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Topics:
• Convolution



Administrivia

• Assignment 2
• Implement convolutional neural networks
• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• There will be various OH tutorials
• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 

(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• GPU resources
• For assignments, can use CPU or Google Colab
• Projects: 

• Google Cloud Credits



Even given a good neural network 
architecture, we need a good optimization 
algorithm to find good weights

⬣ What optimizer should we use? 

⬣ Different optimizers make different 
weight updates depending on the 
gradients

⬣ How should we initialize the weights?

⬣ What regularizers should we use?

⬣ What loss function is appropriate?

Optimization Considerations

Optimizer
Trajectory

Local
Minima



Nesterov Momentum

𝒊 𝟏 𝒊 𝟏 𝒊 𝟏

𝒊 𝒊 𝟏
𝒊 𝟏

Key idea: Rather than combining velocity 
with current gradient, go along velocity 
first and then calculate gradient at new 
point

⬣ We know velocity is probably a 
reasonable direction

𝒊 𝒊 𝟏 𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Adam

Solution: Time-varying bias 
correction

Typically 𝟏 𝟐

So 𝒊 will be small number 
divided by (1-0.9=0.1) resulting 
in more reasonable values (and 

𝒊 larger)
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input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

An idea: For each node, keep its output with probability 

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Learnable Scaling and Offset

⬣ We can give the model 
flexibility through 
learnable parameters 

(scale) and (shift)

⬣ Network can learn to not 
normalize if necessary!

⬣ This layer is called a 
Batch Normalization 
(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



⬣ Example: Cross entropy loss

⬣ Accuracy is measured based on:

⬣ Since the correct class score only has 
to be slightly higher, we can have flat 
loss curves but increasing 
accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 
inherent tradeoff between number of positive 
predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 
𝒕𝒑

𝒕𝒑 𝒇𝒏

⬣ False Positive Rate: 
𝒇𝒑

𝒇𝒑 𝒕𝒏

⬣ 𝒕𝒑 𝒕𝒏

𝒕𝒑 𝒕𝒏 𝒇𝒑 𝒇𝒏

From 
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 
inherent tradeoff between number of positive 
predictions and correctness of predictions

⬣ Definitions
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𝒕𝒑
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⬣ We can obtain a curve by varying the 
(probability) threshold:

⬣ Area under the curve (AUC) common 
single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From 
https://en.wikipedia.org/wiki/Receiver_operating_
characteristic



Resource:

⬣ A disciplined approach to 
neural network hyper-
parameters: Part 1 --
learning rate, batch size, 
momentum, and weight 
decay, Leslie N. Smith

Resources 

Optimizer
Trajectory

Local
Minima



Convolution
& Pooling



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed

Is this necessary? 

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Image features are spatially 
localized!

Smaller features repeated 
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in one location 
vs. another (stationarity)

Locality of Features

Can we induce a bias in the 
design of a neural network 
layer to reflect this?



Each node only receives input from 
𝟏 𝟐 window (image patch)

Region from which a node receives 
input from is called its  receptive 
field

Advantages: 

Reduce parameters to 𝟏 𝟐

where is number of output 
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐



Nodes in different locations can share 
features

No reason to think same feature 
(e.g. edge pattern) can’t appear 
elsewhere

Use same weights/parameters in 
computation graph (shared 
weights)

Advantages: 

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial 
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏



We can learn many such features 
for this one layer

Weights are not shared 
across different feature 
extractors

Parameters:  𝟏 𝟐

where is number of 
features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution
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This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical 
operation on two functions and producing a 
third function that is typically viewed as a 
modified version of one of the original functions, 
giving the area overlap between the two 
functions as a function of the amount that one of 
the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 
statistics, computer vision, image and signal 
processing, electrical engineering, and 
differential equations. 

Visual comparison of convolution and 
cross-correlation.



2D Discrete Convolution

1D 
Convolution

2D 
Convolution

Notation:
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2D Discrete Convolution

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map



2D Discrete Convolution

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 
along image



Mathematics of Discrete 2D Convolution
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Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and 
move back

Cross-correlation: Start in the beginning of 
kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)



𝒌𝟐 𝟏

𝒃 𝟎

𝒌𝟏 𝟏

𝒂 𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 
does not matter!



Cross-Correlation

K’  X X(0:2,0:2)

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation
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Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 
operations

Why bother with this and not just say it’s a 
linear layer with small receptive field?

There is a duality between them during 
backpropagation

Convolutions have various 
mathematical properties people care 
about

This is historically how it was inspired



Input & 
Output Sizes



Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image 

𝑯
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Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size 
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Stride

We can move the filter along the image using larger steps (stride) 

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

 

𝟐

Stride = 2 (every other pixel)



Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input 



Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏

Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏



Operation of Multi-Channel Input

Similar to before, we perform element-wise 
multiplication between kernel and image 
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of 
channels in output 
is equal to number 
of kernels

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example: 

𝟏 𝟐 , then  

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage



Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2



Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Patch 1
Patch 2

…
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