Topics:

- CNNs
- Transfer Learning
- Visualization

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 2

- Due soon!
- Resources (in addition to lectures):
 - DL book: Convolutional Networks
 - CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
 - Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns backprop notes.pdf
 - HW2 Tutorial @113, Conv @116, Focal Loss @117
 - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)
- Meta OH right after this lecture (2pm ET)!
- Projects
 - Project proposal due March 13th
 - Some Meta project topics up.
 - March 8th Class will be used for project planning session
 - Form teams and topic now!

Ge

Adding a Fully Connected Layer

These architectures have existed **since 1980s**

Image Credit: Yann LeCun, Kevin Murphy

The Importance of Benchmarks

First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55 W' = (W - F + 2P) / S + 1

Ge

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96]

W' = (W - F + 2P) / S + 1

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96] Parameters: (11*11*3 + 1)*96 = 35K

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

But have become **deeper and more complex**

From: Szegedy et al. Going deeper with convolutions

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Naive Inception module

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Apply 1x1 convolutions as bottleneck layer (decrease number of channels!)

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Inception module with dimension reduction

Using same parallel layers as naive example, and adding "1x1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 **Total: 358M ops**

Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks
- Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity

Ge

From: An Analysis Of Deep Neural Network Models For Practical Application

Transfer Learning & Generalization

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What if we don't have enough data?

Step 1: Train on large-scale dataset

Input Image

Convolutional Neural Networks

Transfer Learning – Training on Large Dataset

Step 2: Take your custom data and **initialize** the network with weights trained in Step 1

Step 3: (Continue to) train on new dataset

- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

This works extremely well! It was surprising upon discovery.

- Features learned for 1000 object categories will work well for 1001st!
- Generalizes even across tasks (classification to object detection)

From: Razavian et al., CNN Features off-the-shelf: an Astounding Baseline for Recognition

Surprising Effectiveness of Transfer Learning

Learning with Less Labels

But it doesn't always work that well!

- If the source dataset you train on is very different from the target dataset, transfer learning is not as effective
- If you have enough data for the target domain, it just results in faster convergence
 - See He et al., "Rethinking ImageNet Pre-training"

Effectiveness of More Data

From: Revisiting the Unreasonable Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html

Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is Predictable

There is a large number of different low-labeled settings in DL research

Setting	Source	Target	Shift Type	
Semi-supervised	Single labeled	Single unlabeled	None	
Domain Adaptation	Single labeled	Single unlabeled	Non-semantic	
Domain Generalization	Multiple labeled	Unknown	Non-semantic	
Cross-Task Transfer	Single labeled	Single unlabeled	Semantic	
Few-Shot Learning	Single labeled	Single few-labeled	Semantic	
Un/Self-Supervised	Single unlabeled	Many labeled	Both/Task	

Dealing with Low-Labeled Situations

Visualization of Neural Networks

Given a **trained** model, we'd like to understand what it learned.

Weights

plane car

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Conv layers: For each kernel, scale values from 0-255 and visualize

64 x 3 x 11 x 11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 2314

0

We can also produce visualization output (aka activation/filter) maps

These are **larger** early in the network.

Visualizing Output Maps

Visualizing Output Maps

From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization",

Activations – Small Output Sizes

Problem: Small conv outputs also hard to interpret

Georgia

Activations of last conv layer in VGG network

CNN101 and CNN Explainer

https://poloclub.github.io/cnn-explainer/

https://fredhohman.com/papers/cnn101

We can take the activations of any layer (FC, conv, etc.) and **perform dimensionality reduction**

- Often reduce to two dimensions for plotting
- E.g. using Principle
 Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping to preserve pair-wise distances

Van der Maaten & Hinton, "Visualizing Data using t-SNE", 2008.

Dimensionality Reduction: t-SNE

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

Robustness

Hendrycks & Dietterich, 2019

Summary & Caveats

While these methods provide **some** visually interpretable representations, they can be misleading or uninformative (Adebayo et al., 2018)

Assessing interpretability is difficult

- Requires user studies to show usefulness
- E.g. they allow a user to predict mistakes beforehand

Neural networks learn **distributed** representation

- (no one node represents a particular feature)
- This makes interpretation difficult

Gradient-Based Visualizations

Given a **trained** model, we can perform forward pass given an input to get scores, softmax probabilities, loss and then backwards pass to get gradients

- Note: We are keeping parameters/weights frozen
 - Do not use gradients w.r.t. weights to perform updates

Backwards pass gives us gradients for all layers: How the loss changes as we change different parts of the input

This can be **useful not just for optimization**, but also to understand what was learned

- Gradient of loss with respect to all layers (including input!)
- Gradient of any layer with respect to input (by cutting off computation graph)

Idea: We can backprop to the image

- Sensitivity of loss to individual pixel changes
- Large sensitivity implies important pixels
- Called Saliency Maps

In practice:

- Take absolute value of gradient
- Sum across all channels

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Applying traditional (non-learned) computer vision segmentation algorithms on gradients gets us **object segmentation for free!**

Surprising because **not** part of supervision

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Object Segmentation for Free!

Can be used to detect dataset bias

E.g. snow used to misclassify as wolf

Incorrect predictions also informative

From: Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classified

Rather than loss or scores, we can pick a neuron somewhere deep in the network and compute gradient of **activation** with respect to input

Steps:

Pick a neuron

- Find gradient of its activation w.r.t. input image
- Can also first find highest activated image patches using its corresponding neuron (based on receptive field)

From: Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier

Normal backprop not always best choice

Example: You may get parts of image that **decrease** the feature activation

There are probably lots of such input pixels

Guided backprop can be used to improve visualizations

b)				n í				
Forward pass	1	-1	5	\rightarrow	1	0	5	3
	2	-5	-7		2	0	0	
	-3	2	4		0	2	4	
		_	_			_	_	
Backward pass: backpropagation	-2	0	-1	←	-2	3	-1	
	6	0	0		6	-3	1	
	0	-1	3		2	-1	3	
		_	_			_		
Backward pass: "deconvnet"	0	3	0	+	-2	3	-1	1
	6	0	1		6	-3	1	
	2	0	3		2	-1	3	
Backward pass: guided backpropagation	0	0	0		-2	3	-1	
	6	0	0	+	6	-3	1	
	0	0	3		2	-1	3	

From: Springenberg et al., "Striving For Simplicity: The All Convolutional Ne?"

Guided Backprop Results

From: Springenberg et al., "Striving For Simplicity: The All Convolutional Net"

Note: These images were created by a slightly different method called **deconvolution**, which ends up being similar to guided backprop

