 2D Convolution

$$y(r,c) = (x * k)(r,c) = \sum_{a=-\frac{K_1-1}{2}}^{k_1-1} \sum_{b=-\frac{k_2-1}{2}}^{k_2-1} x(r-a,c-b) k(a,b)$$

$$(0,0)$$

$$(-\frac{k_1-1}{2}, -\frac{k_2-1}{2})$$

$$k_1 = 3$$

$$k_2 = 3 \quad (k_1-1, k_2-1)$$

As we have seen:

- Convolution: Start at end of kernel and move back
- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An **intuitive interpretation** of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

Convolution and Cross-Correlation

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

(0,0)

Since we will be learning these kernels, this change does not matter!

$$X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \longrightarrow X(0:2,0:2) \cdot K' = 65 + \text{bias}$$

Dot product (element-wise multiply and sum)

Why Bother with Convolutions?

Convolutions are just **simple linear operations**

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a **duality** between them during backpropagation
- Convolutions have various mathematical properties people care about

This is historically how it was inspired

Input & Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) Number of channels in the input image
- out_channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv

Output size of vanilla convolution operation is $(H - k_1 + 1) \times (W - k_2 + 1)$

This is called a "valid" convolution and only applies kernel within image

We can **pad the images** to make the output the same size:

Zeros, mirrored image, etc.

• Note padding often refers to pixels added to one size (P = 1 here)

 $W + 2 - k_2 + 1$

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride = 2 (every other pixel)

Stride can result in **skipped pixels**, e.g. stride of 3 for 5x5 input

W

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

Similar to before, we perform **element-wise multiplication** between kernel and image patch, summing them up **(dot product)**

Except with $k_1 * k_2 * 3$ values

Operation of Multi-Channel Input

We can have multiple kernels per layer

We stack the feature maps together at the output

Number of channels in output is equal to *number* of kernels

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Number of Parameters

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Input Matrix

Kernel Matrix

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Backwards Pass for Convolution Layer

It is instructive to calculate **the backwards pass** of a convolution layer

- Similar to fully connected layer, will be simple vectorized linear algebra operation!
- We will see a **duality** between cross-correlation and convolution

Backwards Pass for Conv Layers

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

 $W = 5 \quad (H-1, W-1)$

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 2 pixels on right/bottom) to make output the same size

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

 $|\mathbf{y}| = \mathbf{H} \times \mathbf{W}$

$\frac{\partial L}{\partial y}$? Assume size $H \times W$ (add padding, change convention a bit for convenience)

$$\frac{\partial L}{\partial y(r,c)}$$
 to access element

Backpropagation Chain Rule

Georg a Tech

Gradient for Convolution Layer

 $\frac{\partial L}{\partial k} = \frac{\partial L}{\partial h^{\ell}} \quad \frac{\partial h^{\ell}}{\partial k}$

Gradient for weight update

What does this weight affect at the output?

 $W = 5 \qquad (H-1, W-1)$

Need to incorporate all upstream gradients:

 $\left\{\frac{\partial L}{\partial y(0,0)}, \frac{\partial L}{\partial y(0,1)}, \dots, \frac{\partial L}{\partial y(H,W)}\right\}$

Chain Rule: $\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} \frac{\partial y(r,c)}{\partial k(a,b)}$ Sum over Upstream We will all output gradient compute pixels (known)

 $W = 5 \qquad (H-1, W-1)$

Chain Rule over all Output Pixels

 $\frac{\partial y(r,c)}{\partial k(a,b)} =?$

W

Chain Rule over all Output Pixels

 $\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)

Forward Pass

 $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \quad \frac{\partial y}{\partial x}$

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

$$\frac{\partial L}{\partial x(r',c')}$$

What does this input pixel affect at the output?

Neighborhood around it (where part of the kernel touches it)

(0,0)

 $W = 5 \qquad (H-1, W-1)$

What an Input Pixel Affects at Output

W

W

This is where the corresponding locations are for the **output**

Chain rule for affected pixels (sum gradients):

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

Let's derive it analytically this time (as opposed to visually)

Summing Gradient Contributions

Definition of cross-correlation (use a', b' to distinguish from prior variables):

$$y(r',c') = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r' + a',c' + b') k(a',b')$$

Plug in what we actually wanted :

$$y(r'-a,c'-b) = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r'-a+a',c'-b+b') k(a',b')$$

What is
$$\frac{\partial y(r'-a,c'-b)}{\partial x(r',c')} = k(a,b)$$
 (we want term with $x(r',c')$ in it;
this happens when $a = a'$ and $b = b'$)

Calculating the Gradient

Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

Does this look familiar?

$$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history)
 - Can connect to convolutions via duality (flipping kernel)
 - Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
 - Forward: Cross-correlation
 - Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
 - Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
 - In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrix-matrix multiplication)

Topics:

Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

 $y(0,0) = x(-2,-2)k(2,2) + x(-2,-1)k(2,1) + x(-2,0)k(2,0) + x(-2,1)k(2,-1) + x(-2,2)k(2,-2) + \dots$

Mathematics of Discrete 2D Convolution

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

Since we will be learning these kernels, this change does not matter!

$$X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \longrightarrow X(0:2,0:2) \cdot K' = 65 + \text{bias}$$

Dot product (element-wise multiply and sum)

Why Bother with Convolutions?

Convolutions are just **simple linear operations**

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a **duality** between them during backpropagation
- Convolutions have various mathematical properties people care about

This is historically how it was inspired

We can **pad the images** to make the output the same size:

Zeros, mirrored image, etc.

• Note padding often refers to pixels added to one size (P = 1 here)

 $W + 2 - k_2 + 1$

We can have multiple kernels per layer

We stack the feature maps together at the output

Number of channels in output is equal to *number* of kernels

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Number of Parameters

Need to incorporate all upstream gradients:

 $\left\{\frac{\partial L}{\partial y(0,0)}, \frac{\partial L}{\partial y(0,1)}, \dots, \frac{\partial L}{\partial y(H,W)}\right\}$

 $W = 5 \qquad (H-1, W-1)$

Chain Rule over all Output Pixels

 $\frac{\partial y(r,c)}{\partial k(a,b)}$ =?

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
- When at pixel y(r, c), kernel is on input x such that k(0, 0) is multiplied by x(r, c)
- But we want derivative w.r.t. k(a, b)
 - k(0,0) * x(r,c), k(1,1) * x(r+1,c+1), k(2,2) * x(r+2,c+2) => in general k(a,b) * x(r+a,c+b)
 - Just like before in fully connected layer, partial derivative w.r.t. k(a, b) only has this term (other x terms go away because not multiplied by k(a, b)).

Chain Rule over all Output Pixels

 $\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)

Forward Pass

 $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \quad \frac{\partial y}{\partial x}$

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

$$\frac{\partial L}{\partial x(r',c')}$$

What does this input pixel affect at the output?

Neighborhood around it (where part of the kernel touches it)

(0,0)

 $W = 5 \qquad (H-1, W-1)$

What an Input Pixel Affects at Output

W

W

This is where the corresponding locations are for the **output**

Chain rule for affected pixels (sum gradients):

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

Let's derive it analytically this time (as appeared to visually

$$\frac{\partial L}{\partial x(r',c')} = \sum_{\substack{pixels \ p}} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x(r',c')}$$
analytically this time
opposed to visually)
$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$
$$(r'-k_1+1,c'-k_2+1)$$
$$(r'-k_1+1,c'-k_2+1)$$

Summing Gradient Contributions

Definition of cross-correlation (use a', b' to distinguish from prior variables):

$$y(r',c') = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r' + a',c' + b') k(a',b')$$

Plug in what we actually wanted :

$$y(r'-a,c'-b) = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r'-a+a',c'-b+b') k(a',b')$$

What is
$$\frac{\partial y(r'-a,c'-b)}{\partial x(r',c')} = k(a,b)$$
 (we want term with $x(r',c')$ in it;
this happens when $a = a'$ and $b = b'$)

Calculating the Gradient

Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

Does this look familiar?

$$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history)
 - Can connect to convolutions via duality (flipping kernel)
 - Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
 - Forward: Cross-correlation
 - Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
 - Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
 - In practice implement via cross-correlation and flipped kernel
- All operations still implemented via **efficient linear algebra** (e.g. matrixmatrix multiplication)

Pooling Layers

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?

Yes! We call one class of these operations pooling operations

Parameters

- kernel_size the size of the window to take a max over
- stride the stride of the window. Default value is kernel_size
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2.l

Example: Max pooling

• Stride window across image but perform per-patch max operation $X(0:2, 0:2) = \begin{bmatrix} 200 \ 150 \ 150 \ 100 \ 25 \ 25 \ 10 \end{bmatrix} \longrightarrow max(0:2, 0:2) = 200$

Max Pooling

How many learned parameters does this layer have?

Not restricted to max; can use any differentiable function

Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the same translation

W = 5

Invariance vs. Equivariance

Simple Convolutional Neural Networks

Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer

Alternating Convolution and Pooling

These architectures have existed since 1980s

Image Credit: Yann LeCun, Kevin Murphy

Georg a Tech

Handwriting Recognition

Image Credit: Yann LeCun Georg a

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit: Yann LeCun Georgia

(Some) Rotation Invariance

Image Credit: Yann LeCun Georga

(Some) Scale Invariance

Image Credit: Yann LeCun Georgaa

Advanced Convolutional Networks

The Importance of Benchmarks

0

0

From: https://paperswithcode.com

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet – Layers and Key Aspects

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	Г	ConvNet Configuration							
		Α	A-LRN	В	С	D	Е		
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728		11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864		layers	layers	layers	layers	layers	layers		
POOL2: [112x112x64] memory: 112*112*64=800K params: 0		input (224 × 224 RGB image)							
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
			LRN	conv3-64	conv3-64	conv3-64	conv3-64		
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456		conv3-128	conv3-128	max conv3-128	conv3-128	conv3-128	conv3-128		
POOL2: [56x56x128] memory: 56*56*128=400K params: 0		conv3-128	011/3-128	conv3-128	conv3-128	conv3-128	conv3-128		
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912		maxpool							
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
POOL2: [28x28x256] memory: 28*28*256=200K params: 0					conv1-256	conv3-256	conv3-256		
							conv3-256		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		2.512	2 610	max		2 610	2.512		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		conv5-512	011/3-512	conv5-512	conv1-512	conv3-512	conv3-512		
POOL2: [14x14x512] memory: 14*14*512=100K params: 0					convi 012	00000012	conv3-512		
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	maxpool								
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
					conv1-512	conv3-512	conv3-512 conv3-512		
POOL2: [7x7x512] memory: 7*7*512=25K params: 0							conv5-512		
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		maxpool FC-4096							
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216		FC-4096							
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000		FC-1000							
	1	soft-max							

VGG

Table 2: Number of parameters (in millions).											
Network	A,A-LRN	В	С	D	E						

 Number of parameters
 133
 133
 134
 138
 144

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231m

Parameters and Memory

Key aspects:

Repeated application of:

- 3x3 conv (stride of 1, padding of 1)
- 2x2 max pooling (stride 2)
- Very large number of parameters

T											
ConvNet Configuration											
A		A-LRN		В		С		D			E
11 weig		11 weight		veight		weight		16 weigh			weight
layers	8	layers	la	yers	la	yers		lay	yers	1	ayers
input (224 × 224 RGB image)											
conv3-0	64	conv3-64	con	v3-64	COI	w3-64		conv3-64		CO	nv3-64
		LRN	con	v3-64	coi	w3-64		con	v3 - 64	co	nv3-64
maxpool											
conv3-1	.28	conv3-128	conv	/3-128	con	v3-128	0	conv	3-128	COI	w3-128
			conv	/3-128	con	v3-128	0	conv	3-128	COI	w3-128
maxpool											
conv3-2	.56	conv3-256		3-256	con	v3-256			3-256		w3-256
conv3-2	56	conv3-256	conv	3-256	con	v3-256	0	conv	3-256	COI	w3-256
					con	v1-256	0	conv	3-256	COI	w3-256
						сог					w3-256
				max	pool						
conv3-5	512	conv3-512	conv	3-512	con	v3-512	0	conv	3-512	COI	w3-512
conv3-5	512	conv3-512	conv	3-512	con	v3-512	0	conv	3-512	COI	w3-512
					con	v1-512	0	conv	3-512	COI	w3-512
										COI	w3-512
	maxpool										
conv3-5		conv3-512	conv	3-512		v3-512			3-512		w3-512
conv3-5	512	conv3-512	conv	3-512	con	v3-512		conv3-512		COI	w3-512
					con	v1-512	0	conv	3-512	COI	w3-512
										COI	w3-512
maxpool											
					4096						
				FC-	4096						
				FC-	1000						
				soft	max						
Table 2: Number of parameters (in millions).											
Г	Net	vork	unio	A.A-I		B			D	Е	7
-	Number of parameters					133	13		138	144	-
	INUI	noer of param	cicits	133	,	133	15	+	150	144	

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

VGG – Key Characteristics

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks
- Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Computational Complexity

0

From: An Analysis Of Deep Neural Network Models For Practical Application