
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Optimization

Administrivia

• Assignment 1 – Due Friday!!!

• Assignment 2
• Implement convolutional neural networks

• Piazza: Start with public posts so that others can benefit!
• Doesn’t mean don’t post!

• Meta Lectures: Data wrangling video available online, OH recordings available:
• See dropbox link piazza @68 for lectures, @125 for first office hours Thursday 4pm ET
• All OH are on the Canvas Zoom list!

3

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example

2 1

𝟏 𝟐 𝟏 𝟐 𝟐

𝟑

𝟐𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏 𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients
from multiple
paths
summed

Path 1
(P1)

Path 2
(P2)

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝒉 𝒙

MM MM

Add

(Note above)

Forward Mode Autodifferentiation

g
ℓ ℓ

ℓ 𝟏

ℓ 𝟏ℓ 𝟏

Assume given

See https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

Input

Model

Loss Function

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

⬣ Structure the model to represent
an inherently compositional world

⬣ Theoretical evidence that it leads
to parameter efficiency

⬣ Gentle dimensionality reduction
(if done right)

Importance of Depth

input
layer hidden

layer 1
hidden
layer 2

output
layer

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Computation graphs are not
limited to mathematical
functions!

⬣ Can have control flows (if
statements, loops) and
backpropagate through
algorithms!

⬣ Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Designing Deep Neural Networks

There are still many design
decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and
Optimization

⬣ Machine Learning
Considerations

?

Local
Minima

We must design the neural network
architecture:

⬣ What modules (layers) should
we use?

⬣ How should they be connected
together?

⬣ Can we use our domain
knowledge to add architectural
biases?

Architectural Considerations

?

Example Architectures

Fully Connected
Neural Network

PredictionsInput
Data

Recurrent Neural Network

Convolutional Neural
Networks

Input
Image

Predictions

Different architectures are
suitable for different
applications or types of input

Transformers

As in traditional machine
learning, data is key:

⬣ Should we pre-process
the data?

⬣ Should we normalize it?

⬣ Can we augment our data
by adding noise or other
perturbations?

Data Considerations

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

⬣ What optimizer should we use?

⬣ Different optimizers make different
weight updates depending on the
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima

The practice of machine learning
is complex: For your particular
application you have to trade off all
of the considerations together

⬣ Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

⬣ Adding appropriate biases
based on knowledge of the
domain

Machine Learning
Considerations

Demo
• http://playground.tensorflow.org

Architectural
Considerations

Determining what modules to use, and how to
connect them is part of the architectural
design

⬣ Guided by the type of data used and its
characteristics

⬣ Understanding your data is always the
first step!

⬣ Lots of data types (modalities) already
have good architectures

⬣ Start with what others have
discovered!

⬣ The flow of gradients is one of the key
principles to use when analyzing layers

Designing the Architecture

?

⬣ Combination of linear and
non-linear layers

⬣ Combination of only linear
layers has same
representational power as one
linear layer

⬣ Non-linear layers are crucial

⬣ Composition of non-linear
layers enables complex
transformations of the
data

Linear and Non-Linear Modules

𝑻
𝒖

𝟏
𝑻

𝟐
𝑻

𝟑
𝑻

𝟒
𝑻x

Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input &
output statistics

⬣ Gradients

⬣ At initialization (e.g. small
values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function

⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential
term

Sigmoid Function

Sigmoid

Derivative

ℓ ℓ 𝟏

𝒙
ℓ 𝟏 ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat
computationally heavy

Tanh Function

tanh
Derivative

ℓ ℓ 𝟏

⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ (dead ReLU)

⬣ Constant otherwise (does
not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

ℓ ℓ 𝟏

⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

ℓ ℓ 𝟏 ℓ 𝟏

Selecting a Non-Linearity

Which non-linearity should you
select?

⬣ Unfortunately, no one activation
function is best for all applications

⬣ ReLU is most common starting
point

⬣ Sometimes leaky ReLU can
make a big difference

⬣ Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed

Initialization

Initializing the Parameters

The parameters of our model must be
initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs
(given inputs) behave

⬣ Determines how well gradients flow in
the beginning of training (important)

⬣ Could limit use of full capacity of the
model if done improperly

⬣ Initialization that is close to a good (local)
minima will converge faster and to a better
solution

⬣ What happens to the
weight updates?

⬣ Each node has the same
input from previous layers
so gradients will be the
same

⬣ As a results, all weights
will be updated to the
same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input
layer

hidden
layer 1

hidden
layer 2

output
layer

𝒊

⬣ E.g.

⬣ Small weights are preferred since
no feature/input has prior
importance

⬣ Keeps the model within the linear
region of most activation
functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers

⬣ With a deep network,
activations (outputs of
nodes) get smaller

⬣ Standard deviation reduces
significantly

⬣ Leads to small updates –
smaller values multiplied by
upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to
initialization

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

⬣ This condition leads to a
simple initialization rule,
sampling from uniform
distribution:

𝟔

𝒏𝒋 𝒏𝒋 𝟏

𝟔

𝒏𝒋 𝒏𝒋 𝟏

⬣ Where 𝒋 is fan-in
(number of input nodes)
and 𝒋 𝟏 is fan-out
(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar
to that of input!

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.

Key takeaway: Initialization matters!

⬣ Determines the activation (output)
statistics, and therefore gradient
statistics

⬣ If gradients are small, no learning
will occur and no improvement is
possible!

⬣ Important to reason about
output/gradient statistics and
analyze them for new layers and
architectures

Summary

Normalization,
Preprocessing,

and
Augmentation

In deep learning, data drives
learning of features and classifier

⬣ Its characteristics are therefore
extremely important

⬣ Always understand your data!

⬣ Relationship between output
statistics, layers such as non-
linearities, and gradients is
important

Importance of Data

Preprocessing

Just like initialization, normalization can
improve gradient flow and learning

Typically normalization methods apply:

⬣ Subtract mean, divide by standard
deviation (most common)

⬣ This can be done per dimension

⬣ Whitening, e.g. through Principle
Component Analysis (PCA) (not
common)

Data after subtracting mean,
dividing by standard deviation

Data after whitening

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Making Normalization a Layer

⬣ We can try to come up with a layer that can normalize the data across
the neural network

⬣ Given: A mini-batch of data where is batch size

⬣ Compute mean and variance for each dimension

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Normalizing the Data

Normalize data

𝒊
𝒊 𝑩

𝑩
𝟐

Note: This part
does not involve
new parameters

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Learnable Scaling and Offset

⬣ We can give the model
flexibility through
learnable parameters

(scale) and (shift)

⬣ Network can learn to not
normalize if necessary!

⬣ This layer is called a
Batch Normalization
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Some Complexities of BN

During inference, stored
mean/variances calculated on training
set are used

Sufficient batch sizes must be used to
get stable per-batch estimates during
training

⬣ This is especially an issue when
using multi-GPU or multi-machine
training

⬣ Use torch.nn.SyncBatchNorm to
estimate batch statistics in these
settings

Where to Apply BN

Normalization especially important before
non-linearities!

⬣ Very low/high values (un-
normalized/imbalanced data) cause
saturation

Input

Linear
Layer

BN Non-
Linearity

Generalization of BN

There are many variations of batch
normalization

⬣ See Convolutional Neural
Network lectures for an example

Resource:

⬣ ML Explained - Normalization

Optimizers

Loss Landscape

Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

There is little direct theory and a lot of
intuition/rules of thumbs instead

⬣ Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

Loss Landscape

It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point

Noisy Gradients

⬣ We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

⬣ This is an unbiased
estimator but can have
high variance

⬣ This results in noisy steps
in gradient descent

Loss Surface Geometry

Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

⬣ But they disagree (it’s min for
one, max for another)

Plateau

Saddle Point

Adding Momentum

⬣ Gradient descent takes a step in the
steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

⬣ Generalizes SGD ()

𝒊 𝒊 𝟏
𝒊

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0,)

𝒊 𝒊 𝟏 𝒊 Update Weights

Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

Equivalent Momentum Update

Equivalent formulation:

𝒊 𝒊 𝟏
𝒊 𝟏

Update Velocity
(starts as 0)

𝒊 𝒊 𝟏 𝒊 Update Weights

Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new
point

⬣ We know velocity is probably a
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Momentum

Hessian and Loss Curvature

⬣ Various mathematical ways to
characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the
curvature of the loss surface

First
order

Second
order

Condition Number

Condition number is the ratio of
the largest and smallest eigenvalue

⬣ Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

Idea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in
many cases but with much more
tuning

Per-Parameter Learning Rate

Adagrad

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

As gradients are
accumulated learning

rate will go to zero

RMSProp

𝒊 𝒊 𝟏
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊 𝒊 𝟏

Solution: Keep a moving
average of squared
gradients!

Does not saturate the
learning rate

Adam

Combines ideas from
above algorithms

Maintains both first
and second moment
statistics for gradients

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊 𝒊 𝟏
𝒊

𝒊

But unstable in the beginning
(one or both of moments will be
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015

Adam

Solution: Time-varying bias
correction

Typically 𝟏 𝟐

So 𝒊 will be small number
divided by (1-0.9=0.1) resulting
in more reasonable values (and

𝒊 larger)

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊 𝟏
𝒊

𝒊

Behavior of Optimizers

Optimizers behave differently
depending on landscape

Different behaviors such as
overshooting, stagnating, etc.

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

⬣ See: Luo et al., Adaptive
Gradient Methods with
Dynamic Bound of Learning
Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/

Learning Rate Schedules

First order optimization methods have
learning rates

Theoretical results rely on annealed
learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training
Loss

