
CS 4644-DL / 7643-A: LECTURE 10
DANFEI XU

Topics:
• Training Neural Networks (Part 2)



Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Negative saturation encodes 

presence of features (all goes to -
\alpha), not magnitude

- Same in backprop
- Compared with Leaky ReLU: 

more robust to noise 

[Clevert et al., 2015]
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(Alpha default = 1)



Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks 

without BatchNorm
- (will discuss more later)

[Klambauer et al. ICLR 2017]
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α = 1.6732632423543772848170429916717 
λ = 1.0507009873554804934193349852946

Derivation takes 91 pages of math in 
appendix…
(Klambauer et al, Self-Normalizing Neural Networks, 
ICLR 2017)



TLDR: In practice:

- Many possible choices beyond what we’ve talked 
here, but …
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize



This Time:
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Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble



Weight Initialization
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- Q: what happens when W=same initial value is used?
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤!"𝑥 = 𝑤#"𝑥 if 𝑤! = 𝑤#
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤!"𝑥 = 𝑤#"𝑥 if 𝑤! = 𝑤#
- Want to maintain variance through the layers.
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

15



- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096
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What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?
Hint:

18
Visualize distribution of activations



Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(

19
Visualize distribution of activations



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05
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Initialize with higher values
What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

21
Visualize distribution of activations



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(

22
Visualize distribution of activations



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

More generally, gradient 
explosion (high w-> high 
output -> high gradient).
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In general
• Small weights -> small output -> vanishing gradient in backpropagation.
• Large weights -> large output -> exploding gradient in backpropagation.

How do we initialize the weights “just right”?



Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

25
Visualize distribution of activations



“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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Visualize distribution of activations



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
[substituting value of y]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Σ Var(xiwi) = Din Var(xiwi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din



“Xavier” initialization: 
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

Scaling a normal distribution (std=1) to have Var=1/Din -> multiply by sqrt(1/Din)



“Xavier” initialization: 
std = 1/sqrt(Din)

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

In practice, use Var = 2 / (Din + Dout) to account for both forward and backward pass



Weight Initialization: What about ReLU?

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU

37
Visualize distribution of activations



Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation 
get killed.
Solution: make the non-zero 
output variance twice as 
large as input

38
Visualize distribution of activations



Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Batch Normalization

40



Recall: Input Normalization
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Recall: Input Normalization

Problem: Only for input to the first layer. Input for later layers are longer 
normalized!
But can’t do dataset normalization for intermediate layers! Activation 
distribution changes as the training progresses.
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“you want zero-mean unit-variance activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations 𝒙 at some layer. To 
make each dimension zero-mean unit-variance, apply:

this is a vanilla 
differentiable function...

43

Batch Normalization



Batch Normalization

44

… Layer i-1 Layer iBN BN Layer i+2 …

“you want zero-mean unit-variance activations? just make them so.”



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D (Prevent div by 0 err)



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
Problem: What if zero-mean, unit 
variance is too hard of a constraint?
E.g., inserting a BN before sigmoid will 
constrain it to (mostly) linear regime



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
Problem: What if zero-mean, unit 
variance is too hard of a constraint?
E.g., inserting a BN before sigmoid will 
constrain it to (mostly) linear regime
Can we learn the normalization parameters?



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ%

Output,
Shape is N x D

We want to give the 
model a chance to 
adjust batchnorm if the 
default is not optimal. 
Learning 𝛾 = 𝜎 and 𝛽 =
𝜇 will recover the identity 
function!



Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

Estimates depend on minibatch; 
can’t do this at test-time!

Input:
Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ%



Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

Estimates depend on minibatch; 
can’t do this at test-time!

Input:
Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ%

Activations become fixed after 
training. Can calculate training 
set-wide statistics for 
inference-time normalization.

At training time, do moving 
average to save compute. 



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

(Moving) average of 
values seen during training

(Moving) average of 
values seen during training

During testing batchnorm
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer

Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ%



Batch Normalization [Ioffe and Szegedy, 2015]
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Q: Should you put batchnorm before or after ReLU?
A: Topic of debate. Original paper says BN->ReLU. Now most 
commonly ReLU->BN. If BN-> ReLU and zero mean, ReLU kills half 
of the activations, but in practice makes insignificant differences. 

Q: Should you normalize the input (e.g., images) with batchnorm?
A: No, you already have the fixed & correct dataset statistics, no 
need to do batchnorm.

Q: How many parameters does a batchnorm layer have?
A: Input dimension * 4: beta, gamma, moving average mu, moving 
average sigma. Only beta and gamma are trainable parameters.



Batch Normalization [Ioffe and Szegedy, 2015]

- Makes deep networks much easier to train!
- If you are interested in the theory, read 

https://arxiv.org/abs/1805.11604
- TL;DR: makes optimization landscape smoother

- Allows higher learning rates, faster convergence
- More useful in deeper networks
- Networks become more robust to initialization
- More robust to range of input
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very 

common source of bugs!
- Needs large batch size to calculate accurate stats
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https://arxiv.org/abs/1805.11604


Batch Normalization for ConvNets

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch Normalization  for 
fully-connected networks

Batch Normalization for 
convolutional networks
(Spatial Batchnorm, BatchNorm2D)



Layer Normalization

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer Normalization for fully-
connected networks
Same behavior at train and test!

Batch Normalization for 
fully-connected networks

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016 More flexible (can use N = 1!), works well 
with sequence models (RNN, Transformers)



Instance Normalization

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance Normalization for 
convolutional networks
Same behavior at train / test!

Batch Normalization for 
convolutional networks

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017



Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018

N x C x H x W -> 
1 x C x 1 x 1

N x C x H x W -> 
N x 1 x 1 x 1

N x C x H x W -> 
N x C x 1 x 1



Group Normalization

Wu and He, “Group Normalization”, ECCV 2018

N x C x H x W -> 
N x C x 1 x 1

N x C x H x W -> 
1 x C x 1 x 1

N x C x H x W -> 
N x 1 x 1 x 1

N x C x H x W -> 
N x C/G x 1 x 1



(Fancier) Optimizers
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Optimization

W_1

W_2
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Optimization: Problem #1 with SGD
• Stochastic minibatch gives a noisy estimate of the true gradient 

direction. Very problematic when the batch size is small (e.g., due to 
compute resource limit).

• Poorly-selected learning rate makes the oscillation worse (overshoot)

http://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture4.pdf
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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SGD + Momentum
Intuitions:
• Think of a ball (set of parameters) moving 

in space (loss landscape), with momentum 
keeping it going in a direction.

• Individual gradient step may be noisy, the 
general trend accumulated over a few 
steps will point to the right direction.

• Momentum can “push” the ball over 
saddle points or local minima. 

Local Minima Saddle points

Noisy gradients
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SGD + Momentum

SGD SGD+Momentum

Intuitions:
• Think of a ball (set of parameters) moving 

in space (loss landscape), with momentum 
keeping it going in a direction.

• Individual gradient step may be noisy, the 
general trend accumulated over a few 
steps will point to the right direction.

• Momentum can “push” the ball over 
saddle points or local minima. 
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SGD: the simple two line update code

SGD
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity/momentum” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity/momentum” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99
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SGD + Momentum: 
alternative equivalent formulation

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, 
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Gradient

Velocity

actual step

Momentum update:

SGD+Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point with 
velocity to get step used to update weights
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with 
velocity to get step used to update weights

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov
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Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

𝑤!

𝑤"

Assume each contour line has the same loss
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Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf
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Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen 
value (𝜆#$%/𝜆#&') of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf
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Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen 
value (𝜆#$%/𝜆#&') of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour
Can we enable SGD to adapt to this skew-ness?

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated 
J
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AdaGrad

Q2: What happens to the step size over long time?
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AdaGrad

Q2: What happens to the step size over long time?
Decays to zero L
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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RMSProp
SGD

SGD+Momentum

RMSProp

AdaGrad 
(stuck due to 
decaying lr)
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Typical hyperparams: beta1=0.9, beta2=0.999
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Typical hyperparams: beta1=0.9, beta2=0.999
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Q: What happens at first timestep?

Small -> divide by small number -> bad initial step
Typical hyperparams: beta1=0.9, beta2=0.999
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Typical hyperparams: beta1=0.9, beta2=0.999
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models! 

Typical hyperparams: beta1=0.9, beta2=0.999



90

Adam 

SGD

SGD+Momentum

RMSProp

Adam



Learning rate schedules
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

A: In reality, all of these are good 
learning rates.

Need finer adjustment closer to convergence, 
so we want to reduce learning rate over time 
to keep making progress.
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Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear:

Inverse sqrt: 

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = Millions
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting second-order methods to large-scale, 
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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- Adam is a good default choice in many cases; it 
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 
require more tuning of LR and schedule
- Try cosine schedule, very few hyperparameters!

- If you can afford to do full batch updates (very rare 
for deep learning applications) then try out L-BFGS 
(and don’t forget to disable all sources of noise)

In practice:



Next Time:

107

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble


