Topics:

- Backpropagation
- Matrix/Linear Algebra view


## CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
- Due Feb 3rd (with grace period $5^{\text {th }}$ )
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Resources:
- These lectures
- Matrix calculus for deep learning
- Gradients notes and MLP/ReLU Jacobian notes.
- Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)
- Piazza: Project teaming thread
- Project proposal overview during my OH (Thursday 3pm ET)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)


Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

- We can find the steepest descent direction by computing the derivative (gradient):

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{h}}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
- As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
- Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter



## Derivatives

The same two-layered neural network corresponds to adding another weight matrix

- We will prefer the linear algebra view, but use some terminology from neural networks (\& biology)

hidden layer

$$
\begin{array}{cl}
x & W_{1} \\
& = \\
f\left(x, W_{1}, W_{2}\right) & =\sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)
\end{array}
$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Large (deep) networks can be built by adding more and more layers
Three-layered neural networks can represent any function

- The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function
We will show them without edges:



$$
f\left(x, W_{1}, W_{2}, W_{3}\right)=\sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)
$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Adding More Layers!

Functions can be made arbitrarily complex (subject to memory and computational limits), e.g.:

$$
f(x, W)=\sigma\left(W _ { 5 } \sigma \left(W _ { 4 } \sigma \left(W_{3} \sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)\right.\right.\right.
$$

We can use any type of differentiable function (layer) we want!

- At the end, add the loss function

Composition can have some structure


- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end


To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time


Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Step 1: Compute Loss on Mini-Batch: Forward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Neural Network Training

## Step 1: Compute Loss on Mini-Batch: Forward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Neural Network Training

## Step 1: Compute Loss on Mini-Batch: Forward Pass



Note that we must store the intermediate outputs of all layers!

- This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)


## Step 1: Compute Loss on Mini-Batch: Forward Pass <br> Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Step 1: Compute Loss on Mini-Batch: Forward Pass <br> Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Step 1: Compute Loss on Mini-Batch: Forward Pass <br> Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Neural Network Training

We want to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$


- We will use the chain rule to do this:

Chain Rule: $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

## Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end


$$
w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}} \quad \begin{aligned}
& \text { Backpropagation is the application of } \\
& \begin{array}{l}
\text { gradient descent to a computation } \\
\text { graph via the chain rule! }
\end{array}
\end{aligned}
$$

- We can compute local gradients: $\left\{\frac{\partial h^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}, \frac{\partial \boldsymbol{h}^{\ell}}{\partial W}\right\}$

This is just the derivative of our function with respect to its parameters and inputs!

Example: If $\boldsymbol{h}^{\ell}=\boldsymbol{W} \boldsymbol{h}^{\ell-1}$

$$
\begin{aligned}
& \text { then } \frac{\partial \boldsymbol{h}^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=\boldsymbol{W} \\
& \text { (a sparse matrix with } \\
& \text { and } \frac{\partial \boldsymbol{h}^{\ell}}{\partial w_{i}}=\boldsymbol{h}^{\ell-1, T} \\
& \text { in the } i \text {-th row }
\end{aligned}
$$

- We will use the chain rule to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$
- Gradient of loss w.r.t. inputs: $\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$

Given by upstream module (upstream gradient)

- Gradient of loss w.r.t. weights: $\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial W}$


Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

## Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

## Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\end{aligned}
$$



Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \text { Want: } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Backpropagation: a simple example



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Backpropagation: a simple example



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Patterns in backward flow



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Patterns in backward flow

Q: What is an add gate?


## Patterns in backward flow

add gate: gradient distributor


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Patterns in backward flow

add gate: gradient distributor Q: What is a max gate?


## Patterns in backward flow

add gate: gradient distributor max gate: gradient router



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

## Patterns in backward flow

add gate: gradient distributor max gate: gradient router Q: What is a mul gate?


## Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: gradient switcher


## Gradients add at branches



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 n

## Duality in Fprop and Bprop



- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
- Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
- How does this work with vectors, matrices, tensors?
- Across a composed function?
- How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation


## Linear Algebra View: Vector and Matrix Sizes

$$
\begin{array}{r}
{\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{31} & w_{32} & \cdots & w_{3 m} & b 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m} \\
1
\end{array}\right]} \\
W
\end{array}
$$

Sizes: $[c \times(d+1)] \quad[(d+1) \times 1]$
Where $c$ is number of classes
$d$ is dimensionality of input

## Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^{1}$, vector $v \in \mathbb{R}^{m}$, i.e. $v=\left[v_{1}, v_{2}, \ldots, v_{m}\right]^{T}$ and matrix $M \in \mathbb{R}^{k \times \ell}$


## Conventions:

- Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar $s \in \mathbb{R}^{\mathbf{1}}$, vector $v \in \mathbb{R}^{m}$, i.e. $v=\left[v_{1}, v_{2}, \ldots, v_{m}\right]^{T}$ and matrix $M \in \mathbb{R}^{k \times \ell}$
What is the size of $\frac{\partial v}{\partial s} ? \mathbb{R}^{m \times 1}$ (column vector of size $m$ )

$$
\left[\begin{array}{c}
\frac{\partial v_{1}}{\partial s} \\
\frac{\partial v_{2}}{\partial s} \\
\vdots \\
\frac{\partial v_{m}}{\partial s}
\end{array}\right]
$$

$$
\left[\frac{\partial s}{\partial v_{1}} \frac{\partial s}{\partial v_{1}} \cdots \frac{\partial s}{\partial v_{m}}\right]
$$

## Conventions:

What is the size of $\frac{\partial v^{1}}{\partial v^{2}}$ ? A matrix:
Col ${ }_{j}$

$$
\text { Row } i\left[\begin{array}{ccccc}
\frac{\partial v_{1}^{1}}{\partial v_{1}^{2}} & \cdots & \cdots & \cdots & \cdots \\
\cdots & & \cdots & \cdots & \cdots \\
\frac{\partial v_{i}^{1}}{\partial v_{1}^{2}} & \cdots & \frac{\partial v_{i}^{1}}{\partial v_{j}^{2}} & \cdots & \frac{\partial v_{i}^{1}}{\partial v_{m_{2}}^{2}} \\
\cdots & \cdots & \cdots & \cdots & \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
m_{1} \times m_{2}
\end{array}\right]
$$

- This matrix of partial derivatives is called a Jacobian
(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.


## Dimensionality of Derivatives

## Conventions:

What is the size of $\frac{\partial s}{\partial M}$ ? A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

## Example 1:

$$
y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right] \quad \frac{\partial y}{\partial x}=\left[\begin{array}{c}
1 \\
2 x
\end{array}\right]
$$

## Example 2:

$$
\begin{aligned}
y & =w^{T} x=\sum_{k} w_{k} x_{k} \\
\frac{\partial y}{\partial x} & =\left[\frac{\partial y}{\partial x_{1}}, \ldots, \frac{\partial y}{\partial x_{m}}\right] \\
& =\left[w_{1}, \ldots, w_{m}\right] \quad \text { because } \quad \frac{\partial\left(\sum_{k} w_{k} x_{k}\right)}{\partial x_{i}}=w_{i} \\
& =w^{T}
\end{aligned}
$$

## Example 3:

$$
\begin{aligned}
& y=W x \quad \frac{\partial y}{\partial x}=W \\
& \text { Col } j
\end{aligned}
$$

Example 4:

$$
\frac{\partial(w A w)}{\partial w}=2 w^{T} A \text { (assuming A is symmetric) }
$$

- What is the size of $\frac{\partial L}{\partial W}$ ?

Remember that loss is a scalar and $W$ is a matrix:

$$
\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{31} & w_{32} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

Jacobian is also a matrix:
W

$$
\left[\begin{array}{ccccc}
\frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1 m}} & \frac{\partial L}{\partial b_{1}} \\
\frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2 m}} & \frac{\partial L}{\partial b_{2}} \\
\cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3 m}} & \frac{\partial L}{\partial b_{3}}
\end{array}\right]
$$

Batches of data are matrices or tensors (multidimensional matrices)

## Examples:

- Each instance is a vector of size $m$, our batch is of size $[\boldsymbol{B} \times \boldsymbol{m}]$
- Each instance is a matrix (e.g. grayscale image) of size $\boldsymbol{W} \times \boldsymbol{H}$, our batch is [ $\boldsymbol{B} \times \boldsymbol{W} \times \boldsymbol{H}$ ]
- Each instance is a multi-channel matrix (e.g. color image with $\mathrm{R}, \mathrm{B}, \mathrm{G}$ channels) of size $\boldsymbol{C} \times \boldsymbol{W} \times \boldsymbol{H}$, our batch is $[\boldsymbol{B} \times \boldsymbol{C} \times \boldsymbol{W} \times \boldsymbol{H}]$
Jacobians become tensors which is complicated
- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors
$\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 n} \\ x_{21} & x_{22} & \cdots & x_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n n}\end{array}\right]$

Flatten

$\left[\begin{array}{c}x_{11} \\ x_{12} \\ \vdots \\ x_{21} \\ x_{22} \\ \vdots \\ x_{n 1} \\ \vdots \\ x_{n n}\end{array}\right]$


Parameters

## Define:

$h_{i}^{\ell}=w_{i}^{T} h^{\ell-1}$

$$
\begin{gathered}
\boldsymbol{h}^{\ell}=\boldsymbol{W} \boldsymbol{h}^{\ell-1} \\
{[]\left[\begin{array}{l}
{\left[\boldsymbol{w}_{i}^{T} \rightarrow\right]} \\
\left|\boldsymbol{h}^{\ell}\right| \times 1
\end{array}\right]} \\
\left|\boldsymbol{h}^{\ell}\right| \times\left|\boldsymbol{h}^{\ell-1}\right| \\
\left|\boldsymbol{h}^{\ell-1}\right| \times \mathbf{1}
\end{gathered}
$$

$$
\begin{aligned}
& h^{\ell}=W h^{\ell-1} \\
& \frac{\partial \boldsymbol{h}^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=\boldsymbol{W} \\
& \text { Define: } \\
& h_{i}^{\ell}=w_{i}^{T} h^{\ell-1} \\
& \frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \quad \frac{\partial h^{\ell}}{\partial h^{\ell-1}} \\
& {[][][ } \\
& 1 \times\left|h^{\ell-1}\right| \quad 1 \times\left|h^{\ell}\right| \quad\left|h^{\ell}\right| \times\left|h^{\ell-1}\right|
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{h}^{\ell}=W \boldsymbol{h}^{\ell-1} \\
\frac{\partial h^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=W
\end{gathered}
$$



Note doing this on full $W$ matrix would result in Jacobian tensor!

But it is sparse - each output only affected by corresponding weight row
Define:

$$
h_{i}^{\ell}=w_{i}^{T} h^{\ell-1}
$$

$$
\frac{\partial h_{i}^{\ell}}{\partial w_{i}^{T}}=h^{(\ell-1), T}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{i}^{T}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial w_{i}^{T}} \\
& {[][]\left[\begin{array}{c}
\leftarrow \\
\leftarrow \frac{0 h_{i}^{e}}{\partial w_{i}^{T}} \rightarrow \\
\leftarrow 0 \rightarrow
\end{array}\right]} \\
& 1 \times\left|h^{\ell-1}\right| 1 \times\left|h^{\ell}\right|\left|h^{\ell}\right| \times\left|h^{\ell-1}\right|
\end{aligned}
$$

We can employ any differentiable (or piecewise differentiable) function

A common choice is the Rectified Linear Unit

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?



Full Jacobian of ReLU layer is large (output dim $x$ input dim)

- But again it is sparse
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value
Max function funnels gradients through selected max
- Gradient will be zero if input <= 0


Forward: $\boldsymbol{h}^{\ell}=\max \left(0, \boldsymbol{h}^{\ell-1}\right)$
Backward: $\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
4D input $x$ :
4D output $z$ :

$f(x)=\max (0, x)$
(elementwise)


What does $\frac{\partial z}{\partial x}$ look like?

4D dL/dz:


4D input $x$ :


4D dL/dx: [dz/dx] [dL/dz] $\left.\left.\begin{array}{l}{[4]} \\ {[0]} \\ {[5]} \\ {[5]} \\ {[0]}\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right] \quad 0\right]\left[\begin{array}{ll}4\end{array}\right]$

4D output $z$ :


4D dL/dz:


For element-wise ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
- Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
- How does this work with vectors, matrices, tensors?
- Across a composed function? Next Time!
- How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

