
CS 4644-DL / 7643-A: LECTURE 10
DANFEI XU

Topics:
• Training Neural Networks (Part 2)

Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

2

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

3

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

4

Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Negative saturation encodes

presence of features (all goes to -
\alpha), not magnitude

- Same in backprop
- Compared with Leaky ReLU:

more robust to noise

[Clevert et al., 2015]

5

(Alpha default = 1)

Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks

without BatchNorm
- (will discuss more later)

[Klambauer et al. ICLR 2017]

6

α = 1.6732632423543772848170429916717
λ = 1.0507009873554804934193349852946

Derivation takes 91 pages of math in
appendix…
(Klambauer et al, Self-Normalizing Neural Networks,
ICLR 2017)

TLDR: In practice:

- Many possible choices beyond what we’ve talked
here, but …
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh

7

Data Preprocessing

(Assume X [NxD] is data matrix,
each example in a row)

8

9

Data Preprocessing
Before normalization: classification loss
very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small
changes in weights; easier to optimize

This Time:

10

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble

Weight Initialization

11

- Q: what happens when W=same initial value is used?

12

- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤!"𝑥 = 𝑤#"𝑥 if 𝑤! = 𝑤#

13

- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤!"𝑥 = 𝑤#"𝑥 if 𝑤! = 𝑤#
- Want to maintain variance through the layers.

14

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

15

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

16

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

17

What will happen to the activations for the last layer?

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero
for deeper network layers

Q: What do the gradients
dL/dW look like?
Hint:

18
Visualize distribution of activations

Weight Initialization: Activation statistics
Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero
for deeper network layers

Q: What do the gradients
dL/dW look like?

A: All zero, no learning =(

19
Visualize distribution of activations

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

20

Initialize with higher values
What will happen to the activations for the last layer?

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients
look like?

21
Visualize distribution of activations

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients
look like?

A: Local gradients all zero,
no learning =(

22
Visualize distribution of activations

Weight Initialization: Activation statistics
Increase std of initial
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients
look like?

More generally, gradient
explosion (high w-> high
output -> high gradient).

23

In general
• Small weights -> small output -> vanishing gradient in backpropagation.
• Large weights -> large output -> exploding gradient in backpropagation.

How do we initialize the weights “just right”?

Weight Initialization: “Xavier” Initialization
“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

24

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

25
Visualize distribution of activations

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

26
Visualize distribution of activations

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

27

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

28

Assume: Var(x1) = Var(x2)= …=Var(xDin)

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

29

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
[substituting value of y]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

30

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Σ Var(xiwi) = Din Var(xiwi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

31

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

32

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

“Xavier” initialization:
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

33

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

“Xavier” initialization:
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

34

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

Scaling a normal distribution (std=1) to have Var=1/Din -> multiply by sqrt(1/Din)

“Xavier” initialization:
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

35

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

In practice, use Var = 2 / (Din + Dout) to account for both forward and backward pass

Weight Initialization: What about ReLU?

Change from tanh to ReLU

36

Weight Initialization: What about ReLU?

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

37
Visualize distribution of activations

Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation
get killed.
Solution: make the non-zero
output variance twice as
large as input

38
Visualize distribution of activations

Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

39

Batch Normalization

40

Recall: Input Normalization

41

Recall: Input Normalization

Problem: Only for input to the first layer. Input for later layers are longer
normalized!
But can’t do dataset normalization for intermediate layers! Activation
distribution changes as the training progresses.

42

“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations 𝒙 at some layer. To
make each dimension zero-mean unit-variance, apply:

this is a vanilla
differentiable function...

43

Batch Normalization

Batch Normalization

44

… Layer i-1 Layer iBN BN Layer i+2 …

“you want zero-mean unit-variance activations? just make them so.”

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D (Prevent div by 0 err)

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
Problem: What if zero-mean, unit
variance is too hard of a constraint?
E.g., inserting a BN before sigmoid will
constrain it to (mostly) linear regime

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
Problem: What if zero-mean, unit
variance is too hard of a constraint?
E.g., inserting a BN before sigmoid will
constrain it to (mostly) linear regime
Can we learn the normalization parameters?

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ%

Output,
Shape is N x D

We want to give the
model a chance to
adjust batchnorm if the
default is not optimal.
Learning 𝛾 = 𝜎 and 𝛽 =
𝜇 will recover the identity
function!

Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

Estimates depend on minibatch;
can’t do this at test-time!

Input:
Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ%

Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

Estimates depend on minibatch;
can’t do this at test-time!

Input:
Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ%

Activations become fixed after
training. Can calculate training
set-wide statistics for
inference-time normalization.

At training time, do moving
average to save compute.

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

(Moving) average of
values seen during training

(Moving) average of
values seen during training

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ%

Batch Normalization [Ioffe and Szegedy, 2015]

52

Q: Should you put batchnorm before or after ReLU?
A: Topic of debate. Original paper says BN->ReLU. Now most
commonly ReLU->BN. If BN-> ReLU and zero mean, ReLU kills half
of the activations, but in practice makes insignificant differences.

Q: Should you normalize the input (e.g., images) with batchnorm?
A: No, you already have the fixed & correct dataset statistics, no
need to do batchnorm.

Q: How many parameters does a batchnorm layer have?
A: Input dimension * 4: beta, gamma, moving average mu, moving
average sigma. Only beta and gamma are trainable parameters.

Batch Normalization [Ioffe and Szegedy, 2015]

- Makes deep networks much easier to train!
- If you are interested in the theory, read

https://arxiv.org/abs/1805.11604
- TL;DR: makes optimization landscape smoother

- Allows higher learning rates, faster convergence
- More useful in deeper networks
- Networks become more robust to initialization
- More robust to range of input
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very

common source of bugs!
- Needs large batch size to calculate accurate stats

53

https://arxiv.org/abs/1805.11604

Batch Normalization for ConvNets

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization for
fully-connected networks

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

Layer Normalization

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for fully-
connected networks
Same behavior at train and test!

Batch Normalization for
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016 More flexible (can use N = 1!), works well
with sequence models (RNN, Transformers)

Instance Normalization

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for
convolutional networks
Same behavior at train / test!

Batch Normalization for
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018

N x C x H x W ->
1 x C x 1 x 1

N x C x H x W ->
N x 1 x 1 x 1

N x C x H x W ->
N x C x 1 x 1

Group Normalization

Wu and He, “Group Normalization”, ECCV 2018

N x C x H x W ->
N x C x 1 x 1

N x C x H x W ->
1 x C x 1 x 1

N x C x H x W ->
N x 1 x 1 x 1

N x C x H x W ->
N x C/G x 1 x 1

(Fancier) Optimizers

59

60

Optimization

W_1

W_2

61

Optimization: Problem #1 with SGD
• Stochastic minibatch gives a noisy estimate of the true gradient

direction. Very problematic when the batch size is small (e.g., due to
compute resource limit).

• Poorly-selected learning rate makes the oscillation worse (overshoot)

http://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture4.pdf

62

Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

lo
ss

w

63

Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

lo
ss

w

64

Optimization: Problem #2 with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

65

SGD + Momentum
Intuitions:
• Think of a ball (set of parameters) moving

in space (loss landscape), with momentum
keeping it going in a direction.

• Individual gradient step may be noisy, the
general trend accumulated over a few
steps will point to the right direction.

• Momentum can “push” the ball over
saddle points or local minima.

Local Minima Saddle points

Noisy gradients

66

SGD + Momentum

SGD SGD+Momentum

Intuitions:
• Think of a ball (set of parameters) moving

in space (loss landscape), with momentum
keeping it going in a direction.

• Individual gradient step may be noisy, the
general trend accumulated over a few
steps will point to the right direction.

• Momentum can “push” the ball over
saddle points or local minima.

67

SGD: the simple two line update code

SGD

68

SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity/momentum” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

69

SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity/momentum” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

70

SGD + Momentum:
alternative equivalent formulation

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways,
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

71

Gradient

Velocity

actual step

Momentum update:

SGD+Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point with
velocity to get step used to update weights

72

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with
velocity to get step used to update weights

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

73

Nesterov Momentum
SGD

SGD+Momentum

Nesterov

74

Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

𝑤!

𝑤"

Assume each contour line has the same loss

75

Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf

76

Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen
value (𝜆#$%/𝜆#&') of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf

77

Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen
value (𝜆#$%/𝜆#&') of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour
Can we enable SGD to adapt to this skew-ness?

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf

78

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

79

AdaGrad

Q: What happens with AdaGrad?

80

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped;
progress along “flat” directions is accelerated
J

81

AdaGrad

Q2: What happens to the step size over long time?

82

AdaGrad

Q2: What happens to the step size over long time?
Decays to zero L

83

RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012

84

RMSProp
SGD

SGD+Momentum

RMSProp

AdaGrad
(stuck due to
decaying lr)

85

Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Typical hyperparams: beta1=0.9, beta2=0.999

86

Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Typical hyperparams: beta1=0.9, beta2=0.999

87

Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Q: What happens at first timestep?

Small -> divide by small number -> bad initial step
Typical hyperparams: beta1=0.9, beta2=0.999

88

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Typical hyperparams: beta1=0.9, beta2=0.999

89

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

Typical hyperparams: beta1=0.9, beta2=0.999

90

Adam

SGD

SGD+Momentum

RMSProp

Adam

Learning rate schedules

91

92

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates is best to use?

93

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates is best to use?

A: In reality, all of these are good
learning rates.

Need finer adjustment closer to convergence,
so we want to reduce learning rate over time
to keep making progress.

94

Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

95

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

96

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

97

Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

Linear:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

98

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

Linear:

Inverse sqrt:

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017

99

First-Order Optimization

Loss

w1

100

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

101

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

102

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

103

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = Millions

104

Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

105

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

106

- Adam is a good default choice in many cases; it
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!

- If you can afford to do full batch updates (very rare
for deep learning applications) then try out L-BFGS
(and don’t forget to disable all sources of noise)

In practice:

Next Time:

107

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble

