
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Advanced Architectures
• Bias, Fairness, Calibration

Administrivia

• Assignment 2 – We are in grace period!

• Projects
• Project proposal due March 13th

• March 8th: Come with project teams/ideas and run them by TAs!

• Meta Office Hours on Fairness/Bias today 2pm EST
• NOT recorded!

Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)

Segmentation Tasks

Given an image, output another image

⬣ Each output contains class distribution per pixel

⬣ More generally an image-to-image problem

Semantic Segmentation
(Class distribution per pixel)

Instance Segmentation
(Class distribution per pixel with unique ID)

Input & Output

Probability distribution over
classes for this one pixel

?

Model

Idea 1: Fully-Convolutional Network

Fully connected layers no longer explicitly retain spatial information (though the
network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Fully
Connected

Layers

Loss

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer

Converting FC Layers to Conv Layers

Each kernel has the size of entire input! (output is 1 scalar)

⬣ This is equivalent to Wx+b!

⬣ We have one kernel per output node

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer

Fully
Convolutional
Hidden Layer

Loss

Fully
Convolutional
Hidden Layer

Fully
Convolutional
Output Layer

… … …

Same Kernel, Larger Input

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Original:

Larger:

Input Conv Kernel Output

𝑯
=

𝟕

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Fully
Convolutional
Layer Kernel

Fully
Convolutional
Layer Kernel

Inputting Larger Images

Original sized image

Larger Image

Larger Output Maps

Larger
Output
Size!

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

Why does this matter?

⬣ We can stride the “fully connected” classifier across larger inputs!

⬣ Convolutions work on arbitrary input sizes (because of striding)

Idea 2: “De”Convolution and UnPooling

Image
Convolution

+
Non-Linear

Layer

Pooling
Layer

Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+
Non-Linear

Layer

(Un)Pooling
Layer

(De)Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

We can develop learnable
or non-learnable

upsampling layers!

Encoder

Decoder

Max Unpooling

Example : Max pooling

Stride window across image but perform per-patch max operation

𝑾 = 𝟓

𝑯
=

𝟓

𝑾 = 𝟓

𝑯
=

𝟓

Idea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

Copy value to position chosen as max
in encoder, fill reset of this window
with zeros

Pooling UnPooling

Max Unpooling Example (one window)

𝟐𝐱𝟐 max unpool

Decoder

𝟐𝐱𝟐 max pool

Encoder

Max Unpooling Example

𝐞𝐧𝐜 𝐞𝐧𝐜

𝟐𝐱𝟐 max pool

𝟐𝐱𝟐 max unpool

𝐝𝐞𝐜𝐝𝐞𝐜

Encoder

Decoder

Contributions from
multiple windows

are summed

Symmetry in Encoder/Decoder

We pull max indices from
corresponding layers
(requires symmetry in

encoder/decoder)

Image
Convolution

+
Non-Linear

Layer

Pooling
Layer

Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+
Non-Linear

Layer(Un)Pooling
Layer

(De)Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

Encoder

Decoder

“De”Convolution (Transposed Convolution)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

How can we upsample using convolutions and learnable kernel?

Normal Convolution

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

𝑯
=

𝟓
𝑯

−
𝒌

𝟏
+

𝟏

𝑾 − 𝒌𝟐 + 𝟏

Transposed Convolution Example

Contributions from
multiple windows

are summed

Incorporate Incorporate

Symmetry in Encoder/Decoder

We can either learn the kernels,
or take corresponding encoder
kernel and rotate 180 degrees

(no decoder learning)

Image
Convolution

+
Non-Linear

Layer

Pooling
Layer

Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution

+
Non-Linear

Layer(Un)Pooling
Layer

(De)Convolution
+

Non-Linear
Layer

Useful, lower-
dimensional
features

Decoder

Transfer Learning

We can start with a
pre-trained

trunk/backbone (e.g.
network pretrained on

ImageNet)!

Input
Image

PredictionsCNN

CNN

U-Net

You can
have skip

connections
to bypass

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

⬣ Various ways to get image-like outputs, for
example to predict segmentations of input
images

⬣ Fully convolutional layers essentially apply
the striding idea to the output classifiers,
supporting arbitrary input sizes
⬣ (without output size depending on what

the input size is)

⬣ We can have various upsampling layers that
actually increase the size

⬣ Encoder/decoder architectures are popular
ways to leverage these to perform general
image-to-image tasks

Summary

Single-Stage
Object

Detection

Object Detection Tasks

Given an image, output a list of bounding boxes with probability
distribution over classes per box

Problems:

⬣ Variable number of boxes!

⬣ Need to determine candidate regions (position and scale) first

Object Detection
(List of bounding boxes with class distribution per box)

Object Detection Tasks

We can use the same idea of fully-convolutional networks

⬣ Use ImageNet pre-trained model as backbone (e.g. taking in 224x224
image)

⬣ Feed in larger image and get classifications for different windows in image

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer

Fully
Convolutional
Hidden Layer

Fully
Convolutional
Hidden Layer

Fully
Convolutional
Output Layer

Loss

Object Detection Tasks

We can have a multi-headed architecture

⬣ One part predicting distribution over class labels (classification)

⬣ One part predicting a bounding box for each image region (regression)

⬣ Refinement to fit the object better (outputs 4 numbers)

⬣ Both heads share features! Jointly optimized (summing gradients)

x,y

w,

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer

Fully
Convolutional
Hidden Layer

Fully
Convolutional
Hidden Layer

Fully
Convolutional
Output Layer

Mean
Squared
Error (MSE)

Cross-
Entropy
Loss

Object Detection Tasks

Can also do this at multiple scales to result in a large number of detections

⬣ Various tricks used to increase the resolution (decrease subsampling ratio)

⬣ Redundant boxes are combined through Non-Maximal Suppression (NMS)

Sermanet, et al., “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”, 2013

Single-Shot Detector (SSD)

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-shot detectors
use a similar idea of
grids as anchors,
with different scales
and aspect ratios
around them

⬣ Various tricks
used to increase
the resolution
(decrease
subsampling
ratio)

You Only Look Once (YOLO)

Redmon, et al., “You Only Look Once:Unified, Real-Time Object Detection”, 2016

Similar network architecture but single-scale (and hence faster for same size)

Datasets

Lin, et al., “Microsoft COCO: Common Objects in Context”, 2015. https://cocodataset.org/#explore

Evaluation – Mean Average Precision (mAP)

Ground
Truth

Detection

1. For each bounding box,
calculate intersection over union
(IoU)

2. Keep only those with IoU >
threshold (e.g. 0.5)

3. Calculate precision/recall curve
across classification probability
threshold

4. Calculate average precision
(AP) over recall of [0, 0.1, 0.2,
…, 1.0]

5. Average over all categories to
get mean Average Precision
(mAP)

𝒊

𝒊∈[𝟎,𝟎.𝟏,…𝟏.𝟎]

Recall

P
re

ci
si

o
n

Results

Tan, et al., “EfficientDet: Scalable and Efficient Object Detection”, 2020
Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector”, 2020

EfficientDet PP-YOLO

Two-Stage
Object

Detectors

R-CNN

Instead of making dense predictions across an image, we can decompose the
problem:

⬣ Find regions of interest (ROIs) with object-like things

⬣ Classifier those regions (and refine their bounding boxes)

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

For each crop,
Resize

Extracting Region Proposal

We can use unsupervised
(non-learned!) algorithms for
finding candidates

Downsides:

Takes 1+ second per image

Return thousands of (mostly
background) boxes

Resize each candidate to full
input size and classify

Uijlings, et al., “Selective Search for Object Recognition”, 2012

Inefficiency of R-CNN

What is the problem with this?

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

Computation for
convolutions re-done
for each image patch,
even if overlapping!

Fast R-CNN

Map each ROI in image to corresponding region in feature maps

Extract Feature
Map Region

?

Idea: Reuse computation by finding regions in feature maps

Feature extraction only done once per image now!

Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015

ROI Pooling

Given an arbitrarily-sized feature map, we can use pooling across a grid
(ROI Pooling Layer) to convert to fixed-sized representation

For each grid element, max pool however many
values there are to one scalar

Fast R-CNN

We can now train this model end-to-end (i.e. backpropagate through
entire model including ROI Pooling)!

Map each ROI in image to corresponding are in feature maps

Extract Feature
Map Region

ROI
Pooling

Faster R-CNN

Idea: Why not have the neural
network also generate the proposals?

Region Proposal Network (RPN)
uses same features!

Outputs objectness score and
bounding box

Top k selected for classification

Note some parts (gradient w.r.t.
bounding box coordinates) not
differentiable so some complexity in
implementation

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

Faster R-CNN

RPN also uses notion
of anchors in a grid

Boxes of various sizes
and scales classified
with objectness score
and refined bounding
boxes refined

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

Mask R-CNN

He, et al., “Mask R-CNN”, 2018

Many new
advancements have
been made

For example,
combining detection
and segmentation

Extract foreground
(object) mask per
bounding box

https://paperswithcode.com/sota/object-detection-on-coco

Summary

• A range of problems characterized by density and type of output

• Semantic/instance segmentation: Dense, spatial output

• Leverage encoder/decoder architectures

• Object detection: Variable-length list of objects

• Two-stage versus one-stage architectures

• (Not covered): Anchor-based versus anchor-free methods

Data Wrangling

Class Imbalance: Object Detection
background boxes >>> # foreground boxes!

Data Wrangling

Class Imbalance: Focal Loss
Cross Entropy: easy examples incur a non-negligible loss,
which in aggregate mask out the harder, rare examples

Focal Loss: down-weights easy examples, to give more
attention to difficult examples

(Lin et al., 2017)

Data Wrangling

Class Imbalance: Focal Loss

(Lin et al., 2017)

Bias &
Fairness

ML and Fairness

• AI effects our lives in many ways
• Widespread algorithms with many small interactions

– e.g. search, recommendations, social media
• Specialized algorithms with fewer but higher-stakes

interactions
– e.g. medicine, criminal justice, finance

• At this level of impact, algorithms can have unintended
consequences

• Low classification error is not enough, need fairness

(C) Dhruv Batra & Zsolt Kira 46
Slide Credit: David Madras

(C) Dhruv Batra & Zsolt Kira 47

(C) Dhruv Batra & Zsolt Kira 48

ML and Fairness
• Fairness is morally and legally motivated
• Takes many forms
• Criminal justice: recidivism algorithms (COMPAS)

– Predicting if a defendant should receive bail
– Unbalanced false positive rates: more likely to wrongly deny a black

person bail

(C) Dhruv Batra & Zsolt Kira 49
Slide Credit: David Madras

Why Fairness is Hard

• Suppose we are a bank trying to fairly decide who should get a loan
– i.e. Who is most likely to pay us back?

• Suppose we have two groups, A and B (the sensitive attribute)
– This is where discrimination could occur

• The simplest approach is to remove the sensitive attribute from the data, so that our classier doesn't
know the sensitive attribute

(C) Dhruv Batra & Zsolt Kira 50
Slide Credit: David Madras

Why Fairness is Hard

• However, if the sensitive attribute is correlated with the other attributes, this isn't good enough
• It is easy to predict race if you have lots of other information (e.g. home address, spending patterns)
• More advanced approaches are necessary

(C) Dhruv Batra & Zsolt Kira 51
Slide Credit: David Madras

Definitions of Fairness – Group Fairness

• So we've built our classier . . . how do we know if we're being fair?
• One metric is demographic parity | requiring that the same percentage of A and B receive loans

– What if 80% of A is likely to repay, but only 60% of B is?
– Then demographic parity is too strong

• Could require equal false positive/negative rates
– When we make an error, the direction of that error is equally likely for both groups

• These are definitions of group fairness
• Treat different groups equally"

(C) Dhruv Batra & Zsolt Kira 52
Slide Credit: David Madras

Definitions of Fairness – Individual Fairness
• Also can talk about individual fairness | “Treat similar examples similarly"
• Learn fair representations

– Useful for classification, not for (unfair) discrimination
– Related to domain adaptation
– Generative modelling/adversarial approaches

(C) Dhruv Batra & Zsolt Kira 53
Slide Credit: David Madras

Conclusion

• This is an exciting field, quickly developing
• Central definitions still up in the air
• AI moves fast | lots of (currently unchecked) power
• Law/policy will one day catch up with technology
• Those who work with AI should be ready

– Think about implications of what you develop!

(C) Dhruv Batra & Zsolt Kira 54
Slide Credit: David Madras

