Topics:

- Recurrent Neural Networks
- Long Short-Term Memory

CS 4644-DL / 7643-A
ZSOLT KIRA

- Assignment 3
- UPDATE: Now due March 16th 11:59pm EST.
- Projects
- Project proposal due March 17 $^{\text {th }}$ (into grace period)
- Meta office hours on language models!

Recurrent Neural Networks

Attention-Based
Networks

Graph-Based Networks

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
\begin{aligned}
& y_{t}=W_{h y} h_{t}+b_{y} \\
& h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
&=\tanh \left(\left(W_{h h}\right.\right. \\
&\left.\left.W_{h x}\right)\binom{h_{t-1}}{x_{t}}\right) \\
&=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
\begin{gathered}
h_{t}=\frac{f_{W}\left(\sqrt{h_{t-1}},, x_{t}\right)}{\text { new state }} \begin{array}{l}
\text { old state input vector at } \\
\text { some function }
\end{array}
\end{gathered}
$$

Example:
 Character-level Language Model

Vocabulary:
[h,e,l,o]
Example training sequence: "hello"


```
include <asm/io.h>
#include <asm/prom.h>
|include <asm/e820.h>
#include <asm/system_info.h>
include <asm/setew.h>
include <asm/pgproto.h>
#define REG_PG vesa_slot_addr_pack
#define PFM NOCOMP AFSR(0, load)
Idefine STACK_DDR(type) (func)
#define SWAP_ALLOCATE(nr) (e)
#define emulate_sigs() arch_get_unaligned_child()
#define access_rw(TST) asm volatile("movd stesp, s0, &3" : : "r" (0)); \
    if (__type & DO_READ)
static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
        pC>[1]);
```

static void
os_prefix(unsigned long sys)
\{
iffdef CONFIG PREENPI
PUT_PARAM_RAID(2, sel) = get_state_state();
set_pid_sum((unsigned long)state, current_state_str(),
(unsigned long)-1->1r_full; low;
\}

Searching for interpretable cells

```
Cell that turns on inside comments and quotes:
P: ouplicate lsm field information. The lsm-rule is opaque, so static inline int audit_dupe_lsm_fieldestruct audit_field *df.
```

```
I
    intret=0;
```



```
    /.0our own}copy of lsm-str./ 
    1sm_str = kstrdup(sf.>1sm_str, GFP_KERNEL):
    if(unlikely(ilsm_str))
    lf
    df.>1sm_str = 1sm-str;
    lour own (refreshed) copy of lsm_rule*./
    ret = security_audit_rule_init(df->type, df->op, df:>1sm_str.,
    /* keep currently invalidd fields around in case they
    * become valid after a policy reload.. /
    if(ret == -EINVAL)
    pr_warn("audit rule for LSM \'%s\, is invalid\n",
        df->1sm_str);
    ret = 0;
}return ret;
    quote/comment cell
```


Searching for interpretable cells

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32*mask)
|
    int(ciasses[class]) {
    for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
        if (mask[i] & classes[class][i])
            returno;
}return 1;
code depth cell
```


Multilayer RNNs

$$
\underbrace{[n \times 2 n]}_{h \in \mathbb{R}^{n} \quad W_{t}^{l}=\tanh W^{l}\binom{h_{t}^{l-1}}{h_{t-1}^{l}}}
$$

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient
of h_{0} involves many
factors of W
(and repeated tanh)

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 _ Pascanu et al, "On the difficulty of training recurrent neura ICML 2013

Largest singular value > 1 :
Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Exploding gradients
Largest singular value <1 :
Vanishing gradients

Vanilla RNN Gradient Flow

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\tanh ^{\prime}\left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) W_{h h}
$$

Vanilla RNN Gradient Flow

$$
\begin{aligned}
& \frac{\partial L}{\partial W}=\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W} \\
& \frac{\partial L_{T}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}} \frac{\partial h_{t}}{\partial h_{t-1}} \ldots \frac{\partial h_{1}}{\partial h_{t-1}}=\tanh ^{\prime}\left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) W_{h h} \\
& \partial h_{T} \\
&\left(\prod_{t=2}^{T} \frac{\partial h_{t}}{\partial h_{t-1}}\right) \frac{\partial h_{1}}{\partial W}
\end{aligned}
$$

Vanilla RNN Gradient Flow

$$
\begin{aligned}
& \frac{\partial L}{\partial W}=\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W} \quad \begin{array}{c}
\text { Always } \\
\text { Vanishing gradients }
\end{array} \\
& \frac{\partial L_{T}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}} \frac{\partial h_{t}}{\partial h_{t-1}} \ldots \frac{\partial h_{1}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}}\left(\prod_{t=2}^{T} \frac{\partial h_{t}}{\partial h_{t-1}}\right) \frac{\partial h_{1}}{\partial W}
\end{aligned}
$$

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Gradient clipping: Scale gradient if its norm is too big
grad_norm $=$ np.sum(grad * grad)
if grad_norm > threshold: grad *= (threshold / grad_norm)

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 tworks", ascanu et al, "On the difficulty of training recurrent neura ICML 2013

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value > 1 :
Exploding gradients
Largest singular value <1 : Vanishing gradients

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Meet LSTMs

LSTMs Intuition: Memory

- Cell State / Memory

LSTMs Intuition: Forget Gate

- Should we continue to remember this "bit" of information or not?

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

LSTMs Intuition: Input Gate

- Should we update this "bit" of information or not?
- If so, with what?

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

LSTMs Intuition: Memory Update

- Forget that + memorize this

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

LSTMs Intuition: Output Gate

- Should we output this "bit" of information to "deeper" layers?

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs

- A pretty sophisticated cell

LSTM Variants: Gated Recurrent Units

- Changes:
- No explicit memory; memory = hidden output
$-Z=$ memorize new and forget old

$$
\begin{aligned}
z_{t} & =\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
r_{t} & =\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
\tilde{h}_{t} & =\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \\
h_{t} & =\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

Other RNN Variants

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

```
MUT1:
    z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{z}{})
    r= sigm( W ( xr x
    \mp@subsup{h}{t+1}{}}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\operatorname{tanh}(\mp@subsup{x}{t}{})+\mp@subsup{b}{\textrm{h}}{})\odot
        + ht\odot (1-z)
MUT2:
    z=}\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{z}}{}
    r=\operatorname{sigm}(\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{})
    ht+1}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\mp@subsup{W}{xh}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{\textrm{h}}{})\odot
        + ht\odot (1-z)
MUT3:
    z=}\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\operatorname{tanh}(\mp@subsup{h}{t}{})+\mp@subsup{b}{z}{}
    r= sigm(W (Wr x }\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{}
    ht+1}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\mp@subsup{W}{xh}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{\textrm{h}}{})\odot
    + ht\odot(1-z)
```

Neural Image Captioning

Neural Image Captioning

Image Embedding (VGGNet)

Neural Image Captioning

Neural Image Captioning

One-hot representations

- Simple way how to encode discrete concepts, such as words

Example:

```
vocabulary = (Monday, Tuesday, is, a, today)
Monday = [1 0 0 0 0}
Tuesday = [llllll
is = [lllllll}
a = [llllll}
today = [l0 0 0 0 1]
```

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)

An aside: Representing words

You can get a lot of value by representing a word by means of its neighbors
"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP
government debt problems turning into banking crises as has happened in
saying that Europe needs unified banking regulation to replace the hodgepodge
\boldsymbol{R} These words will represent banking $\boldsymbol{\pi}$

Distributed Representations Toy Example

- Can we interpret each dimension?

Power of distributed representations!

$$
\begin{array}{ll}
\text { Local } & O O=\mathrm{VR}+\mathrm{HR}+\mathrm{HE}=? \\
\text { Distributed } & =\mathrm{V}+\mathrm{H}+\mathrm{E} \approx \square
\end{array}
$$

Vector representations

- Instead of a sparse one-hot vector, represent words as a dense vector

- Bigram neural language model
- Previous word is used to predict the current word by going through hidden layer (classifier with as many outputs as there are words in the vocabulary)

Linguistic regularities in word vectors

- Recently, it was shown that word vectors capture many linguistic properties (gender, tense, plurality, even semantic concepts like "capital city of")
- We can do nearest neighbor search around result of vector operation "King - man + woman" and obtain "Queen" (Linguistic regularities in continuous space word representations (Mikolov et al, 2013))

Word representations using RNNs

- Input layer w and output layer y have the same dimensionality as the vocabulary
- Hidden layer s is orders of magnitude smaller
- \mathbf{U} is the matrix of weights between input and hidden layer, \mathbf{V} is the matrix of weights between hidden and output layer

Potential Input Representations

- One hot encoding -> FC layer
- Parameters/embeddings indexed in a table
- Can be initialized randomly
- Or can be initialized with pre-trained word embeddings

Beam Search

- Proceed from left to right
- Maintain N partial captions
- Expand each caption with possible next words
- Discard all but the top N new partial translations
- Maintain score for each, e.g. product of probabilities

Summary

- RNNs leverage internal state information to propagate information across sequence
- Same shared function/parameters
- LSTMs improve gradient flow across the computation graph with gating
- Next time: Attention mechanisms and transformers to explicitly access and propagate information

Machine Translation with RNNs and Attention

[START]

Compute alignment scores
$e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right.$ is an MLP)

Normalize to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{1, i}=
$$ 1

Set context vector C to a linear combination of hidden states

$$
c_{t}=\Sigma_{i} \mathbf{a}_{\mathbf{t}, j} \mathbf{h}_{\mathbf{i}}
$$

The Transformer

