
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Optimization



Administrivia

• Assignment 1 – Due Friday!!! 

• Assignment 2
• Implement convolutional neural networks

• Piazza: Start with public posts so that others can benefit!
• Doesn’t mean don’t post!

• Meta Lectures: Data wrangling video available online, OH recordings available:
• See dropbox link piazza @68 for lectures, @125 for first office hours Thursday 4pm ET
• All OH are on the Canvas Zoom list!
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Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)



Forward Mode Autodifferentiation

g
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Assume given

See https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf



Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function



A network with two or more hidden 
layers is often considered a deep
model

Depth is important:

⬣ Structure the model to represent 
an inherently compositional world 

⬣ Theoretical evidence that it leads 
to parameter efficiency

⬣ Gentle dimensionality reduction 
(if done right)

Importance of Depth

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



⬣ Computation graphs are not 
limited to mathematical 
functions!

⬣ Can have control flows (if 
statements, loops) and 
backpropagate through 
algorithms!

⬣ Can be done dynamically so 
that gradients are computed, 
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0



Designing Deep Neural Networks

There are still many design 
decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 
Optimization

⬣ Machine Learning 
Considerations

?

Local
Minima



We must design the neural network 
architecture:

⬣ What modules (layers) should 
we use? 

⬣ How should they be connected 
together?

⬣ Can we use our domain 
knowledge to add architectural 
biases?

Architectural Considerations

?



Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Recurrent Neural Network

Convolutional Neural
Networks

Input
Image

Predictions

Different architectures are 
suitable for different 
applications or types of input

Transformers



As in traditional machine 
learning, data is key:

⬣ Should we pre-process
the data? 

⬣ Should we normalize it?

⬣ Can we augment our data 
by adding noise or other 
perturbations? 

Data Considerations



Even given a good neural network 
architecture, we need a good optimization 
algorithm to find good weights

⬣ What optimizer should we use? 

⬣ Different optimizers make different 
weight updates depending on the 
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima



The practice of machine learning 
is complex: For your particular 
application you have to trade off all 
of the considerations together

⬣ Trade-off between model 
capacity (e.g. measured by # of 
parameters) and amount of data

⬣ Adding appropriate biases 
based on knowledge of the 
domain

Machine Learning 
Considerations



Demo
• http://playground.tensorflow.org



Architectural 
Considerations



Determining what modules to use, and how to 
connect them is part of the architectural 
design

⬣ Guided by the type of data used and its 
characteristics

⬣ Understanding your data is always the 
first step!

⬣ Lots of data types (modalities) already 
have good architectures

⬣ Start with what others have 
discovered!

⬣ The flow of gradients is one of the key 
principles to use when analyzing layers

Designing the Architecture

?



⬣ Combination of linear and 
non-linear layers

⬣ Combination of only linear 
layers has same 
representational power as one 
linear layer

⬣ Non-linear layers are crucial 

⬣ Composition of non-linear 
layers enables complex 
transformations of the 
data

Linear and Non-Linear Modules

𝑻
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𝟏
𝑻
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𝑻

𝟒
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Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input & 
output statistics

⬣ Gradients

⬣ At initialization (e.g. small 
values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function



⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential 
term

Sigmoid Function

Sigmoid

Derivative

ℓ ℓ 𝟏

𝒙
ℓ 𝟏 ℓ
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⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat 
computationally heavy

Tanh Function

tanh
Derivative

ℓ ℓ 𝟏



⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ (dead ReLU)

⬣ Constant otherwise (does 
not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

ℓ ℓ 𝟏



⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation 

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

ℓ ℓ 𝟏 ℓ 𝟏



Selecting a Non-Linearity

Which non-linearity should you 
select?

⬣ Unfortunately, no one activation 
function is best for all applications

⬣ ReLU is most common starting 
point

⬣ Sometimes leaky ReLU can 
make a big difference 

⬣ Sigmoid is typically avoided 
unless clamping to values from 
[0,1] is needed



Initialization



Initializing the Parameters

The parameters of our model must be 
initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs 
(given inputs) behave

⬣ Determines how well gradients flow in 
the beginning of training (important)

⬣ Could limit use of full capacity of the 
model if done improperly

⬣ Initialization that is close to a good (local) 
minima will converge faster and to a better 
solution



⬣ What happens to the 
weight updates?

⬣ Each node has the same 
input from previous layers 
so gradients will be the 
same

⬣ As a results, all weights 
will be updated to the 
same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input 
layer

hidden 
layer 1

hidden 
layer 2

output 
layer

𝒊



⬣ E.g.

⬣ Small weights are preferred since 
no feature/input has prior 
importance

⬣ Keeps the model within the linear 
region of most activation 
functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers



⬣ With a deep network, 
activations (outputs of 
nodes) get smaller 

⬣ Standard deviation reduces 
significantly 

⬣ Leads to small updates –
smaller values multiplied by 
upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to 
initialization

Distribution of activation values 
of a network with tanh non-
linearities, for increasingly deep 
layers

From "Understanding the difficulty of training deep 
feedforward neural networks." AISTATS, 2010.



⬣ This condition leads to a 
simple initialization rule, 
sampling from uniform 
distribution:

𝟔

𝒏𝒋 𝒏𝒋 𝟏

𝟔

𝒏𝒋 𝒏𝒋 𝟏

⬣ Where 𝒋 is fan-in
(number of input nodes) 
and 𝒋 𝟏 is fan-out
(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar 
to that of input!

Distribution of activation values 
of a network with tanh non-
linearities, for increasingly deep 
layers

From "Understanding the difficulty of training deep 
feedforward neural networks." AISTATS, 2010.



(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.



Key takeaway: Initialization matters!

⬣ Determines the activation (output) 
statistics, and therefore gradient 
statistics 

⬣ If gradients are small, no learning 
will occur and no improvement is 
possible!

⬣ Important to reason about 
output/gradient statistics and 
analyze them for new layers and 
architectures

Summary



Normalization,  
Preprocessing,

and 
Augmentation



In deep learning, data drives 
learning of features and classifier

⬣ Its characteristics are therefore 
extremely important

⬣ Always understand your data!

⬣ Relationship between output 
statistics, layers such as non-
linearities, and gradients is 
important

Importance of Data



Preprocessing

Just like initialization, normalization can 
improve gradient flow and learning

Typically normalization methods apply:

⬣ Subtract mean, divide by standard 
deviation (most common)

⬣ This can be done per dimension

⬣ Whitening, e.g. through Principle
Component Analysis (PCA) (not 
common)

Data after subtracting mean, 
dividing by standard deviation

Data after whitening

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Making Normalization a Layer

⬣ We can try to come up with a layer that can normalize the data across 
the neural network

⬣ Given: A mini-batch of data where is batch size

⬣ Compute mean and variance for each dimension 

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Normalizing the Data

Normalize data

𝒊
𝒊 𝑩

𝑩
𝟐

Note: This part 
does not involve 
new parameters

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Learnable Scaling and Offset

⬣ We can give the model 
flexibility through 
learnable parameters 

(scale) and (shift)

⬣ Network can learn to not 
normalize if necessary!

⬣ This layer is called a 
Batch Normalization 
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Some Complexities of BN

During inference, stored 
mean/variances calculated on training 
set are used

Sufficient batch sizes must be used to 
get stable per-batch estimates during 
training

⬣ This is especially an issue when 
using multi-GPU or multi-machine 
training

⬣ Use torch.nn.SyncBatchNorm to 
estimate batch statistics in these 
settings



Where to Apply BN

Normalization especially important before 
non-linearities!

⬣ Very low/high values (un-
normalized/imbalanced data) cause 
saturation

Input

Linear
Layer

BN Non-
Linearity



Generalization of BN

There are many variations of batch 
normalization

⬣ See Convolutional Neural 
Network lectures for an example

Resource: 

⬣ ML Explained - Normalization



Optimizers



Loss Landscape

Deep learning involves complex, 
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result 

There is little direct theory and a lot of 
intuition/rules of thumbs instead

⬣ Some insight can be gained via 
theory for simpler cases (e.g.
convex settings)



Loss Landscape

It used to be thought that 
existence of local minima is 
the main issue in optimization

There are other more 
impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point



Noisy Gradients

⬣ We use a subset of the 
data at each iteration to 
calculate the loss (& 
gradients)

⬣ This is an unbiased 
estimator but can have 
high variance

⬣ This results in noisy steps 
in gradient descent



Loss Surface Geometry

Several loss surface geometries 
are difficult for optimization

Several types of minima: Local 
minima, plateaus, saddle points

Saddle points are those where the 
gradient of orthogonal directions 
are zero

⬣ But they disagree (it’s min for 
one, max for another)

Plateau

Saddle Point



Adding Momentum

⬣ Gradient descent takes a step in the 
steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling 
down loss surface, and use 
momentum to pass flat surfaces

⬣ Generalizes SGD ( )

𝒊 𝒊 𝟏
𝒊

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0, )

𝒊 𝒊 𝟏 𝒊 Update Weights



Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with 
some theoretical analysis (under assumptions)



Equivalent Momentum Update

Equivalent formulation:

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0)

𝒊 𝒊 𝟏 𝒊 Update Weights



Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity 
with current gradient, go along velocity 
first and then calculate gradient at new 
point

⬣ We know velocity is probably a 
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Note there are several equivalent 
formulations across deep learning 
frameworks!

Resource: 
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Momentum



Hessian and Loss Curvature

⬣ Various mathematical ways to 
characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the 
curvature of the loss surface

First 
order

Second 
order



Condition Number

Condition number is the ratio of 
the largest and smallest eigenvalue 

⬣ Tells us how different the 
curvature is along different 
dimensions

If this is high, SGD will make big
steps in some dimensions and 
small steps in other dimension

Second-order optimization methods 
divide steps by curvature, but 
expensive to compute



Idea: Have a dynamic learning rate 
for each weight

Several flavors of optimization 
algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in 
many cases but with much more 
tuning

Per-Parameter Learning Rate



Adagrad

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Idea: Use gradient statistics 
to reduce learning rate across 
iterations

Denominator: Sum up 
gradients over iterations

Directions with high 
curvature will have higher 
gradients, and learning rate 
will reduce 

Duchi, et al., “Adaptive Subgradient Methods for Online 
Learning and Stochastic Optimization”

As gradients are 
accumulated learning 

rate will go to zero



RMSProp

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Solution: Keep a moving 
average of squared 
gradients!

Does not saturate the 
learning rate



Adam

Combines ideas from 
above algorithms

Maintains both first 
and second moment 
statistics for gradients

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊

𝒊

But unstable in the beginning 
(one or both of moments will be 
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015



Adam

Solution: Time-varying bias 
correction

Typically 𝟏 𝟐

So 𝒊 will be small number 
divided by (1-0.9=0.1) resulting 
in more reasonable values (and 

𝒊 larger)

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊 𝟏
𝒊

𝒊



Behavior of Optimizers

Optimizers behave differently 
depending on landscape

Different behaviors such as 
overshooting, stagnating, etc. 

Plain SGD+Momentum can 
generalize better than adaptive 
methods, but requires more tuning 

⬣ See: Luo et al., Adaptive 
Gradient Methods with 
Dynamic Bound of Learning 
Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/



Learning Rate Schedules

First order optimization methods have 
learning rates

Theoretical results rely on annealed 
learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler 
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training
Loss


