Topics:

- Convolution

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 2
- Implement convolutional neural networks
- Resources (in addition to lectures):
- DL book: Convolutional Networks
- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
- Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns backprop notes.pdf
- There will be various OH tutorials
- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvlzXOnPa?dl=0)
- GPU resources
- For assignments, can use CPU or Google Colab
- Projects:
- Google Cloud Credits

Even given a good neural network architecture, we need a good optimization algorithm to find good weights

- What optimizer should we use?
- Different optimizers make different weight updates depending on the gradients
- How should we initialize the weights?
- What regularizers should we use?
- What loss function is appropriate?

Optimizer Trajectory

Key idea: Rather than combining velocity with current gradient, go along velocity first and then calculate gradient at new point

- We know velocity is probably a reasonable direction

$$
\widehat{w}_{i-1}=w_{i-1}+\beta v_{i-1}
$$

$$
\begin{gathered}
v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial \widehat{w}_{i-1}} \\
w_{i}=w_{i-1}-\alpha v_{i}
\end{gathered}
$$

Momentum update:

Gradient

Nesterov Momentum

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Solution: Time-varying bias correction

Typically $\boldsymbol{\beta}_{\mathbf{1}}=\mathbf{0 . 9}, \boldsymbol{\beta}_{\mathbf{2}}=\mathbf{0 . 9 9 9}$

So $\widehat{v_{i}}$ will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and $\widehat{\boldsymbol{G}}_{\boldsymbol{i}}$ larger)

$$
\begin{gathered}
v_{i}=\beta_{1} v_{i-1}+\left(1-\beta_{1}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right) \\
G_{i}=\beta_{2} G_{i-1}+\left(1-\beta_{2}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
\widehat{v}_{i}=\frac{v_{i}}{1-\beta_{1}^{t}} \quad \widehat{G_{i}}=\frac{G_{i}}{1-\beta_{2}^{t}} \\
w_{i}=w_{i-1}-\frac{\alpha \widehat{v}_{i}}{\sqrt{\widehat{G}_{i}+\epsilon}}
\end{gathered}
$$

An idea: For each node, keep its output with probability p

- Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration
From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

- We can give the model flexibility through learnable parameters γ (scale) and β (shift)
-

Network can learn to not normalize if necessary!

-

This layer is called a Batch Normalization (BN) layer

- Example: Cross entropy loss

$$
L=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

- Accuracy is measured based on:

$\operatorname{argmax}_{i}\left(P\left(Y=y_{i} \mid X=x_{i}\right)\right)$
- Since the correct class score only has to be slightly higher, we can have flat loss curves but increasing accuracy!

- Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions

Definitions

- True Positive Rate: $\boldsymbol{T P R}=\frac{\boldsymbol{t p}}{\boldsymbol{t p + f n}}$
- False Positive Rate: $\boldsymbol{F P R}=\frac{f p}{f p+t n}$
- Accuracy $=\frac{t p+t n}{t p+t n+f p+f n}$

From
https://en.wikipedia.org/wiki/Receiver_operating_ characteristic

- Precision/Recall curves represent the inherent tradeoff between number of positive predictions and correctness of predictions
- Definitions
- True Positive Rate: $\boldsymbol{T P R}=\frac{\boldsymbol{t p}}{\boldsymbol{t p + f n}}$
- False Positive Rate: $\boldsymbol{F P R}=\frac{f p}{f p+t n}$
- Accuracy $=\frac{t p+t n}{t p+t n+f p+f n}$
- We can obtain a curve by varying the (probability) threshold:
- Area under the curve (AUC) common single-number metric to summarize

From
https://en.wikipedia.org/wiki/Receiver_operating_ characteristic

- Mapping between this and loss is not simple!

Resource:

- A disciplined approach to neural network hyperparameters: Part 1 -learning rate, batch size, momentum, and weight decay, Leslie N. Smith

Convolution \& Pooling

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Each node only receives input from $\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}$ window (image patch)

- Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to ($\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{2}+\mathbf{1}$) * N where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Nodes in different locations can share features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $\left(\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+\mathbf{1}\right)$
- Explicitly maintain spatial information

We can learn many such features for this one layer

- Weights are not shared across different feature extractors
- Parameters: $\left(K_{1} \times K_{2}+\mathbf{1}\right)$ * \boldsymbol{M} where \boldsymbol{M} is number of features we want to learn

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.
Convolution is similar to cross-correlation.
It has applications that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

From https://en.wikipedia.org/wiki/Convolution

Notation: $\quad \boldsymbol{F} \otimes(\boldsymbol{G} \otimes I)=(\boldsymbol{F} \otimes \boldsymbol{G}) \otimes \boldsymbol{I}$

1D
Convolution $\quad y_{k}=\sum_{n=0} h_{n} \cdot x_{k-n}$

2D
Convolution

2D Discrete Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

2D
Convolution

Output / filter / feature map

1. Flip kernel (rotate 180 degrees)

2. Stride along image

As we have seen:

- Convolution: Start at end of kernel and move back
- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
\begin{aligned}
& K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \\
& \prod
\end{aligned}
$$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

Input \& Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) - Number of channels in the input image
- out_channels (int) - Number of channels produced by the convolution
- kernel_size (int or tuple) - Size of the convolving kernel
- stride (int or tuple, optional) - Stride of the convolution. Default: 1
- padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $\left(\boldsymbol{H}-\boldsymbol{k}_{1}+\mathbf{1}\right) \times\left(\boldsymbol{W}-\boldsymbol{k}_{2}+\mathbf{1}\right)$

- This is called a "valid" convolution and only applies kernel within image

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride can result in skipped pixels, e.g. stride of 3 for 5×5 input

W

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Image

Kernel

Multi-Channel Inputs

Feature Map

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product)

- Except with $\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}$ values

Image

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}+\mathbf{1}\right)$

- Example:
$k_{1}=3, k_{2}=3, N=4$ input channels $=3$, then $(3 * 3 * 3+1) * 4=112$

Image

Kernels

Feature Maps

Just as before, in practice we can vectorize this operation

- Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Vectorization

Just as before, in practice we can vectorize this operation

- Step 2: Multiple patches by kernels

Input Matrix

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

