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Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord



PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission. 



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder

X

Decoder

Putting it all together: maximizing the 
likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Sample from 𝒙 𝒙

Maximize likelihood of 
original input being 
reconstructed
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Denoising Diffusion Probabilistic 
Models (DDPMs)
And Conditional Diffusion Models



https://openai.com/dall-e-2/



https://openai.com/dall-e-2/



https://openai.com/dall-e-2/



https://github.com/CompVis/stable-diffusion



Landscape Highlights of Diffusion Models (Nov 2022)

● Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

● Noise-conditioned score network (NCSN; Yang & Ermon, 2019)

● Denoising diffusion probabilistic models (DDPM; Ho et al. 2020)

● Classifier-guided conditional generation (Dhariwal and Nichole, 2021)

● Classifier-free Diffusion Guidance (Ho and Salimans, 2022)

● Latent-space Diffusion (StableDiffusion; Rombach and Blattmann et al., 2022)

● Planning with Diffusion for Flexible Behavior Synthesis (Diffuser; Janner et al., 2022)

● DreamFusion: Text-to-3D using 2D Diffusion (Poole and Jain et al., 2022)

● Make-A-Video: Text-to-Video Generation without Text-Video Data (Singer et al., 2022)

basic 
principles

conditional & 
high-res  
image 

generation

new 
applications
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The Denoising Diffusion Process

image from 
dataset

noise

…

The “denoising diffusion” process: 
generate an image from noise by 

denoising the gaussian noises

…

The “forward diffusion” process: 
add Gaussian noise each step

Ties/inspiration form Annealed
Imporantce Sampling in physics



Comparison



Connection to VAEs

noise
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forward diffusion: encoding denoising diffusion: decoding

…



Connection to VAEs

Known / predefined: 
:

Unknown / learned: 

:

noise

…

forward diffusion: encoding denoising diffusion: decoding

…

U-
Net



Connection to VAEs

Known / predefined: 
:

Unknown / learned: 

:

Similar to VAEs, use the denoising decoding 
process to generate new images.

noise

…

forward diffusion: encoding denoising diffusion: decoding

…



Connection to VAEs

Known / predefined: 
:

Unknown / learned: 

:

noise

…

forward diffusion: encoding denoising diffusion: decoding

…
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…The known forward process

Conditional Gaussian
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The Diffusion (Encoding) Process
…The known forward process

: Probability Chain Rule (Markov Chain)

Notation: A Gaussian distribution “for” 

Conditional Gaussian



The Diffusion (Encoding) Process
…

is the variance schedule at the diffusion step 

The known forward process

: Probability Chain Rule (Markov Chain)

Conditional Gaussian



The Diffusion (Encoding) Process
…The known forward process

is the variance schedule at the diffusion step 

, typical value range , with 

: Probability Chain Rule (Markov Chain)

Conditional Gaussian

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s



The Diffusion (Encoding) Process
…The known forward process
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The Diffusion (Encoding) Process
…The known forward process

𝑥 𝑥

… …

𝑥 𝑥 𝑥

:

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

, where , 

Probability Chain Rule (Markov Chain)

Conditional Gaussian



The Diffusion (Encoding) Process
…The known forward process

:

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

Gaussian reparameterization trick (recall from VAEs!):

Probability Chain Rule (Markov Chain)

Conditional Gaussian

(square root appears because reparameterization trick has just ) 

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s



The Diffusion and Denoising Process

noise

…

forward diffusion: encoding denoising diffusion: decoding

Known / predefined: 
:

Unknown / learned: 

:

…



The Denoising (Decoding) Process
…The learned denoising process
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The Denoising (Decoding) Process
…The learned denoising process

:

Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification) 

Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process
…The learned denoising process

:

Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification) 

How do we form a learning objective?

Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process
…The learned denoising process



The Denoising (Decoding) Process
…The learned denoising process

High-level intuition: derive a ground truth denoising distribution and 
train a neural net to match the distribution.
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The Denoising (Decoding) Process
…The learned denoising process

High-level intuition: derive a ground truth denoising distribution and 
train a neural net to match the distribution.

The learning objective: 

What does it look like? 

The “ground truth” noise that brought 𝑥 to 𝑥

Recall: Gaussian 
reparameterization trick 



The Denoising (Decoding) Process
…The learned denoising process

High-level intuition: derive a ground truth denoising distribution and 
train a neural net to match the distribution.

The learning objective: 

What does it look like? 

2

Assuming identical variance , we have:

Should be variance-dependent, but constant 
works better in practice



The Denoising (Decoding) Process
…The learned denoising process

High-level intuition: derive a ground truth denoising distribution and 
train a neural net to match the distribution.

The learning objective: 

What does it look like? 

2

Assuming identical variance , we have:

Simplified learning objective: 𝜽 𝜽 𝒕
2 Predict the one-step Predict the one-step 

noise that was added 
(and remove it)!



The Denoising (Decoding) Process
…The learned denoising process

:

Conditional Gaussian

Assume fixed / known variance

How did we arrive at the learning objective?
Let’s go back to the basics of variational models …

Probability Chain Rule (Markov Chain)



(Quick) Derivation!



Connection to VAEs
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Connection to VAEs

noise

…

forward diffusion: encoding denoising diffusion: decoding

Latent Variables



𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the Predict the 
noise!!!



𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷 (𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

≥ Ε log
𝑥 𝑧

𝑧 𝑥
   Evidence Lower Bound (ELBO) – From last lecture on VAEs

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference
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= Ε log
𝑝 𝑥 ∏ 𝑝 (𝑥 𝑥

∏ 𝑞(𝑥 |𝑥 ) forward diffusion

reverse denoising

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Variational
Inference

Simplify to 
KL
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Inference
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∏

Maximize the agreement between the predicted reverse diffusion 
distribution 𝑝  and the “ground truth” reverse diffusion distribution 𝑞

Variational
Inference

Simplify to 
KL
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=> Normal
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𝑞 𝑥 𝑥 = 𝒒 𝒙𝒕 𝟏 𝒙𝒕, 𝒙𝟎    (markov assumption)

=
𝑥 𝑥 , 𝑥 ( | )

( | )
            (Bayes rule)

=
𝒩 ; , 𝒩 ; ,

𝒩 ; ,

∝ 𝒩 𝑥 ; 
( )

, Σ (𝑡)           (Property of Gaussian)

Variational
Inference

Simplify to 
KL

Reverse Process 
=> Normal
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𝑞 𝑥 𝑥 , 𝑥 = 𝒩 𝑥 ; 𝜇 𝑡 , Σ 𝑡

𝜇 𝑡 =
1

𝛼
𝑥 −

𝛽

1 − 𝛼
𝜖 , 𝜖~𝒩(0, 𝐼)

Proof using bayes rule and 
gaussian reparameterization trick

Variational
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization
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KL
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=> Normal
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Minimize the difference of distribution means (assuming identical variance)

argmin 𝑤||𝜇 𝑡 − 𝜇 𝑥 , 𝑡 ||2

Variational
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant



Learning the Denoising Process
…The learned denoising process

:

Conditional Gaussian

Learning objective: 2

Variational
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The Denoising (Decoding) Process
…The learned denoising process

:

Conditional Gaussian

We know how to learn Assume fixed / known variance

Probability Chain Rule (Markov Chain)

𝑝 (𝑥 𝑥 𝑝 (𝑥 𝑥 … 𝑝 (𝑥 𝑥

Generate new images!



The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020
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The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020



Visualizing the Diffusion Process on 2D data

Sohl-Dickstein et al., 2015



Conditional Diffusion Models
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photorealistic style



Conditional Diffusion Models

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style

Simple idea: just condition the model on some text labels ! 


