Topics:

- Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a bias in the design of a neural network layer to reflect this?

Each node only receives input from $\boldsymbol{K}_{1} \times \boldsymbol{K}_{2}$ window (image patch)

- Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to ($\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+$ 1) $* N$ where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Idea 1: Receptive Fields

Nodes in different locations can share features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $\left(\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+\mathbf{1}\right)$
- Explicitly maintain spatial information

Idea 2: Shared Weights

We can learn many such features for this one layer

- Weights are not shared across different feature extractors

Parameters: $\left(K_{1} \times K_{2}+\right.$ 1) $* \boldsymbol{M}$ where \boldsymbol{M} is number of features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!
$x(t) \quad w(t) y(t)$

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.
Convolution is similar to cross-correlation.
It has applications that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

Notation: $\quad \boldsymbol{F} \otimes(\boldsymbol{G} \otimes \boldsymbol{I})=(\boldsymbol{F} \otimes \boldsymbol{G}) \otimes \boldsymbol{I}$

$$
y_{1}=h_{1} \cdot x_{0}+h_{0} \cdot x_{1}
$$

1D
Convolution $\quad y_{k}=\sum_{n=0} h_{n} \cdot x_{k-n}$

$$
y_{2}=h_{2} \cdot x_{0}+h_{1} \cdot x_{1}+h_{0} \cdot x_{2}
$$

$$
y_{3}=h_{3} \cdot x_{0}+h_{2} \cdot x_{1}+h_{1} \cdot x_{2}+h_{0} \cdot x_{3}
$$

2D
Convolution

$$
K=\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

$$
y_{0}=h_{0} \cdot x_{0}
$$

2D Discrete Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

1. Flip kernel (rotate 180 degrees)

2. Stride along image

Mathematics of Discrete 2D Convolution

As we have seen:
Convolution: Start at end of kernel and move back

- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$$
K^{\prime}=\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right]
$$

$y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)$
$(0,0)$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

Input \& Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) - Number of channels in the input image
- out_channels (int) - Number of channels produced by the convolution
- kernel_size (int or tuple) - Size of the convolving kernel
- stride (int or tuple, optional) - Stride of the convolution. Default: 1
- padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $\left(\boldsymbol{H}-\boldsymbol{k}_{\mathbf{1}}+\mathbf{1}\right) \times\left(\boldsymbol{W}-\boldsymbol{k}_{\mathbf{2}}+\mathbf{1}\right)$

- This is called a "valid" convolution and only applies kernel within image

Valid Convolution

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

$W+2$

$W+2-k_{2}+1$

We can move the filter along the image using larger steps (stride)This can potentially result in loss of information

- Can be used for dimensionality reduction (not recommended)

Stride can result in skipped pixels, e.g. stride of 3 for 5×5 input

W

Invalid Stride

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Image

Kernel

Feature Map

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product)

- Except with $\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}$ values

Image

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of
channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3 + 1}\right)$

- Example:

$$
k_{1}=3, k_{2}=3, N=4 \text { input channels }=3 \text {, then }(3 * 3 * 3+1) * 4=112
$$

Image

Kernels

Feature Maps

Just as before, in practice we can vectorize this operation

- Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Vectorization

 rechJust as before, in practice we can vectorize this operation

- Step 2: Multiple patches by kernels

Input Matrix

Backwards Pass for Convolution Layer

It is instructive to calculate the backwards pass of a convolution layer

$$
K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Similar to fully connected layer, will be simple vectorized linear algebra operation!
- We will see a duality between cross-correlation and convolution

$$
K^{\prime}=\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right]
$$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$(0,0)$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$(0,0)$

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 2 pixels on right/bottom) to make output the same size

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$$
|y|=H \times W
$$

$\frac{\partial L}{\partial y}$? Assume size $\boldsymbol{H} \times \boldsymbol{W}$ (add padding, change convention a bit for convenience)
∂L
$\overline{\partial y(r, c)}$
to access element

Gradient Terms and Notation

$$
\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}} \quad \frac{\partial L}{\partial k}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial k}
$$

Gradient for passing back
Gradient for weight update
(weights $=k$, i.e. kernel values)

Gradient for Convolution Layer

$$
\frac{\partial L}{\partial k}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial k}
$$

What does this weight affect at the output?

Gradient for weight update
Calculate one pixel at a time $\frac{\partial L}{\partial \boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})}$

Everything!

$(0,0)$

What a Kernel Pixel Affects at Output

Need to incorporate all upstream gradients:

Chain Rule:

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} \frac{\partial y(r, c)}{\partial k(a, b)}
$$

Sum over	Upstream	We will all output pixels
gradient (known)		

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=?
$$

Chain Rule over all Output Pixels

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=x(r+a, c+b)
$$

Does this look familiar?

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} x(r+a, c+b)
$$

Gradients and Cross-Correlation

Forward Pass

Backward Pass k(0,0)

W

Does this look familiar?

Cross-correlation between upstream gradient and input!
(until $\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$ output)

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
$$

What does this input pixel affect at the output?

Gradient for input (to pass to prior layer)
Calculate one pixel at a time $\frac{\partial L}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}$

Neighborhood around it (where part of the kernel touches it)
$(0,0)$

What an Input Pixel Affects at Output

Extents of Kernel Touching the Pixel
$\left(r^{\prime}-k_{1}+1\right.$,
$\left.c^{\prime}-k_{2}+1\right)$

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

$$
\begin{aligned}
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels }} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(\boldsymbol{r}^{\prime}, c^{\prime}\right)} \\
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
\end{aligned}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Let's derive it analytically this time (as opposed to visually)
$\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}$

Summing Gradient Contributions

Definition of cross-correlation (use $\mathrm{a}^{\prime}, b^{\prime}$ to distinguish from prior variables):

$$
y\left(r^{\prime}, c^{\prime}\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a^{\prime}=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}+a^{\prime}, c^{\prime}+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

Plug in what we actually wanted :

$$
y\left(r^{\prime}-a, c^{\prime}-b\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a \prime=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}-a+a^{\prime}, c^{\prime}-b+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

What is $\frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}=\mathbf{k}(\boldsymbol{a}, \boldsymbol{b})$
(we want term with $\boldsymbol{x}\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)$ in it; this happens when $\mathbf{a}=\mathbf{a}^{\prime}$ and $\mathbf{b}=\mathbf{b}^{\prime}$)

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Does this look familiar?

$$
=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)!

Convolution between upstream gradient and kerne!!
(can implement by flipping kernel and cross- correlation)

Backwards is Convolution

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement cross-correlation neural networks! (still called convolutional neural networks due to history)
- Can connect to convolutions via duality (flipping kernel)
- Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
- Forward: Cross-correlation
- Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
- In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrix-matrix multiplication)

Topics:

- Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

Mathematics of Discrete 2D Convolution
$y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)$
$(0,0)$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

$W+2$

$W+2-k_{2}+1$

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of
channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3 + 1}\right)$

- Example:

$$
k_{1}=3, k_{2}=3, N=4 \text { input channels }=3 \text {, then }(3 * 3 * 3+1) * 4=112
$$

Image

Kernels

Feature Maps

Need to incorporate all upstream gradients:

Chain Rule:

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} \frac{\partial y(r, c)}{\partial k(a, b)}
$$

Sum over	Upstream	We will all output pixels
gradient (known)		

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=?
$$

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
- When at pixel $\boldsymbol{y}(\boldsymbol{r}, \boldsymbol{c})$, kernel is on input x such that $\boldsymbol{k}(\mathbf{0}, \mathbf{0})$ is multiplied by $\mathrm{x}(\boldsymbol{r}, \boldsymbol{c})$
- But we want derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$
- $k(0,0) * x(r, c), k(1,1) * x(r+1, c+1), k(2,2) * x(r+2, c+2)=>$ in general $k(a, b) * x(r+a, c+b)$
- Just like before in fully connected layer, partial derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$ only has this term (other x terms go away because not multiplied by $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$).

Chain Rule over all Output Pixels

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=x(r+a, c+b)
$$

Does this look familiar?

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} x(r+a, c+b)
$$

Gradients and Cross-Correlation

Forward Pass

Backward Pass k(0,0)

W

Does this look familiar?

Cross-correlation between upstream gradient and input!
(until $\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$ output)

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
$$

What does this input pixel affect at the output?

Gradient for input (to pass to prior layer)
Calculate one pixel at a time $\frac{\partial L}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}$

Neighborhood around it (where part of the kernel touches it)
$(0,0)$

What an Input Pixel Affects at Output

Extents of Kernel Touching the Pixel
$\left(r^{\prime}-k_{1}+1\right.$,
$\left.c^{\prime}-k_{2}+1\right)$

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

$$
\begin{aligned}
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)} \\
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right) * k\left(0, \boldsymbol{c}^{\prime}\right)} \\
& x\left(r^{\prime}, c^{\prime}\right) * k(1,1) \Rightarrow ?
\end{aligned}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$$
\begin{aligned}
& x\left(r^{\prime}, c^{\prime}\right) * k(\mathbf{0}, \mathbf{0}) \Rightarrow y\left(r^{\prime}, c^{\prime}\right) \\
& x\left(r^{\prime}, c^{\prime}\right) * k(\mathbf{1}, \mathbf{1}) \Rightarrow y\left(r^{\prime}-\mathbf{1}, c^{\prime}-1\right) \\
& \ldots \\
& x\left(r^{\prime}, c^{\prime}\right) * k(a, b) \Rightarrow y\left(r^{\prime}-a, c^{\prime}-b\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Let's derive it analytically this time (as opposed to visually)
$\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}$

Summing Gradient Contributions

Definition of cross-correlation (use $\mathrm{a}^{\prime}, b^{\prime}$ to distinguish from prior variables):

$$
y\left(r^{\prime}, c^{\prime}\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a^{\prime}=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}+a^{\prime}, c^{\prime}+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

Plug in what we actually wanted :

$$
y\left(r^{\prime}-a, c^{\prime}-b\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a \prime=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}-a+a^{\prime}, c^{\prime}-b+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

What is $\frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}=\mathbf{k}(\boldsymbol{a}, \boldsymbol{b})$
(we want term with $\boldsymbol{x}\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)$ in it; this happens when $\mathbf{a}=\mathbf{a}^{\prime}$ and $\mathbf{b}=\mathbf{b}^{\prime}$)

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Does this look familiar?

$$
=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)!

Convolution between upstream gradient and kerne!!
(can implement by flipping kernel and cross- correlation)

Backwards is Convolution

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement cross-correlation neural networks! (still called convolutional neural networks due to history)
- Can connect to convolutions via duality (flipping kernel)
- Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
- Forward: Cross-correlation
- Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
- In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrixmatrix multiplication)

Summary

Pooling Layers

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?

Parameters

- Yes! We call one class of these operations pooling
- kernel_size - the size of the window to take a max over
- stride - the stride of the window. Default value is kernel_size
- padding - implicit zero padding to be added on both sides

Pooling Layers

Example: Max pooling

- Stride window across image but perform per-patch max operation

None!

Max Pooling

Not restricted to max; can use any differentiable function

- Not very common in practice
$\mathrm{X}(0: 2,0: 2)=\left[\begin{array}{ccc}200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10\end{array}\right] \longmapsto$ average $(0: 2,0: 2)=\frac{1}{N} \sum_{i} \sum_{j} x(i, j)=90$

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Image

This combination adds some invariance to translation of the features

- If feature (such as beak) translated a little bit, output values still remain the same

Image

Convolution
Layer

Pooling
Layer

Convolution by itself has the property of equivariance

- If feature (such as beak) translated a little bit, output values move by the same translation

Invariance vs. Equivariance

Simple Convolutional Neural Networks

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Image

Convolution Layer

Layer
Pooling

Alternating Convolution and Pooling

Fully
Connected Layers

Adding a Fully Connected Layer

Fully
Connected Layers

Convolutional Neural Networks

These architectures have existed since 1980s

Handwriting Recognition

Translation Equivariance (Conv Layers) \& Invariance (Output)

Image Credit:
Yann LeCun

(Some) Rotation Invariance

Image Credit:
Yann LeCun

(Some) Scale Invariance

Image Credit:
Yann LeCun

Advanced Convolutional Networks

The Importance of Benchmarks

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

Full (simplified) AlexNet architecture:
[227×227×3] INPUT
[$55 \times 55 \times 96$] CONV1: 9611×11 filters at stride 4 , pad 0 [27×27×96] MAX POOL1: 3×3 filters at stride 2
[$27 \times 27 \times 96$] NORM1: Normalization layer
[$27 \times 27 \times 256$] CONV2: 2565×5 filters at stride 1, pad 2 [$13 \times 13 \times 256$] MAX POOL2: 3×3 filters at stride 2 [$13 \times 13 \times 256$] NORM2: Normalization layer
[$13 \times 13 \times 384$] CONV3: 3843×3 filters at stride 1, pad 1 [$13 \times 13 \times 384$] CONV4: 3843×3 filters at stride 1, pad 1 [$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 r.

AlexNet - Layers and Key Aspects

```
INPUT: [224*224\times3] memory: 224*224*3=150K params: 0 (not counting biases)
```

CONV3-64: [224×224×64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 3\right)^{*} 64=1,728$
CONV3-64: [224×224×64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112×112×64] memory: $112^{*} 112^{*} 64=800 \mathrm{~K}$ params: 0
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [$56 \times 56 \times 128$] memory: $56^{*} 56^{*} 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56 256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $(3 * 3 * 128)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [$56 \times 56 \times 256$] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [$28 \times 28 \times 512$] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [$28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [$28 \times 28 \times 512$] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7×7×512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1×1×4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [$1 \times 1 \times 4096$] memory: 4096 params: $4096^{*} 4096=16,777,216$
FC: [1×1×1000] memory: 1000 params: $4096^{*} 1000=4,096,000$

ConvNet Configuration								
A	A-LRN		B		C		D	E
11 weight layers	11 weight layers		weight ayers		weight yers		weight layers	$\begin{gathered} 19 \text { weight } \\ \text { layers } \end{gathered}$
input (224×224 RGB image)								
conv3-64	$\begin{aligned} & \text { conv3-64 } \\ & \text { LRN } \end{aligned}$		$\begin{aligned} & \text { nv3-64 } \\ & \text { nv3-64 } \end{aligned}$		$\begin{aligned} & \text { 1v3-64 } \\ & \text { Iv3-64 } \end{aligned}$		$\begin{aligned} & \text { onv3-64 } \\ & \text { onv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool								
conv3-128	conv3-128	conv conv	$\begin{aligned} & \text { viv3-128 } \\ & \text { iv3-128 } \end{aligned}$		$\begin{aligned} & \text { v3-128 } \\ & \text { v3-128 } \end{aligned}$		$\begin{aligned} & \text { nv3-128 } \\ & \text { nv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$		$\begin{aligned} & \text { 1v3-256 } \\ & \text { iv3-256 } \end{aligned}$		$\begin{aligned} & \text { v3-256 } \\ & \text { v3-256 } \\ & \text { v1-256 } \end{aligned}$		$\begin{aligned} & \text { nv3-256 } \\ & \text { nv3-256 } \\ & \text { nv3-256 } \end{aligned}$	conv3-256 conv3-256 conv3-256 conv3-256
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { 1v3-512 } \\ & \text { 1v3-512 } \end{aligned}$		$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { iv3-512 } \\ & \text { iv3-512 } \end{aligned}$	conv conv conv	$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								
Table 2: Number of parameters (in millions).								
Network			A,A-L	RN	B	C	D	E
Number of parameters			133		133	134	138	144

From: Simonyan \& Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231ro

```
INPUT: [224*224\times3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224\times224\times64] memory: 224*224*64=3.2M params: (3*3*3)*64=1,728
CONV3-64: [224\times224\times64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112\times112\times64] memory: 112*112*64=800K params: 0
CONV3-128: [112\times112\times128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112\times112\times128] memory: 112*112*128=1.6M params: (3*3*128)*128=147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56\times256] memory: 56*56*256=800K params: (3*3*128)*256=294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256=589,824
CONV3-256: [56\times56\times256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28\times28\times256] memory: 28*28*256=200K params: 0
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: ( }\mp@subsup{3}{}{*}\mp@subsup{3}{}{*}256)*512=1,179,64
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14\times14\times512] memory: 14*14*512=100K params: 0
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3* 3*512)*512 = 2,359,296
POOL2:[7\times7\times512] memory: 7* 7*512=25K params: 0
FC: [1\times1\times4096] memory: 4096 params: 7* **512*4096 = 102,760,448
FC: [1\times1\times4096] memory: }4096\mathrm{ params: 4096*4096 = 16,777,216
FC: [1\times1\times1000] memory: 1000 params: 4096*1000 =4,096,000
```


Most memory usage in convolution layers

Most parameters in FC layers

Key aspects:

Repeated application of:

- 3×3 conv (stride of 1 , padding of 1)
- 2×2 max pooling (stride 2)

Very large number of parameters

ConvNet Configuration					
A	A-LRN	B	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
input (224×224 RGB image)					
conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { LRN } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool					
conv3-128	conv3-128	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$
maxpool					
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	conv3-256 conv3-256 conv3-256 conv3-256
maxpool					
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool					
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

VGG - Key Characteristics

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolution.s.

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolution.s.
Inception Module

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition
Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

Several ways to learn

 architectures:- Evolutionary learning and reinforcement learning
- Prune overparameterized networks
- Learning of

repeated blocks

 typical
Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applicationg

