Topics:

- Backpropagation / Automatic Differentiation
- Jacobians


## CS 4644 / 7643-A ZSOLT KIRA

- Assignment 1 out!
- Due Feb 3rd (with grace period $5^{\text {th }}$ )
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Resources:
- These lectures
- Matrix calculus for deep learning
- Gradients notes and MLP/ReLU Jacobian notes.
- Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)
- Piazza: Project teaming thread
- Will post video of project overview

To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time


Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

We want to to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$


- We will use the chain rule to do this:

Chain Rule: $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

## Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& \hline q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1 \\
& \hline \hline f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q \\
& \hline \text { Want: } \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$



## Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^{1}$, vector $v \in \mathbb{R}^{m}$, i.e. $v=\left[v_{1}, v_{2}, \ldots, v_{m}\right]^{T}$ and matrix $M \in \mathbb{R}^{k \times \ell}$


- What is the size of $\frac{\partial L}{\partial W}$ ?

Remember that loss is a scalar and $W$ is a matrix:

$$
\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{31} & w_{32} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

Jacobian is also a matrix:
W

$$
\left[\begin{array}{ccccc}
\frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1 m}} & \frac{\partial L}{\partial b_{1}} \\
\frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2 m}} & \frac{\partial L}{\partial b_{2}} \\
\cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3 m}} & \frac{\partial L}{\partial b_{3}}
\end{array}\right]
$$



Parameters

## Define:

$h_{i}^{\ell}=w_{i}^{T} h^{\ell-1}$

$$
\begin{gathered}
\boldsymbol{h}^{\ell}=\boldsymbol{W} \boldsymbol{h}^{\ell-1} \\
{[]\left[\begin{array}{l}
{\left[\boldsymbol{w}_{i}^{T} \rightarrow\right]} \\
\left|\boldsymbol{h}^{\ell}\right| \times 1
\end{array}\right]} \\
\left|\boldsymbol{h}^{\ell}\right| \times\left|\boldsymbol{h}^{\ell-1}\right| \\
\left|\boldsymbol{h}^{\ell-1}\right| \times \mathbf{1}
\end{gathered}
$$

$$
\begin{aligned}
& h^{\ell}=W h^{\ell-1} \\
& \frac{\partial \boldsymbol{h}^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=\boldsymbol{W} \\
& \text { Define: } \\
& h_{i}^{\ell}=w_{i}^{T} h^{\ell-1} \\
& \frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \quad \frac{\partial h^{\ell}}{\partial h^{\ell-1}} \\
& {[][][ } \\
& 1 \times\left|h^{\ell-1}\right| \quad 1 \times\left|h^{\ell}\right| \quad\left|h^{\ell}\right| \times\left|h^{\ell-1}\right|
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{h}^{\ell}=W \boldsymbol{h}^{\ell-1} \\
\frac{\partial h^{\ell}}{\partial \boldsymbol{h}^{\ell-1}}=W
\end{gathered}
$$



Note doing this on full $W$ matrix would result in Jacobian tensor!

But it is sparse - each output only affected by corresponding weight row
Define:

$$
h_{i}^{\ell}=w_{i}^{T} h^{\ell-1}
$$

$$
\frac{\partial h_{i}^{\ell}}{\partial w_{i}^{T}}=h^{(\ell-1), T}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{i}^{T}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial w_{i}^{T}} \\
& {[][]\left[\begin{array}{c}
\leftarrow \\
\leftarrow \frac{0 h_{i}^{e}}{\partial w_{i}^{T}} \rightarrow \\
\leftarrow 0 \rightarrow
\end{array}\right]} \\
& 1 \times\left|h^{\ell-1}\right| 1 \times\left|h^{\ell}\right|\left|h^{\ell}\right| \times\left|h^{\ell-1}\right|
\end{aligned}
$$

We can employ any differentiable (or piecewise differentiable) function

A common choice is the Rectified Linear Unit

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?



Full Jacobian of ReLU layer is large (output dim $x$ input dim)

- But again it is sparse
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value
Max function funnels gradients through selected max
- Gradient will be zero if input <= 0


Forward: $\boldsymbol{h}^{\ell}=\max \left(0, \boldsymbol{h}^{\ell-1}\right)$
Backward: $\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
4D input $x$ :
4D output $z$ :

$f(x)=\max (0, x)$
(elementwise)


What does $\frac{\partial z}{\partial x}$ look like?

4D dL/dz:


4D input $x$ :


4D dL/dx: [dz/dx] [dL/dz] $\left.\left.\begin{array}{l}{[4]} \\ {[0]} \\ {[5]} \\ {[5]} \\ {[0]}\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right] \quad 0\right]\left[\begin{array}{ll}4\end{array}\right]$

4D output $z$ :


4D dL/dz:


For element-wise ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
- Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
- How does this work with vectors, matrices, tensors?
- Across a composed function? This Time!
- How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation


## Vectorizaiton in Function Compositions

## Composition of Functions: $\quad f(g(x))=(f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$
\begin{gathered}
f(x)=g_{\ell}\left(g_{\ell-\mathbf{1}}\left(\ldots g_{1}(x)\right)\right) \\
f(x)=g_{\ell} \circ g_{\ell-\mathbf{1}} \ldots \circ g_{1}(x)
\end{gathered}
$$

(Many of these will be parameterized)

Jacobian View of Chain Rule

## Graphical View of Chain Rule

## Chain Rule: Cascaded

- Input: $\boldsymbol{x} \in \boldsymbol{R}^{\boldsymbol{D}}$

Binary label: $\boldsymbol{y} \in\{\mathbf{- 1 , + 1}\}$
Parameters: $\boldsymbol{w} \in \boldsymbol{R}^{\boldsymbol{D}}$

- Output prediction: $p(y=1 \mid x)=\frac{1}{1+e^{-w^{T} x}}$

Loss: $L=\frac{1}{2}\|w\|^{2}-\lambda \log (p(y \mid x))$



Log Loss

Adapted from slide by Marc'Aurelio Ranzato
Linear Classifier: Logistic Regression

We have discussed computation graphs for generic functions

Machine Learning functions (input -> model -> loss function) $-\log \left(\frac{1}{1+e^{-w^{T} x}}\right)$ is also a computation graph

We can use the computed gradients from backprop/automatic
 differentiation to update the weights!


$$
\begin{aligned}
& \bar{L}=1 \\
& \bar{p}=\frac{\partial L}{\partial p}=-\frac{1}{p} \\
& \text { where } p=\sigma\left(w^{T} x\right) \text { and } \sigma(x)=\frac{1}{1+e^{-x}} \\
& \bar{u}=\frac{\partial L}{\partial u}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u}=\bar{p} \sigma(1-\sigma) \\
& \bar{w}=\frac{\partial L}{\partial w}=\frac{\partial L}{\partial u} \frac{\partial u}{\partial w}=\bar{u} x^{T}
\end{aligned}
$$

We can do this in a combined way to see all terms together:

$$
\begin{aligned}
\bar{w} & =\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}=\bar{L} \bar{p} \bar{u}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
& =-\left(1-\sigma\left(w^{T} x\right)\right) x^{T}
\end{aligned}
$$

This effectively shows gradient flow along path from Lto w

The chain rule can be computed as a series of scalar, vector, and matrix linear algebra operations


Extremely efficient in graphics processing units (GPUs)

$$
\begin{gathered}
\overline{\mathrm{w}}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
{[]_{1 \times 1}} \\
{[]_{1 \times 1}}
\end{gathered} \text { [] }_{1 \times 1}[]_{1 \times \mathrm{xd}}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\sin \left(x_{2}\right)
$$



We want to find the partial derivative of output $f$ (output) with respect to all intermediate variables

- Assign intermediate variables

Simplify notation:
Denote bar as: $\overline{a_{3}}=\frac{\partial f}{\partial a_{3}}$

- Start at end and move backward

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\sin \left(x_{2}\right)
$$



## Example

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\sin \left(x_{2}\right)
$$


$\overline{a_{1}}=\frac{\partial f}{\partial a_{1}}=\frac{\partial f}{\partial a_{3}} \frac{\partial a_{3}}{\partial a_{1}}=\frac{\partial f}{\partial a_{3}} \frac{\partial\left(a_{1}+a_{2}\right)}{\partial a_{1}}=\frac{\partial f}{\partial a_{3}} \quad 1=\overline{a_{3}}$
$\overline{a_{2}}=\frac{\partial f}{\partial a_{2}}=\frac{\partial f}{\partial a_{3}} \frac{\partial a_{3}}{\partial a_{2}}=\overline{a_{3}}$

Addition operation distributes gradients along all paths!

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\sin \left(x_{2}\right)
$$



Multiplication operation is a gradient switcher (multiplies it by the values of the other term)

$$
\begin{aligned}
& \overline{x_{2}}=\frac{\partial f}{\partial a_{2}} \frac{\partial a_{2}}{\partial x_{2}}=\frac{\partial f}{\partial a_{2}} \frac{\partial(x 1 x 2)}{\partial x_{2}}=\overline{a_{2}} x_{1} \\
& \overline{x_{1}}=\frac{\partial f}{\partial a_{2}} \frac{\partial a_{2}}{\partial x_{1}}=\overline{a_{2}} x_{2}
\end{aligned}
$$

Several other patterns as well, e.g.:
Max operation selects which path to push the gradients through

- Gradient flows along the path that was "selected" to be max
- This information must be recorded in the forward pass


The flow of gradients is one of the most important aspects in deep neural networks

- If gradients do not flow backwards properly, learning slows or stops!

$L=1$
$\bar{p}=\frac{\partial L}{\partial p}=-\frac{1}{p}$
where $p=\sigma\left(w^{T} x\right)$ and $\sigma(x)=\frac{1}{1+e^{-x}}$
$\overline{\boldsymbol{u}}=\frac{\partial L}{\partial u}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u}=\bar{p} \sigma(\mathbf{1}-\sigma)$
$\overline{\boldsymbol{w}}=\frac{\partial L}{\partial w}=\frac{\partial L}{\partial u} \frac{\partial u}{\partial w}=\bar{u} x^{T}$
We can do this in a combined way to see all terms together:

$$
\begin{aligned}
\bar{w} & =\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
& =-\left(1-\sigma\left(w^{T} x\right)\right) x^{T}
\end{aligned}
$$

This effectively shows gradient flow along path from $L$ to $w$
Computation Graph of primitives (automatic differentiation)

- We want to to compute: $\left\{\frac{\partial L}{\partial \boldsymbol{h}^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$


Backpropagation View
(Recursive Algorithm)


Computational / Tensor View


Graph View

## Backpropagation and Automatic Differentiation

## Deep Learning $=$ Differentiable Programming

- Computation = Graph
- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering
- What do we need to do?
- Generic code for representing the graph of modules
- Specify modules (both forward and backward function)


## Modularized implementation: forward / backward API

## Graph (or Net) object (rough psuedo code)



```
class ComputationalGraph(object):
    #...
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
    return inputs_gradients
```


## Modularized implementation: forward / backward API



[^0]
## Modularized implementation: forward / backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
```

    def forward(x,y):
    ```
    def forward(x,y):
        z = x*y
        z = x*y
        self.x = x # must keep these around!
        self.x = x # must keep these around!
        self.y = y
        self.y = y
        return z
        return z
    def backward(dz):
```

    def backward(dz):
    ```
```

        dx = self.y * dz # [dz/dx * dL/dz]
    ```
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

        return [dx, dy]
    ```

\footnotetext{
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
}

\section*{Example: Caffe layers}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} &  & (1) cummenowerecesp & dimmant buser heoseers & aperaso \\
\hline \multicolumn{2}{|l|}{} &  & Dewamuensereco & asmantic bsen hesees & syeasos \\
\hline - & & & Devumumbuectep & dismanto bree hesiens & searaso \\
\hline ®abssoluyectep & dismantic lyser hesoess & ayearag & ®usamumimerecu & dismonte byere hesees & apeersoo \\
\hline Dabsolusereca & dimmantic ayere heoseers & a yeersoo & a cuamm & dismantio byen hesaers & year 200 \\
\hline - 0 eccuraceloverepo & dimmant byser heoseess & a yeer ogo &  & dismantibure hesoes & -5earso \\
\hline Dagmexayercep & dismantic byere hesees & a yeer ogo &  &  & 11 monerss 900 \\
\hline - base.convimerctep & enabic aliated decenvovition & ayearaso & D cueme sionodidivecceo &  & monms eno \\
\hline  & USing defaulit fom provotor peetech & \(3 \mathrm{mmonts} \mathrm{seo}^{0}\) & Dicumm siomodi.breceu &  & 11 momerseso \\
\hline © base.datas.jvecec & Swiched mut-GPu to ncCl & 3 moxts 990 &  & dismantic bye heosees & - yeer soo \\
\hline (1)archnommasecicep &  & 4 monems 900 & Dusmesotmax comeco & asmantib bree heseen & a yerseso \\
\hline © baschnombuyecu & dismante lyse heesers & avearao & Devemuankispeces &  & 11 momenspo \\
\hline © orecherentex werecpp & dimmonte lyer hesoers & - yeerso & Devamicombiverev & NSS COWNV 5 wpoart dope cuown 3 spport & "mommsepo \\
\hline © barcheindex lavecu & dismante isyer heasers & a yeer 90 & Eatativecece & Smuched muti-CPu to nccl & 3 momess 90 \\
\hline (1) basas.jerectep & Remone incorrect cass of gemm in rag to Divpe in Blastorer & a yearaso & \(10^{\text {deceanviserecepo }}\) & enabe calued decemomition & - yeersoo \\
\hline  &  & a yearsoo & ®useamuserecu & assmante bree heseses & ajeersoo \\
\hline © intuyectep & dismant byer teseers & a yearso &  &  & -30ersoo \\
\hline © innuserecu & dismantic asyer heosers & a year so & -atroouctivecu & dismantib byere heasees & seeasos \\
\hline [10 concerumercpo & dismane isyer heosers & ayearaso &  & dismontic urem heasees & - yeer 980 \\
\hline (1) concat byeres & dismante tyyer heosers & 980 & 20emise.berecop & dimmant byer hesoess & Peersoo \\
\hline (1) contastive.oss.ayercsp & dismantic lyser heasers & a yearsos & Eembersecesp & Eiviser whin bosicicest & - yeersoe \\
\hline Decontrasiveloss.ayerev & dismantic lyyer heoseers & ayeersog & belumercu & Exu bree wit baicicets & ayeanoo \\
\hline (convisuercto & asd suporen tor 20 dilated comvolition & a year ago & Bembecturecco & dismanto lyon hesies & a yeersoo \\
\hline Đoconvimece & dimmante liye hesters & ayeraso & Democolverco & aimanat byere hesoes & - yeresoo \\
\hline -ccoo.aperc.cp &  & 2 month 5900 &  & dismonti bree hesies & ayers90 \\
\hline Decop.apectu & remove resundant soerations in Crop lyye (S5133) & 2 montrs 900 & Euecteen iossumecu & dismate byere hesees & apersoo \\
\hline @ cunnc.convapercepe & dismante ayper hesoders & ayearaso & Dexposecepo &  & ayeerso \\
\hline Di cudmecomblyerecu & ned cuown v 5 uppor, drop cuow va supart & 1 mon & Buepomeev & dismort brem hesters & apeaso \\
\hline
\end{tabular}



\section*{Caffe Sigmoid Layer}


Backpropagation does not really spell out how to efficiently carry out the necessary computations

But the idea can be applied to any directed acyclic graph (DAG)
- Graph represents an ordering constraining which paths must be calculated first

Given an ordering, we can then iterate from the last module backwards, applying the chain rule
- We will store, for each node, its gradient outputs for efficient computation
- We will do this automatically by computing backwards function for primitives and as you write code, express the function with them


This is called reverse-mode automatic differentiation

\section*{A General Framework}

Computation = Graph
- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering

\section*{Auto-Diff}
- A family of algorithms for implementing chain-rule on computation graphs


\section*{Automatic differentiation:}
- Carries out this procedure for us on arbitrary graphs
- Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!
\(\bar{L}=1\)
\(\bar{p}=\frac{\partial L}{\partial p}=-\frac{1}{p}\)
where \(p=\sigma\left(w^{T} x\right)\) and \(\sigma(x)=\frac{1}{1+e^{-x}}\)
\(\overline{\boldsymbol{u}}=\frac{\partial L}{\partial u}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u}=\overline{\boldsymbol{p}} \sigma(\mathbf{1}-\boldsymbol{\sigma})\)
\(\bar{w}=\frac{\partial L}{\partial w}=\frac{\partial L}{\partial u} \frac{\partial u}{\partial w}=\overline{\boldsymbol{u}} x^{T}\)
We can do this in a combined way to see all terms together:
\[
\begin{aligned}
\bar{w} & =\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
& =-\left(1-\sigma\left(w^{T} x\right)\right) x^{T}
\end{aligned}
\]

This effectively shows gradient flow along path from \(L\) to \(w\)

\section*{Example Gradient Computations}
- Key idea is to explicitly store computation graph in memory and corresponding gradient functions

Nodes broken down to basic primitive computations (addition, multiplication, log, etc.) for which
corresponding derivative is known
\[
\overline{x_{2}}=\frac{\partial f}{\partial a_{1}} \frac{\partial a_{1}}{\partial x_{2}}=\overline{a_{1}} \quad \cos \left(x_{2}\right)
\]


\section*{A graph is created on the fly}
from torch.autograd import Variable
```

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

```

(Note above)

\section*{Back-propagation uses the dynamically built graph}
from torch.autograd import Variable
```

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))

```


From pytorch.org
Computation Graphs in PyTorch

Note that we can also do forward mode automatic differentiation

Start from inputs and propagate gradients forward

Complexity is proportional to input size
- Memory savings (all forward pass, no need to store activations)
- However, in most cases our inputs (images) are large and outputs (loss) are small



See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

\section*{Convolutional network (AlexNet)}


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 n

\section*{Neural Turing Machine}

- Computation graphs are not limited to mathematical functions!
- Can have control flows (if statements, loops) and backpropagate through algorithms!
- Can be done dynamically so that gradients are computed, then nodes are added, repeat


Differentiable programming```


[^0]:    Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 n

