Topics:

- Linear Classification, Loss functions
- Gradient Descent

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
- Due Feb. 3rd
- Start early, start early, start early!
- HW1 Tutorial: Monday
- Matrix Calculus Tutorial: next Thursday
- Piazza: Enroll now! (Code: DLSPR2022)
- NOTE: There is an OMSCS section with a Ed. Make sure you are in the right one
- Office hours schedule: https://piazza.com/class/lcl94yjxkbb59e/post/59
- Use canvas zoom schedule
- Input (and representation)

Functional form of the model - Including parameters

Performance measure to improve

- Loss or objective function
- Algorithm for finding best parameters
- Optimization algorithm

Data: Image

Components of a Parametric Model

- Input: Continuous number or vector
- Output: A continuous number
- For classification typically a score
- For regression what we want to regress to (house prices, crime rate, etc.)
- w is a vector and weights to optimize to fit target function

This image is CCO 1.0 public domain

- Idea: Separate classes via high-dimensional linear separators (hyper-planes)
- One of the simplest parametric models, but surprisingly effective
- Very commonly used!
- Let's look more closely at each element

To simplify notation we will refer to inputs as $x_{1} \cdots x_{m}$ where $m=n \times n$

Model
 $$
f(x, W)=W x+b
$$

$\begin{aligned} & \text { Classifier for class } 1 \\ & \text { Classifier for class } 2 \\ & \text { Classifier for class } 3\end{aligned}\left[\begin{array}{llll}w_{11} & w_{12} & \cdots & w_{1 m} \\ w_{21} & w_{22} & \cdots & w_{2 m} \\ w_{31} & w_{32} & \cdots & w_{3 m}\end{array}\right] \quad\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right]+\left[\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

- We can move the bias term into the weight matrix, and a " 1 " at the end of the input
- Results in one matrix-vector multiplication!

$$
\begin{gathered}
\text { Model } \\
f(x, W)=W x+b
\end{gathered}
$$

$$
\begin{array}{r}
{\left[\begin{array}{ccccc}
w_{11} & w_{12} & \cdots & w_{1 m} & b_{1} \\
w_{21} & w_{22} & \cdots & w_{2 m} & b_{2} \\
w_{31} & w_{32} & \cdots & w_{3 m} & b_{3}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m} \\
1
\end{array}\right]} \\
\boldsymbol{W}
\end{array}
$$

Weights

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Geometric Viewpoint

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Performance Measure for a Classifier

- Input (and representation)
- Functional form of the model
- Including parameters

Performance measure to improve Loss or objective function

Algorithm for finding best parameters

- Optimization algorithm

Data: Image

Features: Histogram

- The output of a classifier can be considered a score
- For binary classifier, use rule: $y= \begin{cases}1 & \text { if } f(x, w)>=0 \\ 0 & \text { otherwise }\end{cases}$
- Can be used for many classes by considering one class versus all the
 rest (one versus all)
- For multi-class classifier can take the maximum

Several issues with scores:

- Not very interpretable (no bounded value)

We often want probabilities

- More interpretable
- Can relate to probabilistic view of machine learning

We use the softmax function to convert scores to probabilities

$$
\begin{aligned}
& s=f(x, W) \text { Scores } \\
& P(Y=k \mid X=x)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

We need a performance measure to optimize

- Penalizes model for being wrong
- Allows us to modify the model to reduce this penalty
- Known as an objective or loss function
In machine learning we use empirical risk minimization
- Reduce the loss over the training dataset
- We average the loss over the training data

Given a dataset of examples:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and y_{i} is (integer) label

Loss over the dataset is a sum of loss over examples:

$$
L=\frac{1}{N} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Multiclass SVM loss:

Given an example ($\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$) where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $\boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{W}\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

Example: "Hinge Loss"

Multiclass SVM loss:

Given an example ($\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$) where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $\boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{W}\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(\mathbf{0}, s_{j}-s_{y_{i}}+\mathbf{1}\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9) \\
& =2.9+0 \\
& =2.9
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some \boldsymbol{W} the scores $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W} \boldsymbol{x}$ are:

cat
car
frog
Losses:

1.3
2.2
4.9
2.5
2.0

Multiclass SVM loss:

Given an example ($\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$) where $\boldsymbol{x}_{\boldsymbol{i}}$ is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $\boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{W}\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(\mathbf{0}, s_{j}-s_{y_{i}}+\mathbf{1}\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some \boldsymbol{W} the scores $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W} \boldsymbol{x}$ are:

3.2
5.1

Losses:

2.2
2.5
-3.1

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: What happens to loss if car image scores change a bit?
No change for small values

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W \boldsymbol{x}$ are:
frog
cat
car
3.2
5.1
-1.7

1.3
2.2
2.5

4.9
-3.1

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: What is min/max of loss value?
[0,inf]

Suppose: 3 training examples, 3 classes. With some \boldsymbol{W} the scores $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W} \boldsymbol{x}$ are:

$\begin{array}{lrrr}\text { cat } & 3.2 & 1.3 & 2.2 \\ \text { car } & 5.1 & 4.9 & 2.5 \\ \text { frog } & -1.7 & 2.0 & -3.1\end{array}$

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: At initialization W is small so all $\mathrm{s} \approx 0$. What is the loss?

C-1

Suppose: 3 training examples, 3 classes. With some \boldsymbol{W} the scores $f(x, W)=W \boldsymbol{x}$ are:

3.2
5.1
-1.7
1.3
2.2
2.5
car
frog
cat
4.9
2.0
-3.1

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: What if the sum was over all classes?
(including j = y_i)
No difference (add constant 1)

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W \boldsymbol{x}$ are:

3.2
5.1
-1.7

1.3
2.2
2.5
frog

cat
car
4.9
2.0
-3.1

Multiclass SVM loss:

$L_{i}=\sum_{j \neq y_{i}} \max \left(\mathbf{0}, s_{j}-s_{y_{i}}+\mathbf{1}\right)$
Q: What if we used mean instead of sum?

No difference
Scaling by constant

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W \boldsymbol{x}$ are:
cat
car
frog

3.2
1.3
2.2
5.1
4.9
2.5
-1.7
2.0

Multiclass SVM loss:

Given an example ($\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$) where $\boldsymbol{x}_{\boldsymbol{i}}$ is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $\boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{W}\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
$L=(2.9+0+12.9) / 3$
$=5.27$

Suppose: 3 training examples, 3 classes. With some \boldsymbol{W} the scores $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W} \boldsymbol{x}$ are:

3.2

2.2
5.1
4.9
2.5
2.0
-3.1
12.9

- If we use the softmax function to convert scores to probabilities, the right loss function to use is cross-entropy
- Can be derived by looking at the distance between two probability distributions (output of model and ground truth)
- Can also be derived from a maximum likelihood estimation perspective

$$
\begin{gathered}
s=f(x, W) \quad \text { Scores } \\
P(Y=k \mid X=x)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{array}{l}
\text { Softmax } \\
\text { Function }
\end{array} \\
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right) \\
\substack{\text { Maximize log-prob of correct class }=\\
\text { Maximize the log likelihood } \\
=\\
\text { Minimize the negative log likelihood }}
\end{gathered}
$$

- If we use the softmax function to convert scores to probabilities, the right loss function to use is cross-entropy
- Goal: Minimize KL-divergence (distance measure b/w probability distributions)

$$
\begin{gathered}
p^{*}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \hat{p}=\left[\begin{array}{l}
P(Y=1 \mid x, w) \\
P(Y=2 \mid x, w) \\
P(Y=3 \mid x, w) \\
P(Y=4 \mid x, w) \\
P(Y=5 \mid x, w) \\
P(Y=6 \mid x, w) \\
P(Y=7 \mid x, w) \\
P(Y=8 \mid x, w)
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.01 \\
0.01 \\
0.01 \\
0.01 \\
0.01 \\
0.15 \\
0.3
\end{array}\right] \\
\text { Ground Truth }
\end{gathered}
$$

$$
\begin{aligned}
\min _{w} K L\left(p^{*} \| \hat{p}\right) & =\sum_{y} p^{*}(y) \log \frac{p^{*}(y)}{\hat{p}(y)} \\
= & \sum_{y} p^{*}(y) \log \left(p^{*}(y)\right)-\sum_{y} p^{*}(y) \log (\hat{p}(y)) \\
& -H\left(p^{*}\right) \\
\text { (negative entropy, term goes away } & \text { (Cross-Entropy) }
\end{aligned}
$$ because not a function of model, W, parameters we are minimizing over)

Since p^{*} is one-hot (0 for non-ground truth classes), all we need to minimize is (where i is ground truth class): $\min _{w}\left(-\log \hat{p}\left(y_{i}\right)\right)$

Softmax Classifier (Multinomial Logistic Regression)

Unnormalized logprobabilities / logits

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

Unnormalized
Probabilities probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right)
$$

Probabilities must be >=0

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

$$
\begin{array}{ll}
\text { Probabilities } \\
\text { must sum to } 1 & L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
\end{array}
$$

$$
L_{i}=-\log (0.13)
$$

Q: What is the min/max of possible loss L_i?

Infimum is 0, max is unbounded (inf)

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right)
$$

Probabilities must be $>=0$

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

$$
\begin{array}{ll}
\text { Probabilities } \\
\text { must sum to } 1 & L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
\end{array}
$$

$$
L_{i}=-\log (0.13)
$$

Q: At initialization all s will be approximately equal; what is the loss?
$\log (C)$, e.g. $\log (10) \approx 2$

Often, we add a regularization term to the loss function

$$
\begin{gathered}
\text { L1 Regularization } \\
L_{i}=\left|\boldsymbol{y}-W x_{i}\right|^{2}+|W|
\end{gathered}
$$

Example regularizations:

- L1/L2 on weights (encourage small values)

Gradient Descent

- Input (and representation)
- Functional form of the model - Including parameters
- Performance measure to improve
- Loss or objective function

Algorithm for finding best parameters

- Optimization algorithm

Data: Image

Features: Histogram

Class Scores

Optimizer

Given a model and loss function, finding the best set of weights is a search problem

- Find the best combination of weights that minimizes our loss function

Several classes of methods:

- Random search
-

Genetic algorithms (population-based search)

- Gradient-based optimization

In deep learning, gradient-based methods are dominant although not the only approach possible

As weights change, the loss changes as well

This is often somewhatsmooth locally, so small changes in weights produce small changes in the loss

We can therefore think about iterative algorithms that take current values of weights and modify them a bit

Strategy: Follow the Slope!

- We can find the steepest descent direction by computing the derivative (gradient):

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{h}}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
- As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
- Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

This idea can be turned into an algorithm (gradient descent)

- Choose a model: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\mathrm{Wx}$
- Choose loss function: $L_{i}=\left(\boldsymbol{y}-W \boldsymbol{x}_{\boldsymbol{i}}\right)^{2}$
- Calculate partial derivative for each parameter: $\frac{\partial L}{\partial w_{i}}$
- Update the parameters: $\boldsymbol{w}_{i}=w_{i}-\frac{\partial L}{\partial w_{i}}$
- Add learning rate to prevent too big of a step: $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}-\alpha \frac{\partial L}{\partial \boldsymbol{w}_{i}}$
- Repeat (from Step 3)
http://demonstrations.wolfram.com/VisualizingTheGradientVector/

original W

negative gradient direction

Gradient Descent

Often, we only compute the gradients across a small subset of data

- Full Batch Gradient Descent

$$
L=\frac{1}{N} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

$$
L=\frac{1}{M} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

- Where M is a subset of data
- We iterate over mini-batches:
- Get mini-batch, compute loss, compute derivatives, and take a set

Gradient descent is guaranteed to converge under some conditions

- For example, learning rate has to be appropriately reduced throughout training
- It will converge to a local minima
- Small changes in weights would not decrease the loss
- It turns out that some of the local minima that it finds in practice (if trained well) are still pretty good!

We know how to compute the model output and loss function

Several ways to compute $\frac{\partial L}{\partial w_{i}}$Manual differentiation

- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation

current W:	gradient dW:
[0.34,	
-1.11,	$[?$,
0.78,	$?$,
0.12,	$?$,
0.55,	$?$,
2.81,	$?$,
-3.1,	$?$,
-1.5,	$?$,
$0.33, \ldots]$	$?$,
loss 1.25347	$?, \ldots]$

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient dW:
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	$[?$,
-1.11,	-1.11,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?$,
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25322	

current W:	$\mathbf{W}+\mathbf{h}($ first dim):	gradient dW:
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	$[-2.5$,
-1.11,	-1.11,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$(1.25322-1.25347) / 0.0001$
0.55,	0.55,	-2.5
2.81,	2.81,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?$,
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25353	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	0.6,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$.
0.55,	0.55,	$(1.25353-1.25347) / 0.0001$
2.81,	2.81,	$=0.6$
-3.1,	-3.1,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25353	

current W:	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?$,
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25347	

current W:	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient dW:
[0.34,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	0,
0.12,	0.12,	$?$,
0.55,	0.55,	$(1.25347-1.25347) / 0.0001$
2.81,	2.81,	$=0$
-3.1,	-3.1,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-1.5,	-1.5,	
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25347	

Numerical vs Analytic Gradients

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient. This is called a gradient check.

- Components of parametric classifiers:
- Input/Output: Image/Label
- Model (function): Linear Classifier + Softmax
- Loss function: Cross-Entropy
- Optimizer: Gradient Descent
- Ways to compute gradients
- Numerical
- Next: Analytical, automatic differentiation

For some functions, we can analytically derive the partial derivative

Example:

Derivation of Update Rule

$$
\begin{array}{cc}
\text { Function } & \text { Loss } \\
f\left(w, x_{i}\right)=w^{T} x_{i} & \left(y_{i}-w^{T} x_{i}\right)^{2}
\end{array}
$$

(Assume \boldsymbol{w} and $\mathbf{x}_{\mathbf{i}}$ are column vectors, so same as $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}$)

Update Rule
$w_{j} \leftarrow w_{j}+2 \eta \sum_{k=1}^{N} \delta_{k} x_{k j}$

For some functions, we can analytically derive the partial derivative

Example:

Derivation of Update Rule

Function

$f\left(w, x_{i}\right)=w^{T} x_{i} \quad\left(y_{i}-w^{T} x_{i}\right)^{2}$
(Assume \boldsymbol{w} and $\mathbf{x}_{\mathbf{i}}$ are column vectors, so same as $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}$)

$$
\begin{gathered}
\text { Update Rule } \\
w_{j} \leftarrow w_{j}+2 \eta \sum_{k=1}^{N} \delta_{k} x_{k j}
\end{gathered}
$$

Loss
$\mathrm{L}=\sum_{k=1}^{N}\left(y_{k}-w^{T} x_{k}\right)^{2}$
Gradient descent tells us we should update \boldsymbol{w} as follows to minimize L :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial L}{\partial w_{j}}$
So what's $\frac{\partial L}{\partial w_{j}}$?

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{j}}=\sum_{k=1}^{N} \frac{\partial}{\partial w_{j}}\left(y_{k}-w^{T} x_{k}\right)^{2} \\
&=\sum_{k=1}^{N} 2\left(y_{k}-w^{T} x_{k}\right) \frac{\partial}{\partial w_{j}}\left(y_{k}-w^{T} x_{k}\right) \\
&=-2 \sum_{k=1}^{N} \delta_{k} \frac{\partial}{\partial w_{j}} w^{T} x_{k} \\
& \begin{array}{c}
\ldots \text { where } \ldots \\
\delta_{k}=y_{k}-w^{T} x_{k}
\end{array} \\
&=-2 \sum_{k=1}^{N} \delta_{k} \frac{\partial}{\partial w_{j}} \sum_{i=1}^{m} w_{i} x_{k i} \\
&=-2 \sum_{k=1}^{N} \delta_{k} x_{k j}
\end{aligned}
$$

If we add a non-linearity (sigmoid), derivation is more complex

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

First, one can derive that: $\boldsymbol{\sigma}^{\prime(x)}=\boldsymbol{\sigma}(\boldsymbol{x})(\mathbf{1}-\boldsymbol{\sigma}(\boldsymbol{x}))$

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\sigma\left(\sum_{k} w_{k} x_{k}\right) \\
\mathrm{L} & =\sum_{i}\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)^{2} \\
\frac{\partial L}{\partial w_{j}} & =\sum_{i} 2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)\left(-\frac{\partial}{\partial w_{j}} \sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \\
& =\sum_{i}-2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \sigma^{\prime}\left(\sum_{k} w_{k} x_{i k}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{i k} \\
& =\sum_{i}-2 \delta_{i} \sigma\left(\mathbf{d}_{i}\right)\left(1-\sigma\left(\mathbf{d}_{i}\right)\right) x_{i j}
\end{aligned}
$$

where $\quad \delta_{i}=y_{i}-\mathrm{f}\left(x_{i}\right) \quad d_{i}=\sum w_{k} x_{i k}$

The sigmoid perception update rule:

$$
\begin{gathered}
w_{j} \leftarrow w_{j}+2 \eta \sum_{k=1}^{N} \delta_{i} \sigma_{i}\left(1-\sigma_{i}\right) x_{i j} \\
\text { where } \sigma_{i}=\sigma\left(\sum_{j=1}^{m} w_{j} x_{i j}\right) \\
\delta_{i}=y_{i}-\sigma_{i}
\end{gathered}
$$

Given a library of simple functions

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

