
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Convolution

Administrivia

• Assignment 2
• Implement convolutional neural networks
• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• There will be various OH tutorials
• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)

(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• GPU resources
• For assignments, can use CPU or Google Colab
• Projects:

• Google Cloud Credits

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

⬣ What optimizer should we use?

⬣ Different optimizers make different
weight updates depending on the
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima

Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new
point

⬣ We know velocity is probably a
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Adam

Solution: Time-varying bias
correction

Typically 𝟏 𝟐

So 𝒊 will be small number
divided by (1-0.9=0.1) resulting
in more reasonable values (and

𝒊 larger)

𝒊 𝟏 𝒊 𝟏 𝟏
𝒊 𝟏

𝒊 𝟐 𝒊 𝟏 𝟐
𝒊 𝟏

𝟐

𝒊
𝒊

𝟏
𝒕 𝒊

𝒊

𝟐
𝒕

𝒊 𝒊 𝟏
𝒊

𝒊

input
layer hidden

layer 1
hidden
layer 2

output
layer

An idea: For each node, keep its output with probability

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Learnable Scaling and Offset

⬣ We can give the model
flexibility through
learnable parameters

(scale) and (shift)

⬣ Network can learn to not
normalize if necessary!

⬣ This layer is called a
Batch Normalization
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

⬣ Example: Cross entropy loss

⬣ Accuracy is measured based on:

⬣ Since the correct class score only has
to be slightly higher, we can have flat
loss curves but increasing
accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate:
𝒕𝒑

𝒕𝒑 𝒇𝒏

⬣ False Positive Rate:
𝒇𝒑

𝒇𝒑 𝒕𝒏

⬣ 𝒕𝒑 𝒕𝒏

𝒕𝒑 𝒕𝒏 𝒇𝒑 𝒇𝒏

From
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate:
𝒕𝒑

𝒕𝒑 𝒇𝒏

⬣ False Positive Rate:
𝒇𝒑

𝒇𝒑 𝒕𝒏

⬣ 𝒕𝒑 𝒕𝒏

𝒕𝒑 𝒕𝒏 𝒇𝒑 𝒇𝒏

⬣ We can obtain a curve by varying the
(probability) threshold:

⬣ Area under the curve (AUC) common
single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic

Resource:

⬣ A disciplined approach to
neural network hyper-
parameters: Part 1 --
learning rate, batch size,
momentum, and weight
decay, Leslie N. Smith

Resources

Optimizer
Trajectory

Local
Minima

Convolution
& Pooling

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Is this necessary?

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)

Image features are spatially
localized!

Smaller features repeated
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature
tends to appear in one location
vs. another (stationarity)

Locality of Features

Can we induce a bias in the
design of a neural network
layer to reflect this?

Each node only receives input from
𝟏 𝟐 window (image patch)

Region from which a node receives
input from is called its receptive
field

Advantages:

Reduce parameters to 𝟏 𝟐

where is number of output
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐

Nodes in different locations can share
features

No reason to think same feature
(e.g. edge pattern) can’t appear
elsewhere

Use same weights/parameters in
computation graph (shared
weights)

Advantages:

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏

We can learn many such features
for this one layer

Weights are not shared
across different feature
extractors

Parameters: 𝟏 𝟐

where is number of
features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical
operation on two functions and producing a
third function that is typically viewed as a
modified version of one of the original functions,
giving the area overlap between the two
functions as a function of the amount that one of
the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,
statistics, computer vision, image and signal
processing, electrical engineering, and
differential equations.

Visual comparison of convolution and
cross-correlation.

2D Discrete Convolution

1D
Convolution

2D
Convolution

Notation:

𝒌 𝒏 𝒌 𝒏

𝑵 𝟏

𝒏 𝟎

𝟎 𝟎 𝟎

𝟏 𝟏 𝟎 𝟎 𝟏

𝟐 𝟐 𝟎 𝟏 𝟏 𝟎 𝟐

𝟑 𝟑 𝟎 𝟐 𝟏 𝟏 𝟐 𝟎 𝟑

2D Discrete Convolution

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

2D Discrete Convolution

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride
along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾 𝟏
𝟐

,

𝒃
𝑾 𝟏

𝟐

𝑯 𝟏
𝟐

,

𝒂
𝑯 𝟏

𝟐

𝒌𝟐 𝟏
𝟐

,

𝒃
𝒌𝟐 𝟏

𝟐

𝒌𝟏 𝟏
𝟐

,

𝒂
𝑲𝟏 𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and
move back

Cross-correlation: Start in the beginning of
kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

𝒌𝟐 𝟏

𝒃 𝟎

𝒌𝟏 𝟏

𝒂 𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change
does not matter!

Cross-Correlation

K’ X X(0:2,0:2)

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it’s a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

Input &
Output Sizes

Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image

𝑯
=

𝟓

𝟏

𝟐 𝟏

𝟐

𝑯
−

𝒌
𝟏

+
𝟏

𝟐

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size

𝟏

𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝟐

𝑯
+

𝟐

Stride

We can move the filter along the image using larger steps (stride)

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

𝟐

Stride = 2 (every other pixel)

Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏

Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Operation of Multi-Channel Input

Similar to before, we perform element-wise
multiplication between kernel and image
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of
channels in output
is equal to number
of kernels

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example:

𝟏 𝟐 , then

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage

Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2

Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Patch 1
Patch 2

…

Input Matrix Kernel Matrix

Number of Kernels
N

u
m

b
er o

f P
atche

s

k

X

k

K
e

rn
el 1

K
e

rn
el 2

…

