Topics:

- Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 2
- Implement convolutional neural networks
- Resources (in addition to lectures):
- DL book: Convolutional Networks
- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
- Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf
- HW2 Tutorial @190, Conv backward @192, OMSCS versions @191
- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF vvizXOnPa?dl=0)
- FB/Meta Office hours Friday 02/17 2pm EST!
- Pytorch \& scalable training
- Module 2, Lesson 8 (M2L8), on dropbox

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$$
W=5 \quad(H-\mathbb{1}, W-\mathbb{1})
$$

Since we will be learning these kernels, this change does not matter!

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \quad X(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}+\mathbf{1}\right)$

- Example:
$k_{1}=3, k_{2}=3, N=4$ input channels $=3$, then $(3 * 3 * 3+1) * 4=112$

Image

Kernels

Feature Maps

Need to incorporate all upstream gradients:
$\left\{\frac{\partial L}{\partial y(0,0)}, \frac{\partial L}{\partial y(0,1)}, \ldots, \frac{\partial L}{\partial y(H, W)}\right\}$
(0, 0)

Chain Rule:

$$
\begin{array}{r}
\frac{\partial L}{\partial \boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial \boldsymbol{y}(\boldsymbol{r}, \boldsymbol{c})} \frac{\partial \boldsymbol{\partial}(\boldsymbol{r}, \boldsymbol{c})}{\partial \boldsymbol{c}(\boldsymbol{a}, \boldsymbol{b})} \\
\begin{array}{c}
\text { Sum over } \\
\text { all output } \\
\text { pixels }
\end{array} \\
\begin{array}{c}
\text { Upstream } \\
\text { gradient } \\
\text { (known) }
\end{array} \\
\text { We will } \\
\text { compute }
\end{array}
$$

$W=5$
$(H-1, W-1)$

Chain Rule over all Output Pixels

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=?
$$

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
- When at pixel $\boldsymbol{y}(\boldsymbol{r}, \boldsymbol{c})$, kernel is on input x such that $\boldsymbol{k}(\mathbf{0}, \mathbf{0})$ is multiplied by $\mathrm{x}(\boldsymbol{r}, \boldsymbol{c})$
- But we want derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$
- $k(0,0) * x(r, c), k(1,1) * x(r+1, c+1), k(2,2) * x(r+2, c+2)=>$ in general $k(a, b) * x(r+a, c+b)$
- Just like before in fully connected layer, partial derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$ only has this term (other x terms go away because not multiplied by $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$).

W

W

Chain Rule over all Output Pixels

$$
\begin{aligned}
& \frac{\partial y(r, c)}{\partial k(a, b)}=x(r+a, c+b) \\
& \frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} x(r+a, c+b)
\end{aligned}
$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$ output)

Forward Pass

Backward Pass $k(0,0) \quad$ Backward Pass $k(2,2)$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$ output)

Forward and Backward Duality

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
$$

Gradient for input (to pass to prior layer)
Calculate one pixel at a time $\frac{\partial L}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}$

What does this input pixel affect at the output?

Neighborhood around it (where part of the kernel touches it)

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels }} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$$
\begin{aligned}
& x\left(r^{\prime}, c^{\prime}\right) * k(0,0) \Rightarrow y\left(r^{\prime}, c^{\prime}\right) \\
& x\left(r^{\prime}, c^{\prime}\right) * k(1,1) \Rightarrow ?
\end{aligned}
$$

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$$
\begin{aligned}
& x\left(r^{\prime}, c^{\prime}\right) * k(0,0) \Rightarrow y\left(r^{\prime}, c^{\prime}\right) \\
& x\left(r^{\prime}, c^{\prime}\right) * k(\mathbf{1}, \mathbf{1}) \Rightarrow y\left(r^{\prime}-1, c^{\prime}-1\right) \\
& \cdots \\
& x\left(r^{\prime}, c^{\prime}\right) * k(a, b) \Rightarrow y\left(r^{\prime}-a, c^{\prime}-b\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Let's derive it analytically this time (as opposed to visually)
$\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}$

Summing Gradient Contributions

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Does this look familiar?

$$
=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)!

Convolution between upstream gradient and kernel!
(can implement by flipping kernel and cross- correlation)

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement cross-correlation neural networks! (still called convolutional neural networks due to history)
- Can connect to convolutions via duality (flipping kernel)
- Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
- Forward: Cross-correlation
- Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
- In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrixmatrix multiplication)

Pooling Layers

Dimensionality reduction is an important aspect of machine learning- Can we make a layer to explicitly down-sample image or feature maps?
- Yes! We call one class of these operations pooling operations

Parameters

- kernel_size - the size of the window to take a max over
- stride - the stride of the window. Default value is kernel_size
- padding - implicit zero padding to be added on both sides

Example: Max pooling

Stride window across image but perform per-patch max operation $X(0: 2,0: 2)=\left[\begin{array}{ccc}200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10\end{array}\right] \xrightarrow{\square} \max (0: 2,0: 2)=200$

How many learned

 parameters does this layer have?None!

Max Pooling

Not restricted to max; can use any differentiable function
Not very common in practice
$\mathrm{X}(0: 2,0: 2)=\left[\begin{array}{ccc}200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10\end{array}\right] \square$ average $(0: 2,0: 2)=\frac{1}{N} \sum_{i} \sum_{j} x(i, j)=90$

Max Pooling

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Combining Convolution \& Pooling Layers

This combination adds some invariance to translation of the features

- If feature (such as beak) translated a little bit, output values still remain the same

Invariance

Convolution by itself has the property of equivariance

- If feature (such as beak) translated a little bit, output values move by the same translation

Simple
 Convolutional Neural Networks

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Adding a Fully Connected Layer

These architectures have existed since 1980s

Image Credit: Yann LeCun, Kevin Murnh

LeNet Architecture

Handwriting Recognition

Image Credit:
Yann LeCun

Translation Equivariance (Conv Layers) \& Invariance (Output)

(Some) Rotation Invariance

Image Credit:
Yann LeCun

(Some) Scale Invariance

Image Credit:
Yann LeCun

Advanced Convolutional Networks

The Importance of Benchmarks

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.


```
Full (simplified) AlexNet architecture:
[224k224\times3] INPUT
[55\times55\times96] CONV1: 96 11\times11 filters at stride 4, pad 0
[27\times27\times96] MAX POOL1: 3\times3 filters at stride 2
[27\times27\times96] NORM1: Normalization layer
[27\times27\times256] CONV2: 256 5\times5 filters at stride 1, pad 2
[13\times13\times256] MAX POOL.2: 3\times3 filters at stride 2
[13\times13\times256] NORM2: Normalization layer
[13\times13\times384] CONV3: }3843\times3\mathrm{ filters at stride 1, pad 1
[13\times13\times384] CONV4: 384 3\times3 filters at stride 1, pad 1
[13\times13\times256] CONV5: 256 3\times3 filters at stride 1, pad 1
[ }6\times6\times256]\mathrm{ MAX POOL3: 3 3 3 filters at stride 2
[4096] FC6: }4096\mathrm{ neurons
[4096] FC7: }4096\mathrm{ neurons
[1000] FC8: }1000\mathrm{ neurons (class scores)
```

Full (simplified) AlexNet architecture:
[$55 \times 55 \times 96$] CONV1: 9611×11 filters at stride 4, pad 0 [$27 \times 27 \times 96$] MAX POOL1: 3×3 filters at stride 2 [27×27×96] NORM1: Normalization layer
[$27 \times 27 \times 256$] CONV2: 2565×5 filters at stride 1, pad 2 [3x13x256] MAX POOL2. 3×3 filters at stride 2
[13×13×256] NORM2: Normalization layer
[$13 \times 13 \times 384$] CONV4: 3843×3 filters at stride 1 pad 1 [$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layersPCA-based data augmentationDropout- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

From: Simonyan \& Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2311
VGG

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan \& Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231ro

Parameters and Memory

Key aspects:

Repeated application of:

- 3×3 conv (stride of 1 , padding of 1)
- 2×2 max pooling (stride 2)

Very large number of parameters

ConvNet Configuration								
A	A-LRN		B		C		D	E
11 weight layers	11 weight layers		weight ayers		weight yers		6 weight layers	19 weight layers
input (224×224 RGB image)								
conv3-64	$\begin{aligned} & \text { conv3-64 } \\ & \text { LRN } \end{aligned}$		$\begin{aligned} & \text { nv3-64 } \\ & \text { nv3-64 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { iv3-64 } \\ & \text { iv3-64 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { onv3-64 } \\ & \text { onv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool								
conv3-128	conv3-128	$\begin{aligned} & \text { conv } \\ & \text { conv } \end{aligned}$	$\begin{aligned} & \text { vi-128 } \\ & \text { ve3-128 } \end{aligned}$		$\begin{aligned} & \mathrm{v} 3-128 \\ & \mathrm{v} 3-128 \end{aligned}$		$\begin{aligned} & \text { nv3-128 } \\ & \text { nve3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$		$\begin{aligned} & \text { iv3-256 } \\ & \text { iv3-256 } \end{aligned}$	cony	$\begin{aligned} & \text { v3-256 } \\ & \text { v3-256 } \\ & \text { v1-256 } \end{aligned}$		$\begin{aligned} & \text { nv3-256 } \\ & \text { nv3-256 } \\ & \text { nv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { iv3-512 } \\ & \text { Iv3-512 } \end{aligned}$		$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { iv3-512 } \\ & \text { iv3-512 } \end{aligned}$		$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								
Table 2: Number of parameters (in millions).								
Network			A,A-L	RN	B	C	D	E
Number of parameters			13		133	134	138	144

From: Simonyan \& Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231re
VGG - Key Characteristics

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolution.
Inception Architecture

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolution:

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition
Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Several ways to learn

 architectures:- Evolutionary learning and reinforcement learningPrune overparameterized networks
- Learning of
 repeated blocks typical

Evolving Architectures and AutoML

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applicationo

