#### Topics:

Optimization Continued

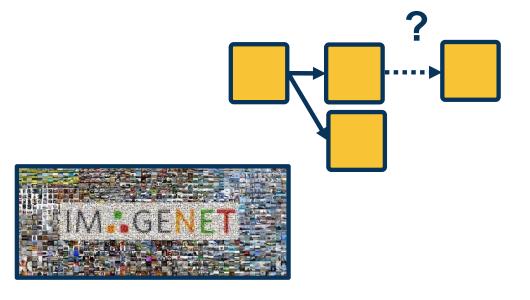
# **CS 4644-DL / 7643-A ZSOLT KIRA**

Assignment 1 – due tonight, grace period 02/05

- Assignment 2
  - Implement convolutional neural networks
- Facebook Lectures: Data wrangling OH recordings available on piazza

There are still many design decisions that must be made:

- Architecture
- Data Considerations
- Training and Optimization
- Machine Learning Considerations





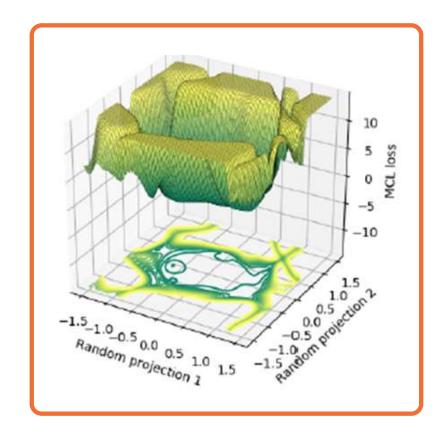


Deep learning involves complex, compositional, non-linear functions

The **loss landscape** is extremely **non-convex** as a result

There is **little direct theory** and a **lot of intuition/rules of thumbs** instead

 Some insight can be gained via theory for simpler cases (e.g. convex settings)

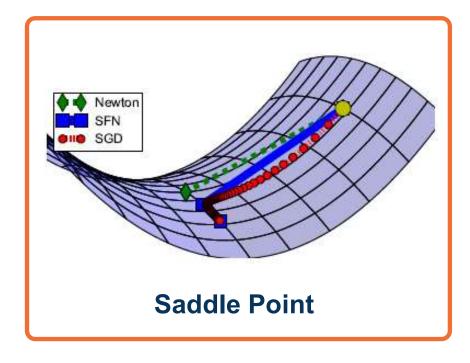




# It used to be thought that existence of local minima is the main issue in optimization

## There are other more impactful issues:

- Noisy gradient estimates
- Saddle points
- III-conditioned loss surface



From: Identifying and attacking the saddle point problem in highdimensional non-convex optimization, Dauphi et al., 2014.



- We use a subset of the data at each iteration to calculate the loss (& gradients)
- This is an unbiased estimator but can have high variance
- This results in noisy steps in gradient descent

$$L = \frac{1}{M} \sum L(f(x_i, W), y_i)$$



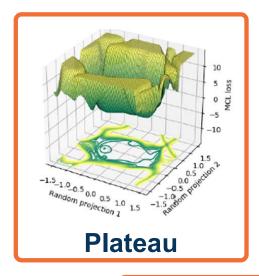


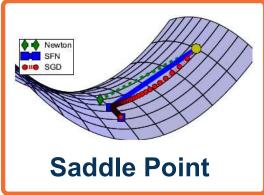
Several **loss surface geometries** are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

But they disagree (it's min for one, max for another)









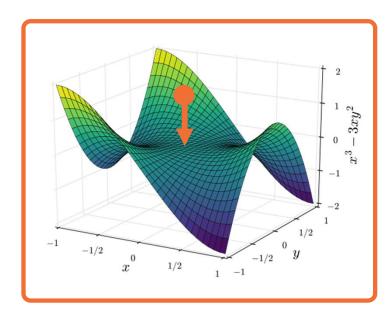
- Gradient descent takes a step in the steepest direction (negative gradient)
- Intuitive idea: Imagine a ball rolling down loss surface, and use momentum to pass flat surfaces

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$
 Update Velocity (starts as 0,  $\beta = 0.99$ )

$$w_i = w_{i-1} - \alpha v_i$$
 Update Weights

• Generalizes SGD ( $\beta = 0$ )

$$w_i = w_{i-1} - \alpha \frac{\partial L}{\partial w_i}$$



Velocity term is an exponential moving average of the gradient

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$

$$v_{i} = \beta(\beta v_{i-2} + \frac{\partial L}{\partial w_{i-2}}) + \frac{\partial L}{\partial w_{i-1}}$$

$$= \beta^2 v_{i-2} + \beta \frac{\partial L}{\partial w_{i-2}} + \frac{\partial L}{\partial w_{i-1}}$$

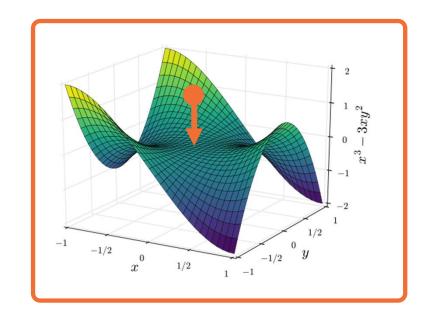
 There is a general class of accelerated gradient methods, with some theoretical analysis (under assumptions)

### **Equivalent formulation:**

$$v_i = \beta v_{i-1} - \alpha \frac{\partial L}{\partial w_{i-1}}$$
 Update Velocity (starts as 0)

$$w_i = w_{i-1} + v_i$$

 $w_i = w_{i-1} + v_i$  Update Weights



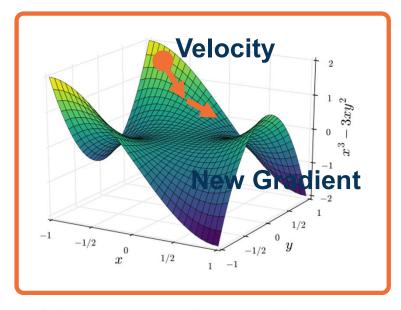
**Key idea:** Rather than combining velocity with current gradient, go along velocity **first** and then calculate gradient at new point

 We know velocity is probably a reasonable direction

$$\widehat{\boldsymbol{w}}_{i-1} = \boldsymbol{w}_{i-1} + \boldsymbol{\beta} \boldsymbol{v}_{i-1}$$

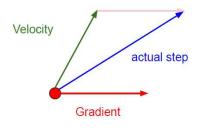
$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial \widehat{w}_{i-1}}$$

$$w_i = w_{i-1} - \alpha v_i$$



#### Momentum update:

### Nesterov Momentum



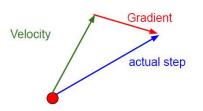


Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

**Nesterov Momentum** 



#### **Momentum**

Note there are **several equivalent formulations** across deep learning frameworks!

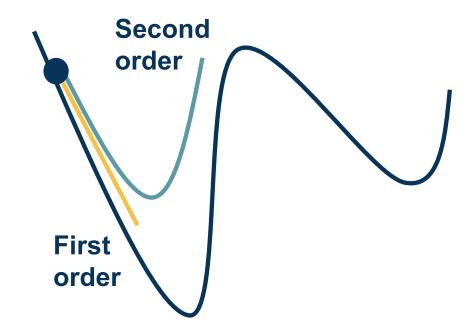
#### Resource:

https://medium.com/the-artificialimpostor/sgd-implementation-inpytorch-4115bcb9f02c



- Various mathematical ways to characterize the loss landscape
- If you liked Jacobians... meet the

 Gives us information about the curvature of the loss surface

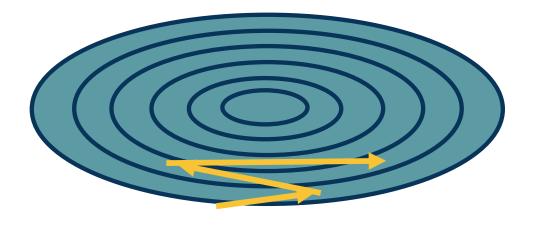


**Condition number** is the ratio of the largest and smallest eigenvalue

 Tells us how different the curvature is along different dimensions

If this is high, SGD will make **big** steps in some dimensions and **small** steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute



**Condition Number** 



### **Per-Parameter Learning Rate**

Idea: Have a dynamic learning rate for each weight

Several flavors of **optimization algorithms**:

- RMSProp
- Adagrad
- Adam
- **-** ...

SGD can achieve similar results in many cases but with much more tuning



Idea: Use gradient statistics to reduce learning rate across iterations

**Denominator:** Sum up gradients over iterations

Directions with high curvature will have higher gradients, and learning rate will reduce

$$G_{i} = G_{i-1} + \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$w_{i} = w_{i-1} - \frac{\alpha}{G_{i} + \epsilon} \frac{\partial L}{\partial w_{i-1}}$$

As gradients are accumulated learning rate will go to zero

Duchi, et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"



**Solution:** Keep a moving average of squared gradients!

Does not saturate the learning rate

$$G_{i} = \beta G_{i-1} + (1 - \beta) \left( \frac{\partial L}{\partial w_{i-1}} \right)^{2}$$

$$w_i = w_{i-1} - \frac{\alpha}{\sqrt{G_i + \epsilon}} \ \frac{\partial L}{\partial w_{i-1}}$$

Combines ideas from above algorithms

Maintains both first and second moment statistics for gradients

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left( \frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$w_i = w_{i-1} - \frac{\alpha v_i}{\sqrt{G_i + \epsilon}}$$

But unstable in the beginning (one or both of moments will be tiny values)

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015



**Solution:** Time-varying bias correction

Typically  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ 

So  $\hat{v_i}$  will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and  $\hat{G}_i$  larger)

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left( \frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$\widehat{v_i} = \frac{v_i}{1 - \beta_1^t} \qquad \widehat{G_i} = \frac{G_i}{1 - \beta_2^t}$$

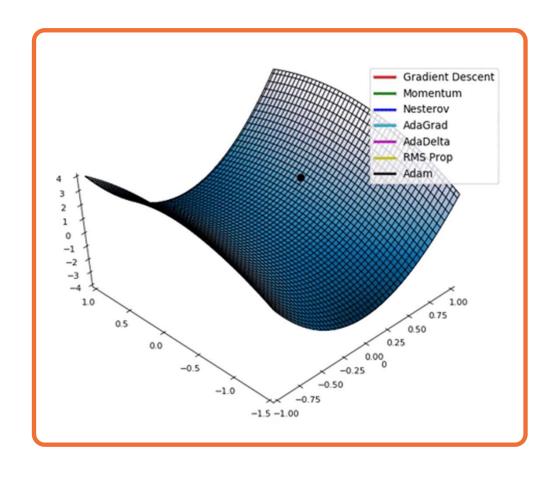
$$w_i = w_{i-1} - \frac{\alpha \, \widehat{v}_i}{\sqrt{\widehat{G}_i + \epsilon}}$$

Optimizers behave differently depending on landscape

Different behaviors such as **overshooting**, **stagnating**, **etc.** 

Plain SGD+Momentum can generalize better than adaptive methods, but requires more tuning

See: Luo et al., Adaptive Gradient Methods with Dynamic Bound of Learning Rate, ICLR 2019



From: https://mlfromscratch.com/optimizers-explained/#/



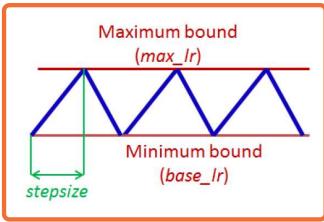
## First order optimization methods have learning rates

Theoretical results rely on **annealed learning rate** 

#### Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler





From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"



## Regularization



#### Many standard regularization methods still apply!

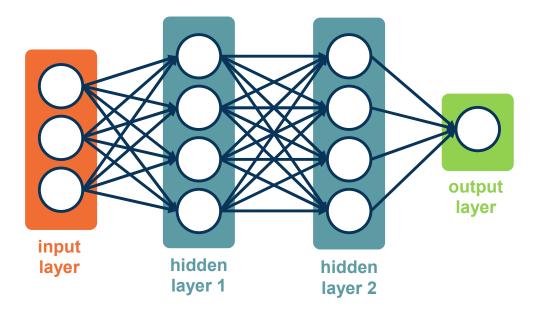
### L1 Regularization

$$L = |y - Wx_i|^2 + \lambda |W|$$
 where  $|W|$  is element-wise

#### **Example regularizations:**

- L1/L2 on weights (encourage small values)
- L2:  $L = |y Wx_i|^2 + \lambda |W|^2$  (weight decay)
- Elastic L1/L2:  $|y Wx_i|^2 + \alpha |W|^2 + \beta |W|$

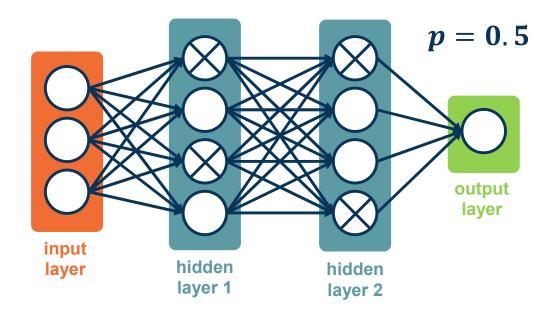




**Problem:** Network can learn to rely strong on a few features that work really well

May cause overfitting if not representative of test data





**An idea:** For each node, keep its output with probability *p* 

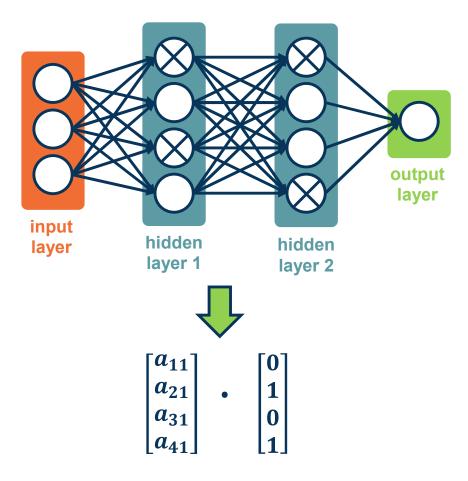
Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration



 In practice, implement with a mask calculated each iteration

During testing, no nodes are dropped

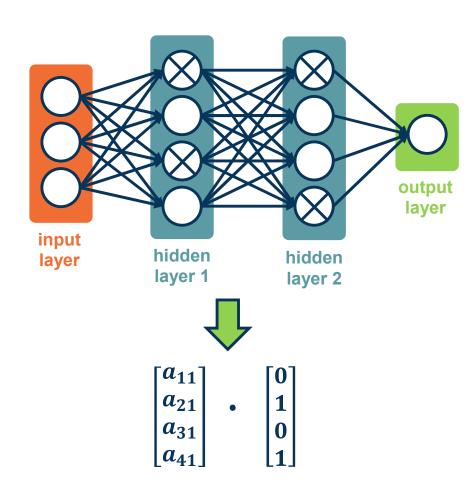




- During training, each node has an expected p \* fan\_in nodes
- During test all nodes are activated
- Principle: Always try to have similar train and test-time input/output distributions!

**Solution:** During test time, scale outputs (or equivalently weights) by *p* 

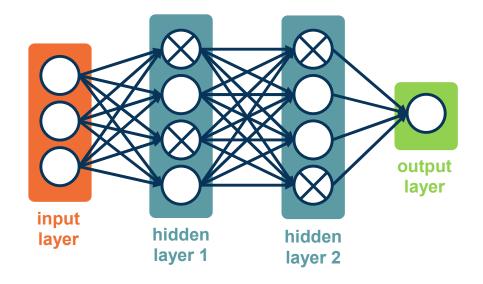
- i.e.  $W_{test} = pW$
- Alternative: Scale by  $\frac{1}{p}$  at train time





# Interpretation 1: The model should not rely too heavily on particular features

• If it does, it has probability 1 - p of losing that feature in an iteration



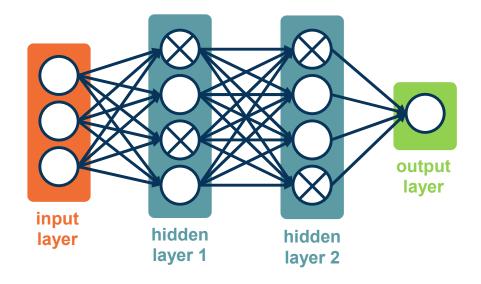


# Interpretation 1: The model should not rely too heavily on particular features

If it does, it has probability 1 - p of losing that feature in an iteration

## **Interpretation 2:** Training 2<sup>n</sup> networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data





# Data Augmentation



## **Data augmentation** – Performing a range of **transformations** to the data

- This essentially "increases" your dataset
- Transformations should not change meaning of the data (or label has to be changed as well)

#### Simple example: Image Flipping



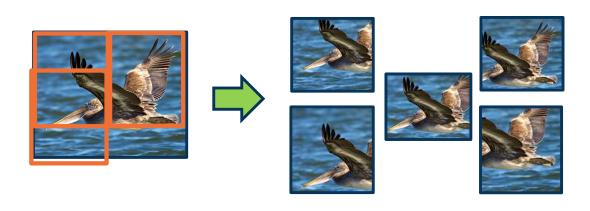






### Random crop

- Take different crops during training
- Can be used during inference too!

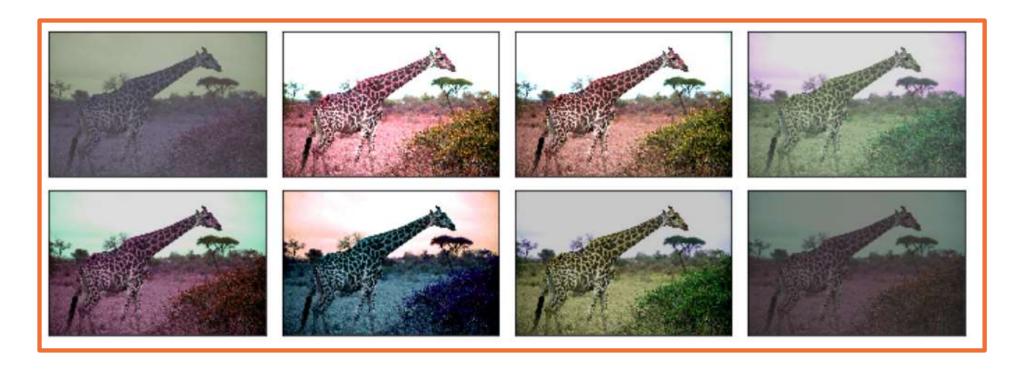




**CutMix** 



### **Color Jitter**



From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data\_augmentation.html



## We can apply **generic affine transformations**:

- Translation
- Rotation
- Scale
- Shear



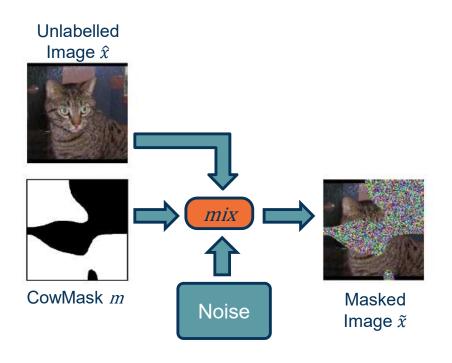


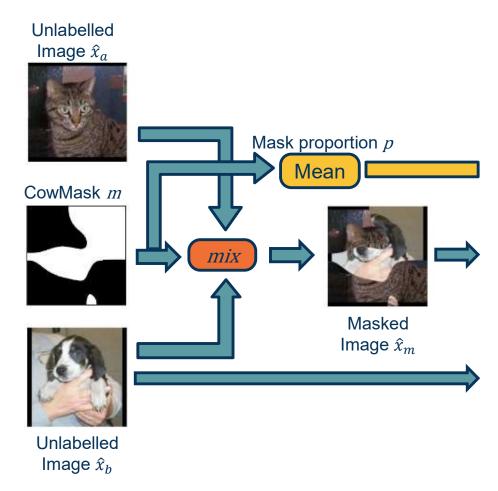
#### We can **combine these transformations** to add even more variety!



From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data\_augmentation.html







#### **CowMix**

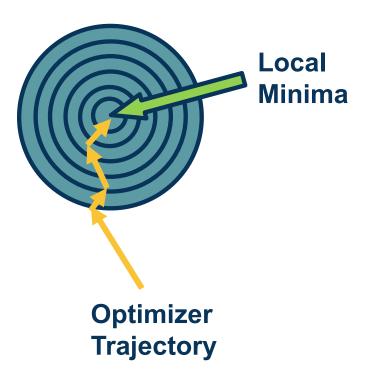
From French et al., "Milking CowMask for Semi-Supervised Image Classification",



# The Process of Training Neural Networks



- Training deep neural networks is an art form!
- Lots of things matter (together) the key is to find a combination that works
- Key principle: Monitoring everything to understand what is going on!
  - Loss and accuracy curves
  - Gradient statistics/characteristics
  - Other aspects of computation graph





# **Proper Methodology**

Always start with **proper methodology!** 

 Not uncommon even in published papers to get this wrong

Separate data into: **Training**, **validation**, **test set** 

 Do not look at test set performance until you have decided on everything (including hyper-parameters)

Use **cross-validation** to decide on hyperparameters if amount of data is an issue





## Check the bounds of your loss function

- E.g. cross-entropy ranges from [0, ∞]
- Check initial loss at small random weight values
  - E.g.  $-\log(p)$  for cross-entropy, where p = 0.5

Another example: Start without regularization and make sure loss goes up when added

**Key Principle:** Simplify the dataset to make sure your model can properly (over)-fit before applying regularization





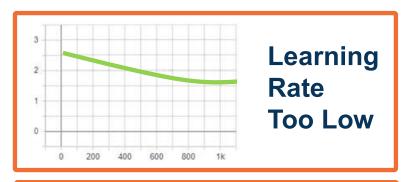
# Change in loss indicates speed of learning:

- Tiny loss change -> too small of a learning rate
- Loss (and then weights) turn to NaNs -> too high of a learning rate

## Other bugs can also cause this, e.g.:

- Divide by zero
- Forgetting the log!

In pytorch, use autograd's detect anomaly to debug





Learning Rate Too High

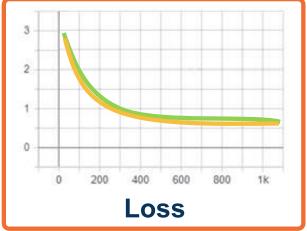
with autograd.detect\_anomaly():
 output = model(input)
 loss = criterion(output, labels
 loss.backward()





- Classic machine learning signs of under/overfitting still apply!
- Over-fitting: Validation loss/accuracy starts to get worse after a while
- Under-fitting: Validation loss very close to training loss, or both are high
- Note: You can have higher training loss!
  - Validation loss has no regularization
  - Validation loss is typically measured at the end of an epoch





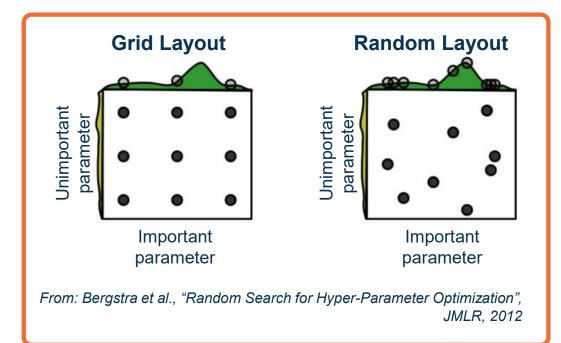


## Many hyper-parameters to tune!

- Learning rate, weight decay crucial
- Momentum, others more stable
- Always tune hyper-parameters; even a good idea will fail untuned!

#### Start with coarser search:

- E.g. learning rate of {0.1, 0.05, 0.03, 0.01, 0.003, 0.001, 0.0005, 0.0001}
- Perform finer search around good values



Automated methods are OK, but intuition (or random) can do well given enough of a tuning budget



# Inter-dependence of Hyperparameters

Note that hyper-parameters and even module selection are **interdependent**!

# **Examples:**

- Batch norm and dropout maybe not be needed together (and sometimes the combination is worse)
- The learning rate should be changed proportionally to batch size – increase the learning rate for larger batch sizes
  - One interpretation: Gradients are more reliable/smoother

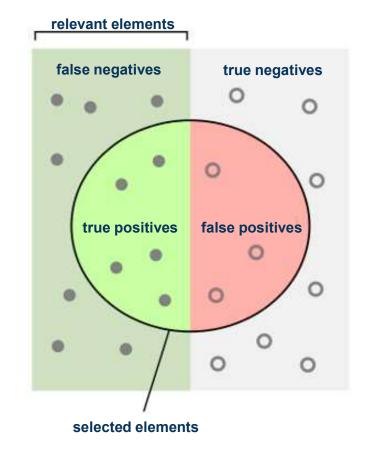


# Note that we are optimizing a **loss** function

What we actually care about is typically different metrics that we can't differentiate:

- Accuracy
- Precision/recall
- Other specialized metrics

The relationship between the two can be complex!



From https://en.wikipedia.org/wiki/Precision\_and\_recall



Example: Cross entropy loss

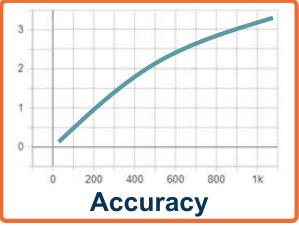
$$L = -\log P(Y = y_i | X = x_i)$$

Accuracy is measured based on:

$$argmax_i(P(Y = y_i | X = x_i))$$

Since the correct class score only has to be slightly higher, we can have flat loss curves but increasing accuracy!







 Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions

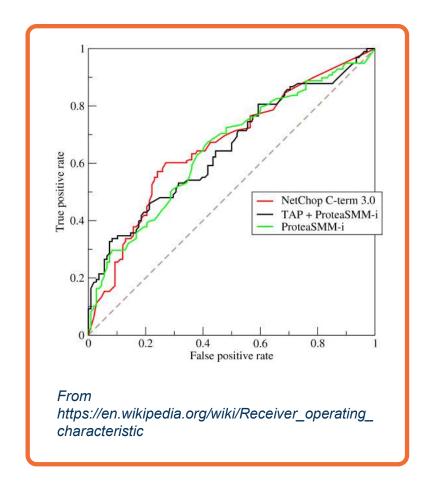
#### Definitions

- True Positive Rate:  $TPR = \frac{tp}{tp+fn}$
- False Positive Rate:  $FPR = \frac{fp}{fp+tn}$

$$Accuracy = \frac{tp+tn}{tp+tn+fp+fn}$$

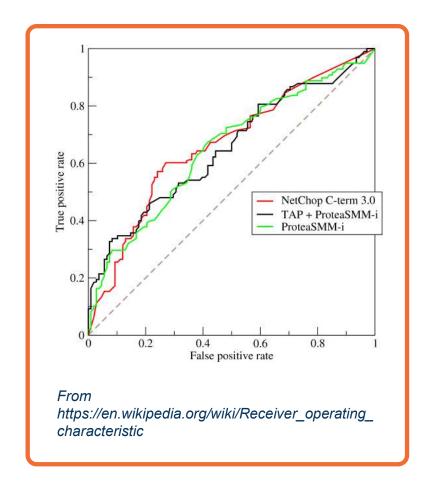








- Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions
- Definitions
  - True Positive Rate:  $TPR = \frac{tp}{tp+fn}$
  - False Positive Rate:  $FPR = \frac{fp}{fp+tn}$
  - $Accuracy = \frac{tp+tn}{tp+tn+fp+fn}$
- We can obtain a curve by varying the (probability) threshold:
  - Area under the curve (AUC) common single-number metric to summarize
- Mapping between this and loss is **not simple**!





# Resource:

 A disciplined approach to neural network hyperparameters: Part 1 -learning rate, batch size, momentum, and weight decay, Leslie N. Smith

