
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Backpropagation
• Matrix/Linear Algebra view

Administrivia

• Assignment 1 out!
• Due Feb 3rd (with grace period 5th)
• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Resources:
• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)

• Piazza: Project teaming thread
• Project proposal overview during my OH (Thursday 3pm ET)

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

Derivatives

⬣ We can find the steepest descent direction by
computing the derivative (gradient):

⬣ Steepest descent direction is the negative
gradient

⬣ Intuitively: Measures how the function
changes as the argument a changes by a small
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the
loss function changes as weights are varied

⬣ Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

𝒉→𝟎

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

The same two-layered neural network
corresponds to adding another
weight matrix

⬣ We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝟏 𝟐

𝟏 𝟐 𝟐 𝟏

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

⬣ The number of nodes could grow
unreasonably (exponential or worse)
with respect to the complexity of the
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input
layer

hidden
layer 1

hidden
layer 2

output
layer 𝟏 𝟐 𝟑 𝟐 𝟏

Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss
Function

⬣ We are learning complex models with significant amount of
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss
Function

𝒊
?

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

⬣ We want to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

ℓ 𝟏 ℓ ℓ 𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓ 𝟏

𝝏𝒉ℓ

𝝏𝑾

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

⬣ We can compute local gradients:
𝝏𝒉ℓ

𝝏𝒉ℓ 𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its
parameters and inputs!

Example: If ℓ ℓ 𝟏

then
𝝏𝒉ℓ

𝝏𝒉ℓ 𝟏

and
𝝏𝒉ℓ

𝝏𝒘𝒊

ℓ 𝟏,𝑻

Computing the Local Gradients: Example

(a sparse matrix with

in the i-th row

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉ℓ 𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉ℓ 𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ 𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓ 𝟏 ℓ

Given by upstream
module (upstream
gradient)

20
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

21
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

22

e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

23

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

24

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

25

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

26

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

27

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

28

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

29

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

30

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

31

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

33

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

34

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

35

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 46

+

+

FPROP BPROP
SU

M
CO

PY

Summary

• Neural networks involves composing simple functions into a
computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function?

• How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

Linear
Algebra

View:
Vector and

Matrix Sizes

Closer Look at a Linear Classifier

Sizes:

Where is number of classes

is dimensionality of input

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×ℓ

M

M
𝟏

𝟐

𝟏

𝟐

Tensors

Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×ℓ

⬣ What is the size of
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size)

⬣ What is the size of
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size)

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎

Conventions:

⬣ What is the size of
𝝏𝒗𝟏

𝝏𝒗𝟐 ?

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row

Col

𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Dimensionality of Derivatives

Conventions:

⬣ What is the size of
𝝏𝒔

𝝏𝑴
? A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Examples

𝟏

𝟐
𝟐

𝑻
𝒌 𝒌

𝒌

Example 1:

Example 2:

𝟏 𝒎

𝟏 𝒎 because
𝒌 𝒌𝒌

𝒊
𝒊

𝑻

Examples

𝝏(𝒘𝑨𝒘)

𝝏𝒘
𝑻 (assuming A is symmetric)

Example 3:

Example 4:

Row

Col
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

= 𝒊𝒋 𝒊 𝒊𝒋 𝒋

𝒋

Dimensionality of Derivatives in ML

⬣ What is the size of
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:

Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size , our batch is of
size

⬣ Each instance is a matrix (e.g. grayscale image) of
size , our batch is

⬣ Each instance is a multi-channel matrix (e.g. color
image with R,B,G channels) of size , our
batch is

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of
derivatives!

⬣ This can also be done for partial derivatives
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏

Fully Connected (FC) Layer: Forward Function

ℓ 𝟏 ℓ

FunctionInput Output

Parameters

𝒊
𝑻

ℓ ℓ 𝟏ℓ ℓ 𝟏

Define:

Fully Connected (FC) Layer

ℓ 𝟏 ℓ

ℓ

ℓ 𝟏

ℓ 𝟏 ℓ

ℓ

ℓ 𝟏

ℓ 𝟏 ℓ ℓ 𝟏ℓ

Define:

Fully Connected (FC) Layer

ℓ 𝟏 ℓ Note doing this on full
matrix would result in
Jacobian tensor!

But it is sparse – each
output only affected by
corresponding weight row

ℓ

ℓ 𝟏

𝒊
𝑻 ℓ

ℓ

𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

ℓ 𝟏 ℓ ℓ 𝟏ℓ

Define:

We can employ any differentiable
(or piecewise differentiable)
function

A common choice is the Rectified
Linear Unit

⬣ Provides non-linearity but better
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
c

2

1.
8
1.
6
1.
4
1.
2
1

0.
8
0.
6
0.
4
0.
2
0

-2 -
1.
5

-1 -
0.
5

0 0.
5

1 1.
5

2

max(0,_)

Full Jacobian of ReLU layer is large
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero
because it is element-wise

⬣ An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

⬣ Gradient will be zero if input
<= 0

Jacobian of ReLU

ℓ 𝟏 ℓ

FunctionInput Output

Parameters

Forward: ℓ ℓ 𝟏

Backward:
𝝏𝑳

𝝏𝒉ℓ 𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ 𝟏

ℓ ℓ 𝟏

ℓ

ℓ 𝟏

ℓ 𝟏

For diagonal

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Summary

• Neural networks involves composing simple functions into a
computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function? Next Time!

• How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

