Topics:

- Gradient Descent
- Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
- Due Feb $3^{\text {th }}$ (with grace period Feb $5^{\text {th }}$)
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Piazza
- Be active!!!
- Office hours
- Lots of special topics (e.g. Assignment 1, Matrix Calculus, etc.)
- Note: Course will start to get math heavy!
- Input (and representation)
- Functional form of the model - Including parameters
- Performance measure to improve - Loss or objective function
- Algorithm for finding best parameters
- Optimization algorithm

Data: Image

Features: Histogram

- Input: Vector
- Functional form of the model: Softmax(Wx)
- Performance measure to improve: Cross-Entropy

Algorithm for finding best parameters: Gradient Descent

- Compute $\frac{\partial L}{\partial w_{i}}$
- Update Weights $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}-\alpha \frac{\partial L}{\partial w_{i}}$

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)

Unnormalized logprobabilities / logits

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

Unnormalized
Probabilities probabilities

Often, we add a regularization term to the loss function

$$
\begin{gathered}
\text { L1 Regularization } \\
L_{i}=\left|\boldsymbol{y}-W x_{i}\right|^{2}+|W|
\end{gathered}
$$

Example regularizations:

- L1/L2 on weights (encourage small values)
- We can find the steepest descent direction by computing the derivative (gradient):

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{h}}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
- As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
- Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

Derivatives

This idea can be turned into an algorithm (gradient descent)

1. Choose a model: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\mathrm{W} \mathrm{x}$
2. Choose loss function: $\boldsymbol{L}_{\boldsymbol{i}}=\left(\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right)^{2}$
3. Calculate partial derivative for each parameter: $\frac{\partial L}{\partial w_{i}}$
4. Update the parameters: $\boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}}-\frac{\partial L}{\partial w_{i}}$

Add learning rate to prevent too big of a step: $w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}}$
5. Repeat (from Step 3)

Gradient descent is guaranteed to converge under some conditions

- For example, learning rate has to be appropriately reduced throughout training
- It will converge to a local minima
- Small changes in weights would not decrease the loss
- It turns out that some of the local minima that it finds in practice (if trained well) are still pretty good!

We know how to compute the model output and loss function

Several ways to compute $\frac{\partial L}{\partial w_{i}}$Manual differentiation

- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation

For some functions, we can analytically derive the partial derivative
 Example:
 Derivation of Update Rule

Function

$$
f\left(w, x_{i}\right)=w^{T} x_{i}
$$

(Assume \boldsymbol{w} and $\mathbf{x}_{\mathbf{i}}$ are column vectors, so same as $\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}$)
Dataset: N examples (indexed by k)
Update Rule
$w_{j} \leftarrow w_{j}+2 \alpha \sum_{i=1}^{N} \delta_{i} x_{i j}$
$\mathrm{L}=\sum_{i=1}^{N}\left(y_{i}-w^{T} x_{i}\right)^{2}$

Gradient descent tells us we should update \boldsymbol{w} as follows to minimize L :
$w_{j} \leftarrow w_{j}-\alpha \frac{\partial L}{\partial w_{j}}$
So what's $\frac{\partial L}{\partial w_{j}} ?$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{j}}=\sum_{i=1}^{N} \frac{\partial}{\partial w_{j}}\left(y_{i}-w^{T} x_{i}\right)^{2} \\
&=\sum_{k=1}^{N} 2\left(y_{i}-w^{T} x_{i}\right) \frac{\partial}{\partial w_{j}}\left(y_{i}-w^{T} x_{i}\right) \\
&=-2 \sum_{i=1}^{N} \delta_{i} \frac{\partial}{\partial w_{j}} w^{T} x_{i} \\
& \begin{array}{c}
\ldots \text { where... } \\
\delta_{i}=y_{i}-w^{T} x_{i}
\end{array} \\
&=-2 \sum_{i=1}^{N} \delta_{i} \frac{\partial}{\partial w_{j}} \sum_{k=1} w_{k} x_{i k} \\
&=-2 \sum_{i=1}^{N} \delta_{i} x_{i j}
\end{aligned}
$$

If we add a non-linearity (sigmoid), derivation is more complex

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

First, one can derive that: $\boldsymbol{\sigma}^{\prime}(\boldsymbol{x})=\boldsymbol{\sigma}(\boldsymbol{x})(\mathbf{1}-\boldsymbol{\sigma}(\boldsymbol{x}))$

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\sigma\left(\sum_{k} w_{k} x_{k}\right) \\
\mathrm{L} & =\sum_{i}\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)^{2} \\
\frac{\partial L}{\partial w_{j}} & =\sum_{i} 2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right)\left(-\frac{\partial}{\partial w_{j}} \sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \\
& =\sum_{i}-2\left(y_{i}-\sigma\left(\sum_{k} w_{k} x_{i k}\right)\right) \sigma^{\prime}\left(\sum_{k} w_{k} x_{i k}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{i k} \\
& =\sum_{i}-2 \delta_{i} \sigma\left(\mathbf{d}_{i}\right)\left(1-\sigma\left(\mathbf{d}_{i}\right)\right) x_{i j}
\end{aligned}
$$

where $\quad \delta_{i}=y_{i}-\mathrm{f}\left(x_{i}\right) \quad d_{i}=\sum w_{k} x_{i k}$

The sigmoid perception update rule:

$$
\begin{gathered}
w_{j} \leftarrow w_{j}+2 \alpha \sum_{k=1}^{N} \delta_{i} \sigma_{i}\left(1-\sigma_{i}\right) x_{i j} \\
\text { where } \sigma_{i}=\sigma\left(\sum_{j=1}^{d} w_{j} x_{i j}\right) \\
\delta_{i}=y_{i}-\sigma_{i}
\end{gathered}
$$

Neural Network View of a Linear Classifier

A simple neural network has similar structure as our linear classifier:

- A neuron takes input (firings) from other neurons (-> input to linear classifier)
- The inputs are summed in a weighted manner (-> weighted sum)
- Learning is through a modification of the weights
- If it receives enough input, it "fires" (threshold or if weighted sum plus bias is high enough)

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

As we did before, the output of a neuron can be modulated by a non-linear function (e.g. sigmoid)

Sigmoid

 ActivationFunction
$\frac{1}{1+e^{-x}}$

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

We can have multiple neurons connected to the same input

Corresponds to a multi-class classifier

- Each output node outputs the score for a class

$$
f(x, W)=\sigma(W x+b)\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{21} & w_{22} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

Often called fully connected layers

output layer

- Also called a linear projection layer

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Connecting Many Neurons

- Each input/output is a neuron (node)
- A linear classifier (+ optional nonlinearity) is called a fully connected layer
- Connections are represented as edges
- Output of a particular neuron is referred to as activation
- This will be expanded as we view

output layer computation in a neural network as a graph

We can stack multiple layers together

- Input to second layer is output of first layer
Called a 2-layered neural network (input is not counted)
Because the middle layer is neither input or output, and we don't know what their values represent, we call them hidden layers
- We will see that they end up learning effective features
This increases the representational power
 of the function!
- Two layered networks can represent any continuous function

Connecting Many Layers

The same two-layered neural network corresponds to adding another weight matrix

- We will prefer the linear algebra view, but use some terminology from neural networks (\& biology)

hidden layer

$$
\begin{array}{cl}
x & W_{1} \\
& = \\
f\left(x, W_{1}, W_{2}\right) & =\sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)
\end{array}
$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

A linear classifier can be broken down into:

- Input
- A function of the input
- A loss function

It's all just one function that can be decomposed into building blocks

Large (deep) networks can be built by adding more and more layers
Three-layered neural networks can represent any function

- The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function
We will show them without edges:

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Adding More Layers!

Computation Graphs

Functions can be made arbitrarily complex (subject to memory and computational limits), e.g.:

$$
f(x, W)=\sigma\left(W _ { 5 } \sigma \left(W _ { 4 } \sigma \left(W_{3} \sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)\right.\right.\right.
$$

We can use any type of differentiable function (layer) we want!

- At the end, add the loss function

Composition can have some structure

The world is compositional!

We want our model to reflect this
Empirical and theoretical evidence that it makes learning complex functions easier

Note that prior state of art engineered features often had this compositionality as well

```
VISION
    pixels }=>\mathrm{ edge }=>\mathrm{ texton }=>\mathrm{ motif }=>\mathrm{ part }=>\mathrm{ object
SPEECH
    sample }=>\begin{array}{c}{\mathrm{ spectral }}\end{array}=>\mathrm{ formant }=>\mathrm{ motif }=>\mathrm{ phone }=>\mathrm{ word
NLP
    character }=>\mathrm{ word }=>\mathrm{ NP/VP/.. }=>\mathrm{ clause }=>\mathrm{ sentence }=>\mathrm{ story
```

- Pixels -> edges -> object parts -> objects

Compositionality

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end

Given a library of simple functions

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
- Directed edges
- No (directed) cycles
- Underlying undirected cycles okay

Directed Acyclic Graphs (DAGs)

- Concept
- Topological Ordering

Directed Acyclic Graphs (DAGs)

$$
f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}\right)+x_{1} x_{2}-\sin \left(x_{2}\right)
$$

$$
-\log \left(\frac{1}{1+e^{-w \cdot x}}\right)
$$

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
Machine Learning Example

Backpropagation

Given this computation graph, the training algorithm will:

- Calculate the current model's outputs (called the forward pass)
- Calculate the gradients for each module (called the backward pass)
Backward pass is a recursive algorithm that:
- Starts at loss function where we know how to calculate the gradients
- Progresses back through the modules
- Ends in the input layer where we do not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

- This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters

- Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)
- We will also pass the gradient of the loss with respect to the module's inputs
- This is not required for update the module's weights, but passes the gradients back to the previous module

Problem:

- We can compute local gradients: $\left\{\frac{\partial h^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}, \frac{\partial \boldsymbol{h}^{\ell}}{\partial W}\right\}$
- We are given: $\frac{\partial L}{\partial h^{\ell}}$
- Compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$

We want to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$

- We will use the chain rule to do this:

Chain Rule: $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

- We can compute local gradients: $\left\{\frac{\partial h^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}, \frac{\partial \boldsymbol{h}^{\ell}}{\partial W}\right\}$

This is just the derivative of our function with respect to its parameters and inputs!

Example: If $\boldsymbol{h}^{\ell}=W \boldsymbol{h}^{\ell-1}$

$$
\begin{aligned}
& \text { then } \frac{\partial \boldsymbol{h}^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=\boldsymbol{W} \\
& \text { and } \frac{\partial \boldsymbol{h}_{i}^{\ell}}{\partial w_{i}}=\boldsymbol{h}^{\ell-1, T}
\end{aligned}
$$

We want to to compute: $\left\{\frac{\partial L}{\partial \boldsymbol{h}^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$

- We will use the chain rule to do this:

Chain Rule: $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

- We will use the chain rule to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$
- Gradient of loss w.r.t. inputs: $\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$

Given by upstream module (upstream gradient)

- Gradient of loss w.r.t. weights: $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial W}$

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

$$
w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}} \quad \begin{aligned}
& \text { Backpropagation is the application of } \\
& \begin{array}{l}
\text { gradient descent to a computation } \\
\text { graph via the chain rule! }
\end{array}
\end{aligned}
$$

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\end{aligned}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

