Topics:

Optimization Continued

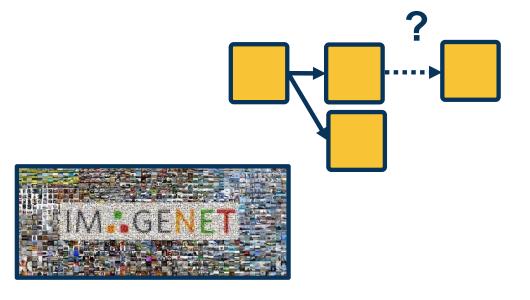
CS 4644-DL / 7643-A ZSOLT KIRA

Assignment 1 – due tonight, grace period 02/05

- Assignment 2
 - Implement convolutional neural networks
- Facebook Lectures: Data wrangling OH recordings available on piazza

There are still many design decisions that must be made:

- Architecture
- Data Considerations
- Training and Optimization
- Machine Learning Considerations

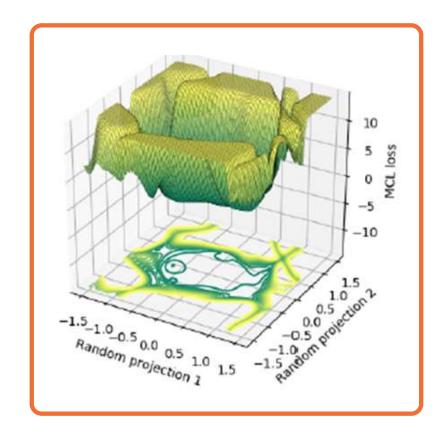


Deep learning involves complex, compositional, non-linear functions

The **loss landscape** is extremely **non-convex** as a result

There is **little direct theory** and a **lot of intuition/rules of thumbs** instead

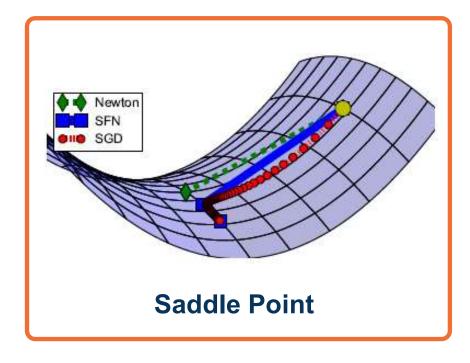
 Some insight can be gained via theory for simpler cases (e.g. convex settings)



It used to be thought that existence of local minima is the main issue in optimization

There are other more impactful issues:

- Noisy gradient estimates
- Saddle points
- III-conditioned loss surface



From: Identifying and attacking the saddle point problem in highdimensional non-convex optimization, Dauphi et al., 2014.

- We use a subset of the data at each iteration to calculate the loss (& gradients)
- This is an unbiased estimator but can have high variance
- This results in noisy steps in gradient descent

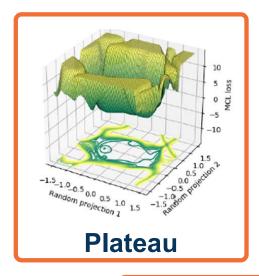
$$L = \frac{1}{M} \sum L(f(x_i, W), y_i)$$

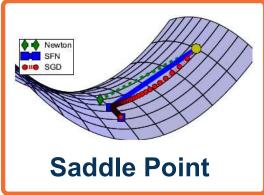
Several **loss surface geometries** are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

But they disagree (it's min for one, max for another)





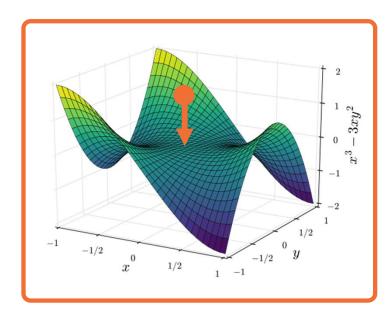
- Gradient descent takes a step in the steepest direction (negative gradient)
- Intuitive idea: Imagine a ball rolling down loss surface, and use momentum to pass flat surfaces

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$
 Update Velocity (starts as 0, $\beta = 0.99$)

$$w_i = w_{i-1} - \alpha v_i$$
 Update Weights

• Generalizes SGD ($\beta = 0$)

$$w_i = w_{i-1} - \alpha \frac{\partial L}{\partial w_i}$$



Velocity term is an exponential moving average of the gradient

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$

$$v_{i} = \beta(\beta v_{i-2} + \frac{\partial L}{\partial w_{i-2}}) + \frac{\partial L}{\partial w_{i-1}}$$

$$= \beta^2 v_{i-2} + \beta \frac{\partial L}{\partial w_{i-2}} + \frac{\partial L}{\partial w_{i-1}}$$

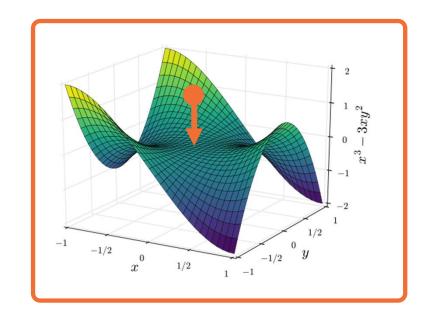
 There is a general class of accelerated gradient methods, with some theoretical analysis (under assumptions)

Equivalent formulation:

$$v_i = \beta v_{i-1} - \alpha \frac{\partial L}{\partial w_{i-1}}$$
 Update Velocity (starts as 0)

$$w_i = w_{i-1} + v_i$$

 $w_i = w_{i-1} + v_i$ Update Weights



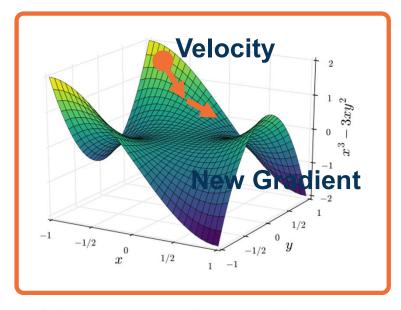
Key idea: Rather than combining velocity with current gradient, go along velocity **first** and then calculate gradient at new point

 We know velocity is probably a reasonable direction

$$\widehat{\boldsymbol{w}}_{i-1} = \boldsymbol{w}_{i-1} + \boldsymbol{\beta} \boldsymbol{v}_{i-1}$$

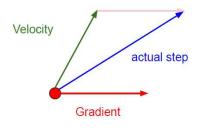
$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial \widehat{w}_{i-1}}$$

$$w_i = w_{i-1} - \alpha v_i$$



Momentum update:

Nesterov Momentum



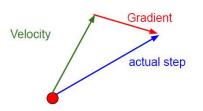


Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Nesterov Momentum

Momentum

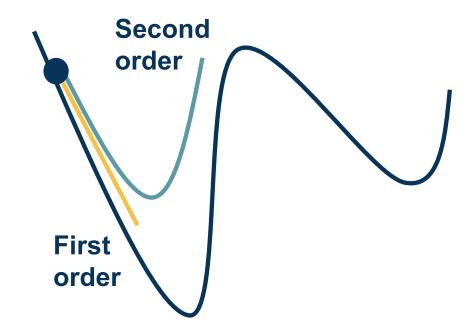
Note there are **several equivalent formulations** across deep learning frameworks!

Resource:

https://medium.com/the-artificialimpostor/sgd-implementation-inpytorch-4115bcb9f02c

- Various mathematical ways to characterize the loss landscape
- If you liked Jacobians... meet the

 Gives us information about the curvature of the loss surface

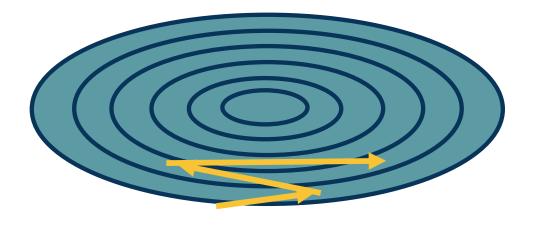


Condition number is the ratio of the largest and smallest eigenvalue

 Tells us how different the curvature is along different dimensions

If this is high, SGD will make **big** steps in some dimensions and **small** steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute



Condition Number

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate for each weight

Several flavors of **optimization algorithms**:

- RMSProp
- Adagrad
- Adam
- **-** ...

SGD can achieve similar results in many cases but with much more tuning

Idea: Use gradient statistics to reduce learning rate across iterations

Denominator: Sum up gradients over iterations

Directions with high curvature will have higher gradients, and learning rate will reduce

$$G_{i} = G_{i-1} + \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$w_{i} = w_{i-1} - \frac{\alpha}{G_{i} + \epsilon} \frac{\partial L}{\partial w_{i-1}}$$

As gradients are accumulated learning rate will go to zero

Duchi, et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"

Solution: Keep a moving average of squared gradients!

Does not saturate the learning rate

$$G_{i} = \beta G_{i-1} + (1 - \beta) \left(\frac{\partial L}{\partial w_{i-1}} \right)^{2}$$

$$w_i = w_{i-1} - \frac{\alpha}{\sqrt{G_i + \epsilon}} \ \frac{\partial L}{\partial w_{i-1}}$$

Combines ideas from above algorithms

Maintains both first and second moment statistics for gradients

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$w_i = w_{i-1} - \frac{\alpha v_i}{\sqrt{G_i + \epsilon}}$$

But unstable in the beginning (one or both of moments will be tiny values)

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Solution: Time-varying bias correction

Typically $\beta_1 = 0.9$, $\beta_2 = 0.999$

So $\hat{v_i}$ will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and \hat{G}_i larger)

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$\widehat{v_i} = \frac{v_i}{1 - \beta_1^t} \qquad \widehat{G_i} = \frac{G_i}{1 - \beta_2^t}$$

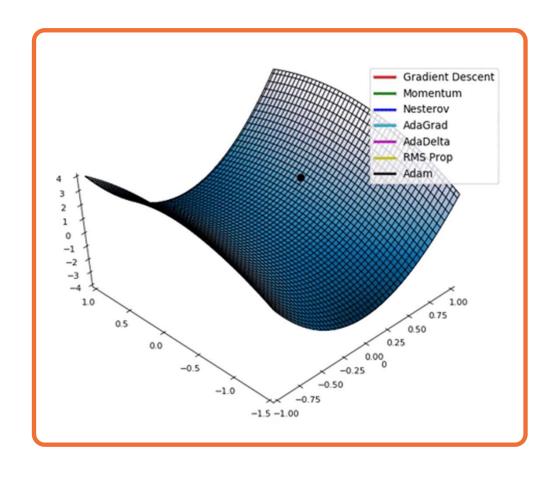
$$w_i = w_{i-1} - \frac{\alpha \, \widehat{v}_i}{\sqrt{\widehat{G}_i + \epsilon}}$$

Optimizers behave differently depending on landscape

Different behaviors such as **overshooting**, **stagnating**, **etc.**

Plain SGD+Momentum can generalize better than adaptive methods, but requires more tuning

See: Luo et al., Adaptive Gradient Methods with Dynamic Bound of Learning Rate, ICLR 2019



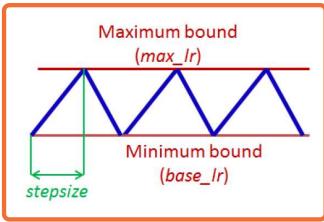
From: https://mlfromscratch.com/optimizers-explained/#/

First order optimization methods have learning rates

Theoretical results rely on **annealed learning rate**

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler



From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Regularization

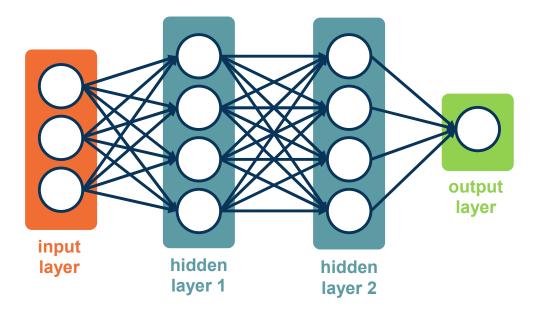
Many standard regularization methods still apply!

L1 Regularization

$$L = |y - Wx_i|^2 + \lambda |W|$$
 where $|W|$ is element-wise

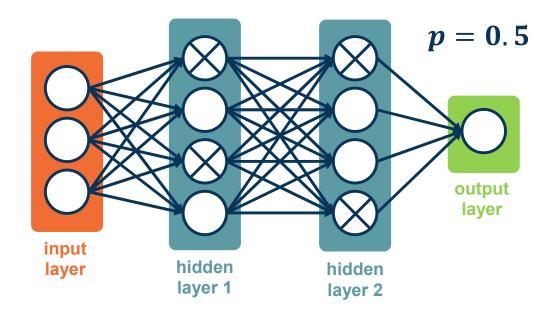
Example regularizations:

- L1/L2 on weights (encourage small values)
- L2: $L = |y Wx_i|^2 + \lambda |W|^2$ (weight decay)
- Elastic L1/L2: $|y Wx_i|^2 + \alpha |W|^2 + \beta |W|$



Problem: Network can learn to rely strong on a few features that work really well

May cause overfitting if not representative of test data



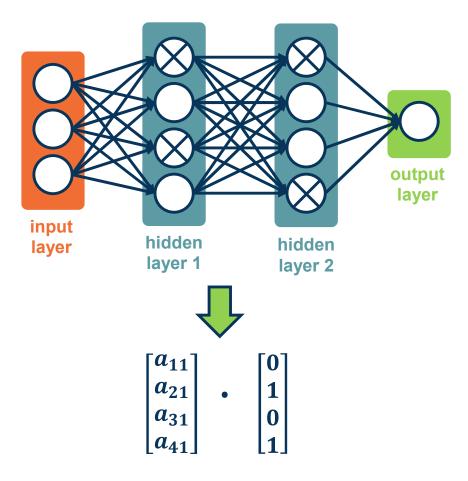
An idea: For each node, keep its output with probability *p*

Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

 In practice, implement with a mask calculated each iteration

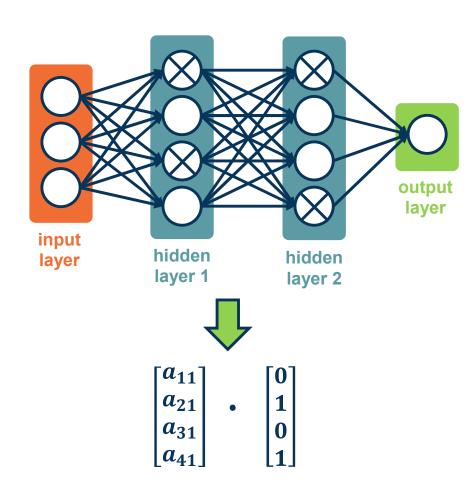
During testing, no nodes are dropped



- During training, each node has an expected p * fan_in nodes
- During test all nodes are activated
- Principle: Always try to have similar train and test-time input/output distributions!

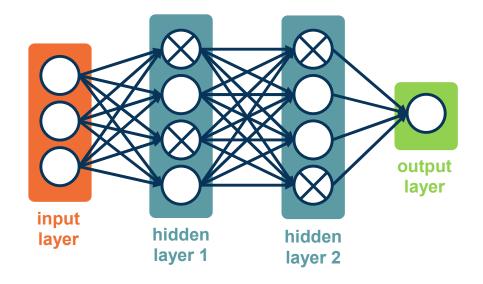
Solution: During test time, scale outputs (or equivalently weights) by *p*

- i.e. $W_{test} = pW$
- Alternative: Scale by $\frac{1}{p}$ at train time



Interpretation 1: The model should not rely too heavily on particular features

• If it does, it has probability 1 - p of losing that feature in an iteration

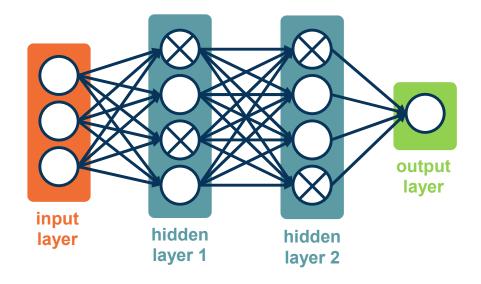


Interpretation 1: The model should not rely too heavily on particular features

If it does, it has probability 1 - p of losing that feature in an iteration

Interpretation 2: Training 2ⁿ networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data



Data Augmentation

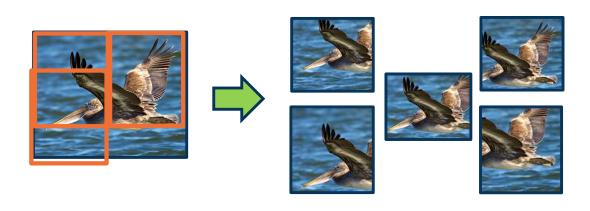
Data augmentation – Performing a range of **transformations** to the data

- This essentially "increases" your dataset
- Transformations should not change meaning of the data (or label has to be changed as well)

Simple example: Image Flipping

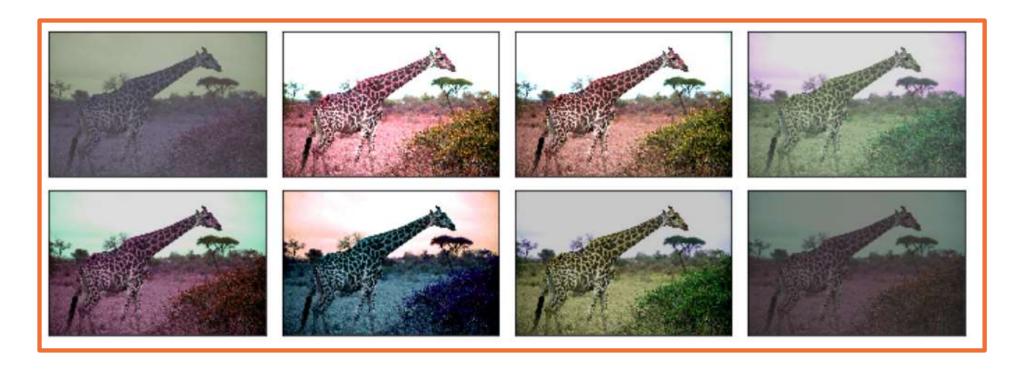
Random crop

- Take different crops during training
- Can be used during inference too!



CutMix

Color Jitter



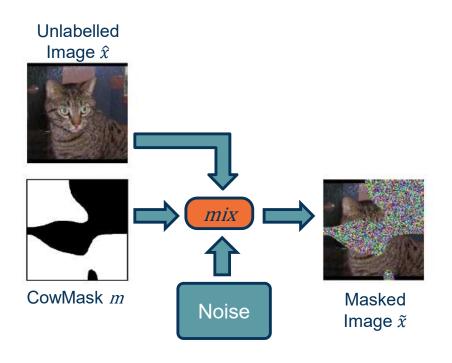
From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

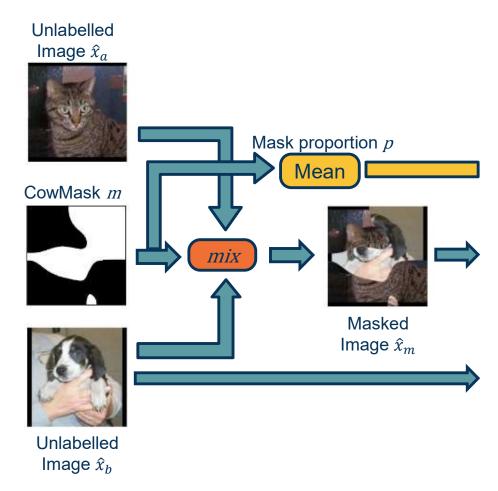
We can apply **generic affine transformations**:

- Translation
- Rotation
- Scale
- Shear

We can **combine these transformations** to add even more variety!

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



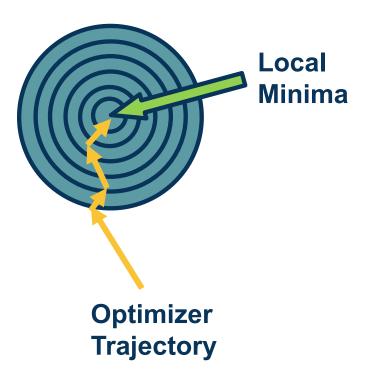


CowMix

From French et al., "Milking CowMask for Semi-Supervised Image Classification",

The Process of Training Neural Networks

- Training deep neural networks is an art form!
- Lots of things matter (together) the key is to find a combination that works
- Key principle: Monitoring everything to understand what is going on!
 - Loss and accuracy curves
 - Gradient statistics/characteristics
 - Other aspects of computation graph



Proper Methodology

Always start with **proper methodology!**

 Not uncommon even in published papers to get this wrong

Separate data into: **Training**, **validation**, **test set**

 Do not look at test set performance until you have decided on everything (including hyper-parameters)

Use **cross-validation** to decide on hyperparameters if amount of data is an issue

Check the bounds of your loss function

- E.g. cross-entropy ranges from [0, ∞]
- Check initial loss at small random weight values
 - E.g. $-\log(p)$ for cross-entropy, where p = 0.5

Another example: Start without regularization and make sure loss goes up when added

Key Principle: Simplify the dataset to make sure your model can properly (over)-fit before applying regularization

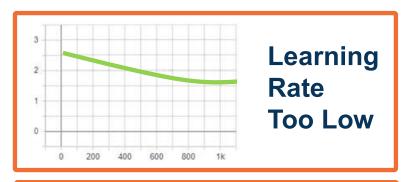
Change in loss indicates speed of learning:

- Tiny loss change -> too small of a learning rate
- Loss (and then weights) turn to NaNs -> too high of a learning rate

Other bugs can also cause this, e.g.:

- Divide by zero
- Forgetting the log!

In pytorch, use autograd's detect anomaly to debug

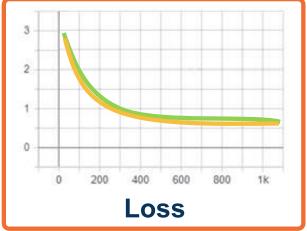




Learning Rate Too High

with autograd.detect_anomaly():
 output = model(input)
 loss = criterion(output, labels
 loss.backward()

- Classic machine learning signs of under/overfitting still apply!
- Over-fitting: Validation loss/accuracy starts to get worse after a while
- Under-fitting: Validation loss very close to training loss, or both are high
- Note: You can have higher training loss!
 - Validation loss has no regularization
 - Validation loss is typically measured at the end of an epoch

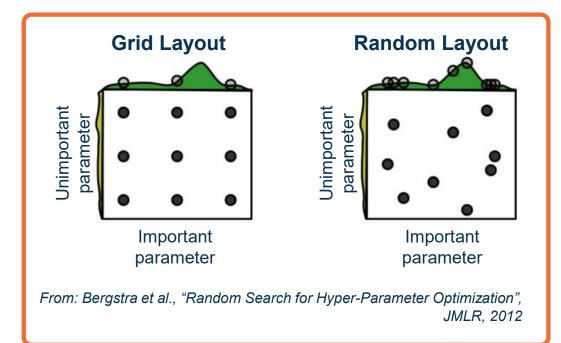


Many hyper-parameters to tune!

- Learning rate, weight decay crucial
- Momentum, others more stable
- Always tune hyper-parameters; even a good idea will fail untuned!

Start with coarser search:

- E.g. learning rate of {0.1, 0.05, 0.03, 0.01, 0.003, 0.001, 0.0005, 0.0001}
- Perform finer search around good values



Automated methods are OK, but intuition (or random) can do well given enough of a tuning budget

Inter-dependence of Hyperparameters

Note that hyper-parameters and even module selection are **interdependent**!

Examples:

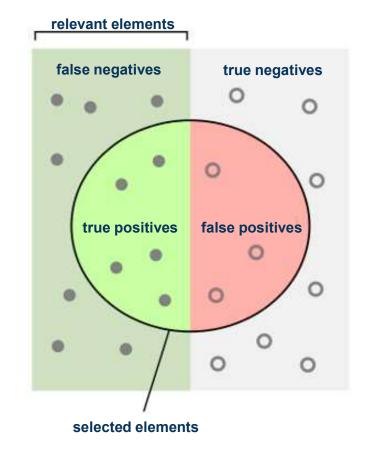
- Batch norm and dropout maybe not be needed together (and sometimes the combination is worse)
- The learning rate should be changed proportionally to batch size – increase the learning rate for larger batch sizes
 - One interpretation: Gradients are more reliable/smoother

Note that we are optimizing a **loss** function

What we actually care about is typically different metrics that we can't differentiate:

- Accuracy
- Precision/recall
- Other specialized metrics

The relationship between the two can be complex!



From https://en.wikipedia.org/wiki/Precision_and_recall

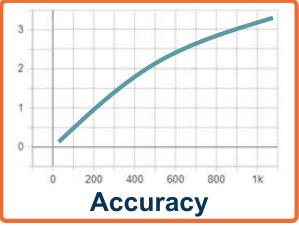
Example: Cross entropy loss

$$L = -\log P(Y = y_i | X = x_i)$$

Accuracy is measured based on:

$$argmax_i(P(Y = y_i | X = x_i))$$

Since the correct class score only has to be slightly higher, we can have flat loss curves but increasing accuracy!

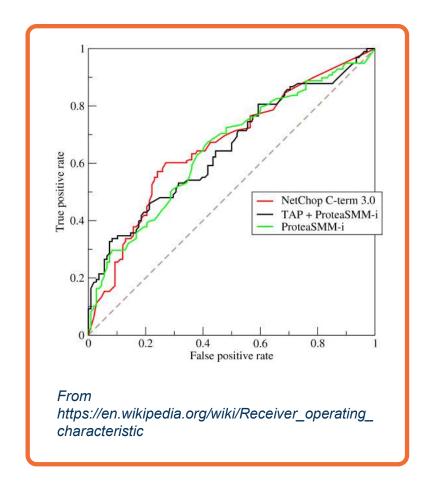


 Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions

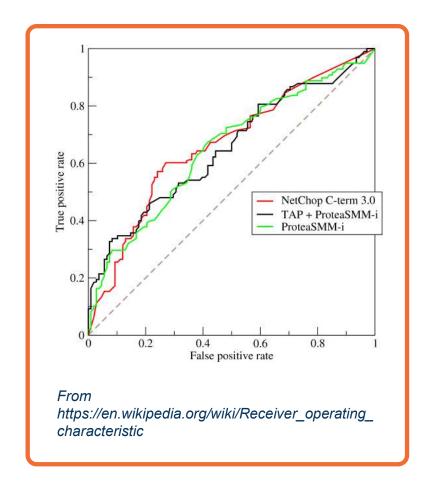
Definitions

- True Positive Rate: $TPR = \frac{tp}{tp+fn}$
- False Positive Rate: $FPR = \frac{fp}{fp+tn}$

$$Accuracy = \frac{tp+tn}{tp+tn+fp+fn}$$



- Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions
- Definitions
 - True Positive Rate: $TPR = \frac{tp}{tp+fn}$
 - False Positive Rate: $FPR = \frac{fp}{fp+tn}$
 - $Accuracy = \frac{tp+tn}{tp+tn+fp+fn}$
- We can obtain a curve by varying the (probability) threshold:
 - Area under the curve (AUC) common single-number metric to summarize
- Mapping between this and loss is **not simple**!



Resource:

 A disciplined approach to neural network hyperparameters: Part 1 -learning rate, batch size, momentum, and weight decay, Leslie N. Smith

