Topics:

- Backpropagation / Automatic Differentiation
- Jacobians

CS 4644 / 7643-A ZSOLT KIRA

• Assignment 1 out!

- Due Feb 3rd (with grace period 5th)
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Resources:
 - These lectures
 - Matrix calculus for deep learning
 - <u>Gradients notes</u> and <u>MLP/ReLU Jacobian notes</u>.
 - Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)
- Piazza: Project teaming thread
 - Will post video of project overview

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic** graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A **training algorithm** will then process this graph, **one module at a time**

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

• We want to to compute:
$$\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$$

We will use the *chain rule* to do this:

Chain Rule: $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

Computing the Gradients of Loss

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$

Dimensionality of Derivatives

• What is the size of $\frac{\partial L}{\partial W}$?

Remember that loss is a scalar and W is a matrix:

 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix}$

Jacobian is also a matrix:

∂ <i>L</i>	∂ L		∂ L	ך <i>∂L</i>
$\overline{\partial w_{11}}$	∂w_{12}	• • •	∂w_{1m}	$\overline{\partial b_1}$
∂ L			∂ L	ðL
$\overline{\partial w_{21}}$	• • •	• • •	∂w_{2m}	∂b_2
			∂ L	ðL
•••	• • •	• • •	∂w_{3m}	$\overline{\partial b_3}$

W

Dimensionality of Derivatives in ML

Fully Connected (FC) Layer: Forward Function

Georg

Fully Connected (FC) Layer

Fully Connected (FC) Layer

We can employ **any differentiable** (or piecewise differentiable) function

A common choice is the **Rectified** Linear Unit

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?

Full Jacobian of ReLU layer is **large** (output dim x input dim)

- But again it is **sparse**
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function **funnels gradients through selected max**

Gradient will be zero if input
 <= 0

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

For element-wise ops, jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use elementwise multiplication

> Georgia Tech

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? This Time!
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Vectorizaiton in Function Compositions

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_{\ell} (g_{\ell-1}(\dots g_1(x)))$$
$$f(x) = g_{\ell} \circ g_{\ell-1} \dots \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

- Input: $x \in \mathbb{R}^D$
- Binary label: $y \in \{-1, +1\}$
- Parameters: $w \in \mathbb{R}^D$
- Output prediction: $p(y = 1|x) = \frac{1}{1 + e^{-w^T x}}$

Linear Classifier: Logistic Regression

We have discussed **computation** graphs for generic functions

Machine Learning functions (input -> model -> loss function) is also a computation graph

We can use the **computed** gradients from backprop/automatic differentiation to update the weights!

 $-\log\left(\frac{1}{1+e^{-w^Tx}}\right)$

Neural Network Computation Graph

$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \quad \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \quad \frac{\partial u}{\partial w} = \bar{u}x^T$$

We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = \overline{L} \, \overline{p} \, \overline{u} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from L to w

Example Gradient Computations

The chain rule can be computed as a **series of scalar, vector, and matrix linear algebra operations**

Extremely efficient in graphics processing units (GPUs)

$$\overline{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$

$$\begin{bmatrix}] & [] & [] & [] \\ 1x1 & 1x1 & 1x1 & 1x1 \end{bmatrix} x^T$$

We want to find the **partial derivative of output f** (output) with respect to **all intermediate variables**

Assign intermediate variables

Simplify notation: Denote bar as: $\overline{a_3} = \frac{\partial f}{\partial a_3}$

Start at end and move backward

Example

Example

$$\overline{a_1} = \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial a_3}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial (a_1 + a_2)}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \mathbf{1} = \overline{a_3}$$
$$\overline{a_2} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} \quad \frac{\partial a_3}{\partial a_2} = \overline{a_3}$$

Addition operation distributes gradients along all paths!

Patterns of Gradient Flow: Addition

Multiplication operation is a gradient switcher (multiplies it by the values of the other term)

$$\overline{x_2} = \frac{\partial f}{\partial a_2} \ \frac{\partial a_2}{\partial x_2} = \frac{\partial f}{\partial a_2} \ \frac{\partial (x_1 x_2)}{\partial x_2} = \overline{a_2} x_1$$

$$\overline{x_1} = \frac{\partial f}{\partial a_2} \quad \frac{\partial a_2}{\partial x_1} = \overline{a_2} x_2$$

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.:

Max operation **selects** which path to push the gradients through

- Gradient flows along the path that was "selected" to be max
- This information must be recorded in the forward pass

The flow of gradients is one of the most important aspects in deep neural networks

If gradients do not flow backwards properly, learning slows or stops!

L = 1 $\overline{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$ where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$ $\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \overline{p} \sigma(1 - \sigma)$ $\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \overline{u}x^T$

We can do this in a combined way to see all terms together:

$$\begin{split} \overline{w} &= \frac{\partial L}{\partial p} \ \frac{\partial p}{\partial u} \ \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T \end{split}$$

This effectively shows gradient flow along path from $L \mbox{ to } w$

Computation Graph of primitives (automatic differentiation)

Different Views of Equivalent Ideas

Georgia Tech

Backpropagation and Automatic Differentiation

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)

Modularized implementation: forward / backward API

C

Graph (or Net) object (rough psuedo code)

<pre>class ComputationalGraph(object):</pre>			
#			
<pre>def forward(inputs):</pre>			
<pre># 1. [pass inputs to input gates]</pre>			
# 2. forward the computational graph:			
<pre>for gate in self.graph.nodes_topologically_sorted():</pre>			
gate.forward()			
<pre>return loss # the final gate in the graph outputs the loss</pre>			
<pre>def backward():</pre>			
<pre>for gate in reversed(self.graph.nodes_topologically_sorted()):</pre>			
<pre>gate.backward() # little piece of backprop (chain rule applied)</pre>			
<pre>return inputs_gradients</pre>			

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Modularized implementation: forward / backward API

class M	<pre>ultiplyGate(object):</pre>
def	<pre>forward(x,y):</pre>
	$z = x^*y$
	<pre>self.x = x # must keep these around!</pre>
	self.y = y
	return z
def	backward(dz):
	dx = self.y * dz # [dz/dx * dL/dz]
	dy = self.x * dz # [dz/dy * dL/dz]
	return [dx, dy]

Example: Caffe layers

Branch: master - caffe / src / c	affe / layers / Cre	ate new file Up	pload files	Find file	History	Cudnn_lon_layer.cpp	dismantie layer headers
Shelhamer committed on GitHub	Merge pull request #4630 from BiGene/load_hdf5_fix	Late	ist commit e	687a71 21	days ago	Cudnn_lon_layer.cu	dismantle layer headers
						Cudnn_Irn_layer.cpp	dismantle layer headers
absval_layer.cpp	dismantle layer headers			a	/ear ago	Cudnn_Irn_layer.cu	dismantle layer headers
absval_layer.cu	dismantle layer headers			a	/ear ago	cudnn_pooling_layer.cpp	dismantle layer headers
accuracy laver.cpp	dismantle laver headers			a	ear ago	Cudnn_pooling_layer.cu	dismantle layer headers
argmax_layer.cpp	dismantie layer headers				year ago	Cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support
base_conv_layer.cpp	enable dilated deconvolution				/ear ago	Cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support
base_data_layer.cpp	Using default from proto for prefetch				ths ago	cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support
	A second designed and the second second					Cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support
B base_data_layer.cu	Switched multi-GPU to NCCL				nths ago	Cudnn_softmax_layer.cpp	dismantie layer headers
batch_norm_layer.cpp	Add missing spaces besides equal signs in batch_norm_layer.	cpp			nths ago	Cudnn_softmax_layer.cu	dismantle layer headers
batch_norm_layer.cu	dismantle layer headers				year ago	Cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support
batch_reindex_layer.cpp	dismantie layer headers			a	year ago	Cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support
batch_reindex_layer.cu	dismantle layer headers			а	year ago	data_layer.cpp	Switched multi-GPU to NCCL
bias_layer.cpp	Remove incorrect cast of gemm int arg to Dtype in BiasLayer			а	ear ago	deconv_layer.cpp	enable dilated deconvolution
blas_layer.cu	Separation and generalization of ChannelwiseAffineLayer into	BiasLayer		а	/ear ago	E deconv_layer.cu	dismantle layer headers
bnll_layer.cpp	dismantie layer headers			а	ear ago	D dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape
🖹 bnll_layer.cu	dismantle layer headers			a	vear ago	dropout_layer.cu	dismantie layer headers
concat_layer.cpp	dismantle layer headers			a	year ago	dummy_data_layer.cpp	dismantle layer headers
concat_layer.cu	dismantle layer headers			a	year ago	eltwise_layer.cpp	dismantie layer headers
contrastive_loss_layer.cpp	dismantie layer headers			а	year ago	eltwise_layer.cu	dismantle layer headers
Contrastive_loss_layer.cu	dismantle layer headers			a	ear ago	elu_layer.cpp	ELU layer with basic tests
Conv_layer.cpp	add support for 2D dilated convolution			a	year ago	elu_layer.cu	ELU layer with basic tests
Conv. laver.cu	dismantle laver headers				year ago	embed_layer.cpp	dismantie layer headers
Crop_layer.cpp	remove redundant operations in Crop layer (#5138)				ths ago	embed_layer.cu	dismantie layer headers
Crop_layer.cu	remove redundant operations in Crop layer (#5138)				ths ago	euclidean_loss_layer.cpp	dismantle layer headers
Cudnn_conv_layer.cpp	dismantie layer headers				year ago	euclidean_loss_layer.cu	dismantle layer headers
Cudnn_conv_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support				ths ago	exp_layer.cpp	Solving issue with exp layer with base e dismantle layer headers

Caffe is licensed under BSD 2-Clause

Georgia Teah

a year ago 11 months ago 11 months ago 11 months ago 11 months ago a year ago a year ago 11 months ago 11 months ago 3 months ago a year ago

Backpropagation does not really spell out how to **efficiently** carry out the necessary computations

But the idea can be applied to **any directed acyclic graph** (DAG)

 Graph represents an ordering constraining which paths must be calculated first

Given an ordering, we can then iterate from the last module backwards, **applying the chain rule**

- We will store, for each node, its gradient outputs for efficient computation
- We will do this **automatically** by computing backwards function for primitives and as you write code, express the function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering

Auto-Diff

 A family of algorithms for implementing chain-rule on computation graphs

Automatic differentiation:

- Carries out this procedure for us on arbitrary graphs
- Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!

$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \quad \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \quad \frac{\partial u}{\partial w} = \bar{u}x^T$$

We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -(1 - \sigma(w^T x)) x^T$$

This effectively shows gradient flow along path from *L* to *w*

Example Gradient Computations

- Key idea is to explicitly store computation graph in memory and corresponding gradient functions
- Nodes broken down to basic primitive computations (addition, multiplication, log, etc.) for which corresponding derivative is known

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

```
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
```


(Note above)

Computation Graphs in PyTorch

Back-propagation uses the dynamically built graph from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

```
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
```

next_h.backward(torch.ones(1, 20))

From pytorch.org

Note that we can also do **forward mode** automatic differentiation

Start from **inputs** and propagate gradients forward

Complexity is proportional to input size

- Memory savings (all forward pass, no need to store activations)
- However, in most cases our inputs (images) are large and outputs (loss) are small

Automatic Differentiation

See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

Forward Mode Autodifferentiation

Neural Turing Machine

Figure reproduced with permission from a <u>Twitter post</u> by Andrej Karpathy.

- Computation graphs are not limited to mathematical functions!
- Can have control flows (if statements, loops) and backpropagate through algorithms!
- Can be done dynamically so that gradients are computed, then nodes are added, repeat
- Differentiable programming

Adapted from figure by Andrej Karpathy

Power of Automatic Differentiation

