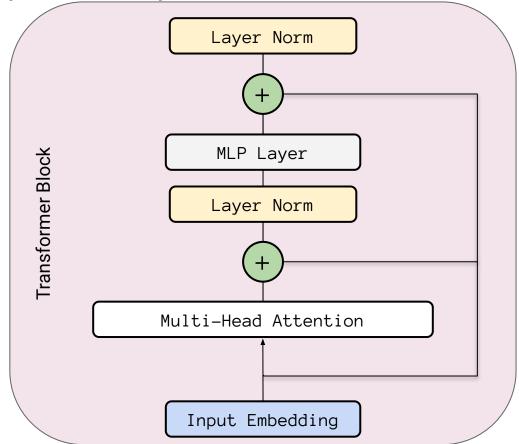
Training Large Language Models

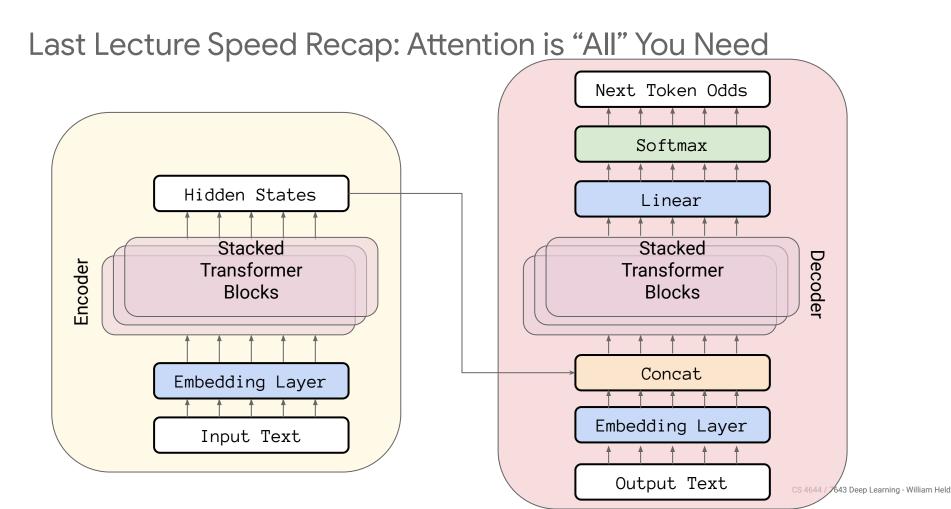
CS 4644 / 7643: Deep Learning

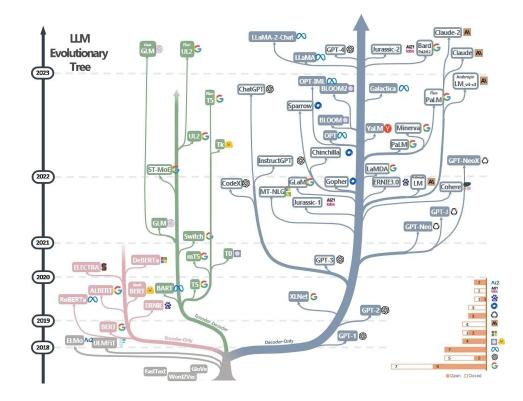
William Held School of Interactive Computing Georgia Institute of Technology

Last Lecture Speed Recap: The Transformer Block



CS 4644 / 7643 Deep Learning - William Held



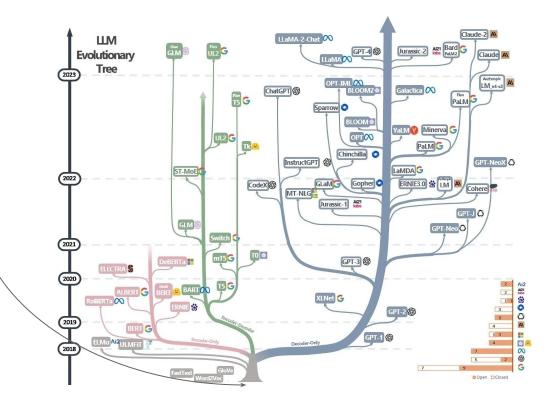


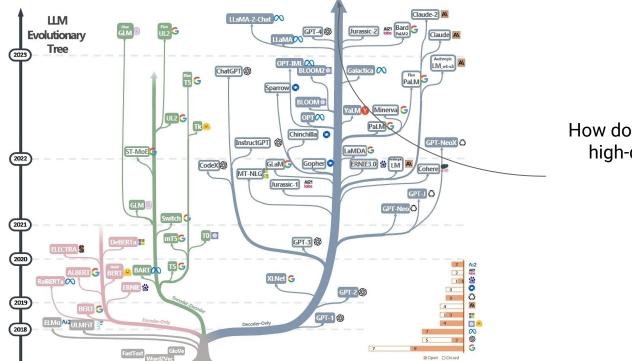
Claude-2 A II aMA-2-Chat ШМ AI21 Bard G Jurassic-2 **Evolutionary** Claude A Tree 2023 LM_v4-s3 Galactica 🚫 ChatGPT 🚳 PaLM G Fan T5 G Sparrow 🕥 BLOOM YaLM Minerva G OPT UL2 G Self-Supervised Learning Tk😕 PaLM G Chinchilla 🙆 GPT-NeoX 🔿 InstructGPT @ How do we most effectively turn 2022 ERNIE3.0 😸 LM A CodeX GLaMG Gopher 🔾 raw text into meaningful loss? Cohere MT-NLG Jurassic-1 GPT-J 🔿 GLM GPT-Neo 2021 ТО 💓 GPT-3 JERTA BART ALBERT G 2 XLNet G BERTA 🕅 ä GPT-2 0 8 2019 A 4 BERT G GPT-1 🚳 Decoder-Only 2018 8 0 G

Open Closed

Self-Supervised Learning How do we most effectively turn raw text into meaningful loss? <u>Covered Today</u>

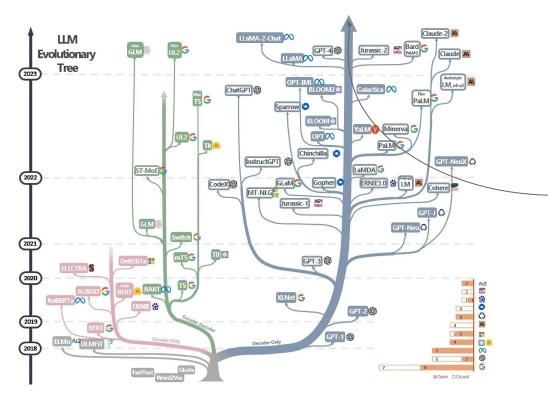
- Encoder Only
- Decoder Only
- Encoder-Decoder





Data Scaling

How do we source and train on high-quality data at scale?



Data Scaling

How do we source and train on high-quality data at scale?

<u>Covered Today</u>

- Data Curation Over Time
- Distributed Training

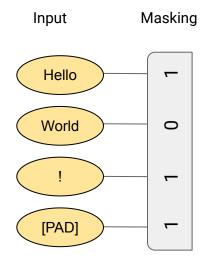
LLM Advancements have been driven primarily by these two

Self-Supervised Learning

How do we most effectively turn raw text into meaningful loss?

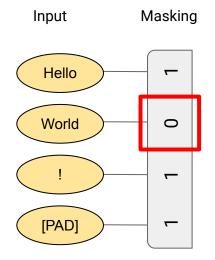
Data Scaling How do we source and train on high-quality data at scale?

SSL | From raw text to loss!



Masked Language Model

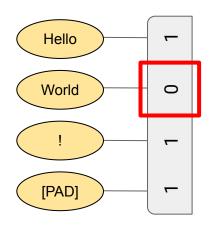
Devlin et al. 2018 (BERT)



Masked Language Model

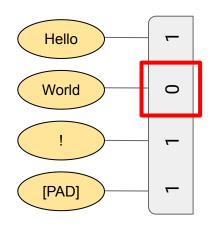
Devlin et al. 2018 (BERT)

Input Masking



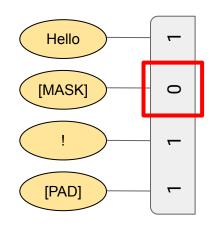
 $\begin{array}{l} \mbox{Recall} \\ \mbox{Similarities: E = QXT / sqrt(DQ)} \\ \mbox{Attention Matrix: A = softmax(E,dim=1)} \\ \mbox{Output vectors: Y = AX} \\ \mbox{Y}_i = \sum_j A_{i,j} X \end{array}$

Input Masking



 $\begin{array}{l} \mbox{Masked Attention} \\ \mbox{Similarities: E = (QXT / sqrt(DQ)) * MASK} \\ \mbox{Attention Matrix: A = softmax(E,dim=1)} \\ \mbox{Output vectors: Y = AX} \\ \mbox{Y}_i = \sum_j A_{i,j} X \end{array}$

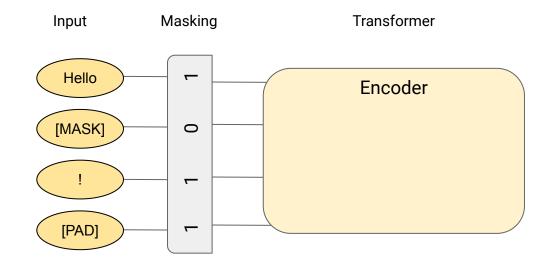
Input Masking



Intuition
If MASK_i = 0, then
$$Y_i = \sum_{j,j!=i} A_{i,j}X$$

a.k.a the representation of the masked token is created purely from context

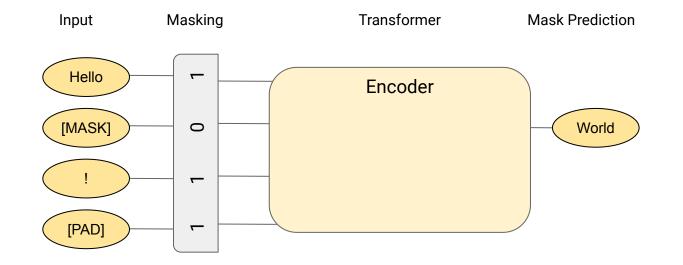
SSL | Masked Token Prediction



Masked Language Model

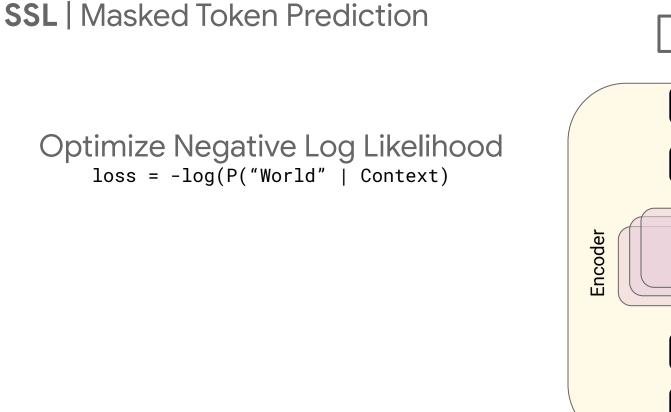
Devlin et al. 2018 (BERT)

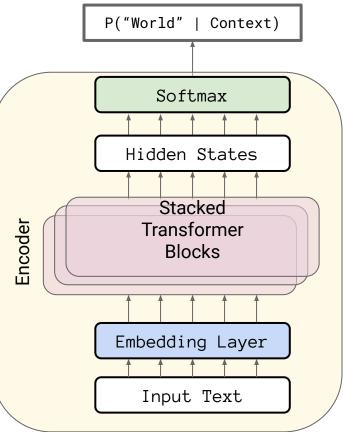
SSL | Masked Token Prediction



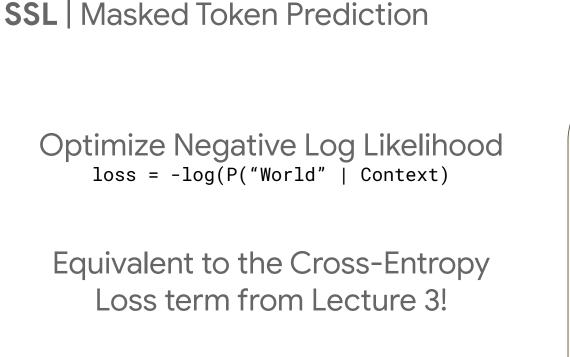
Masked Language Model

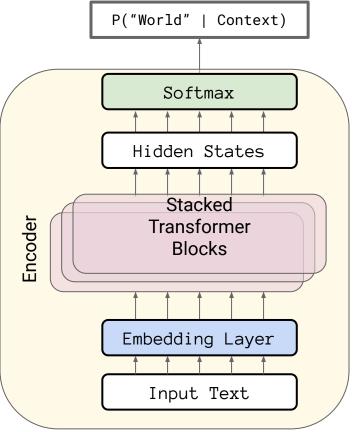
Devlin et al. 2018 (BERT)

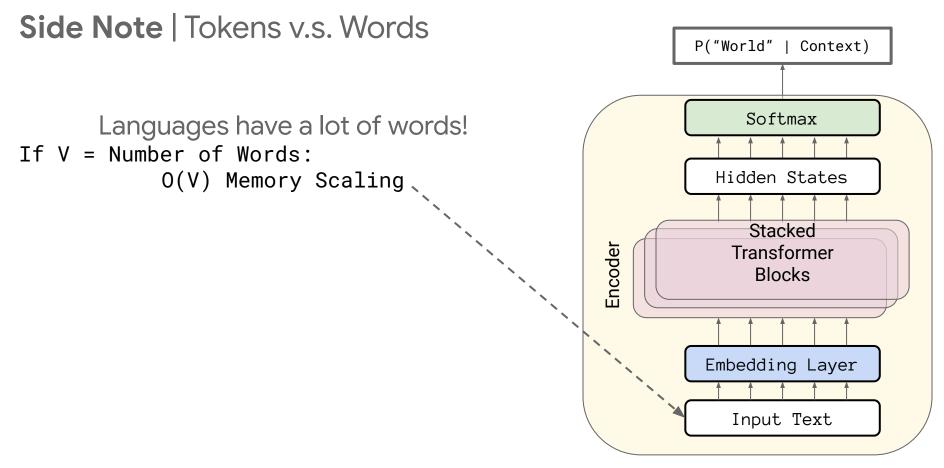


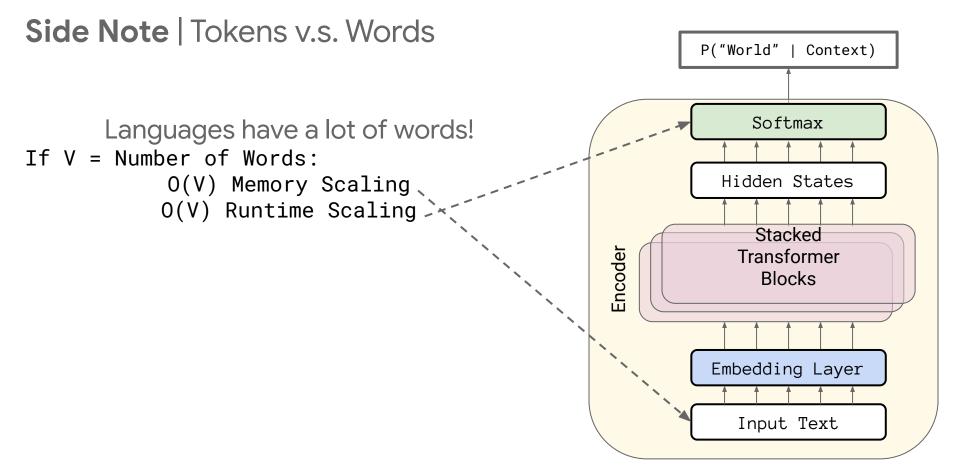


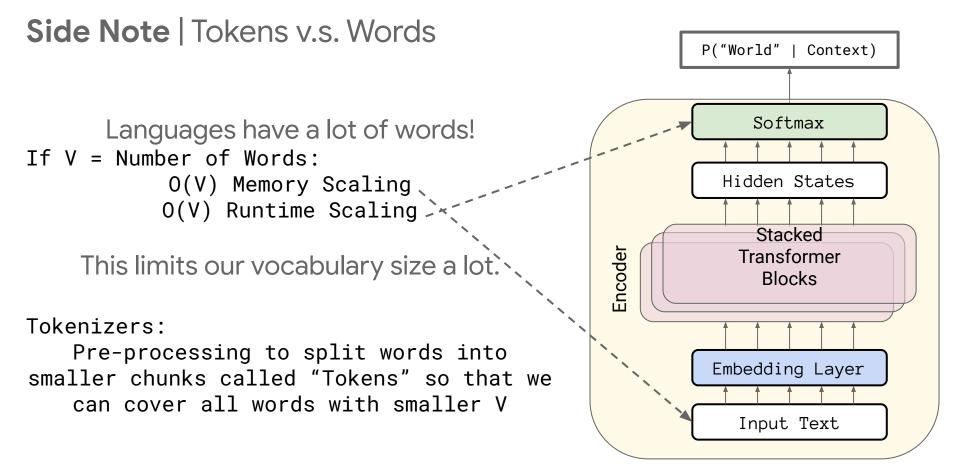
CS 4644 / 7643 Deep Learning - William Held

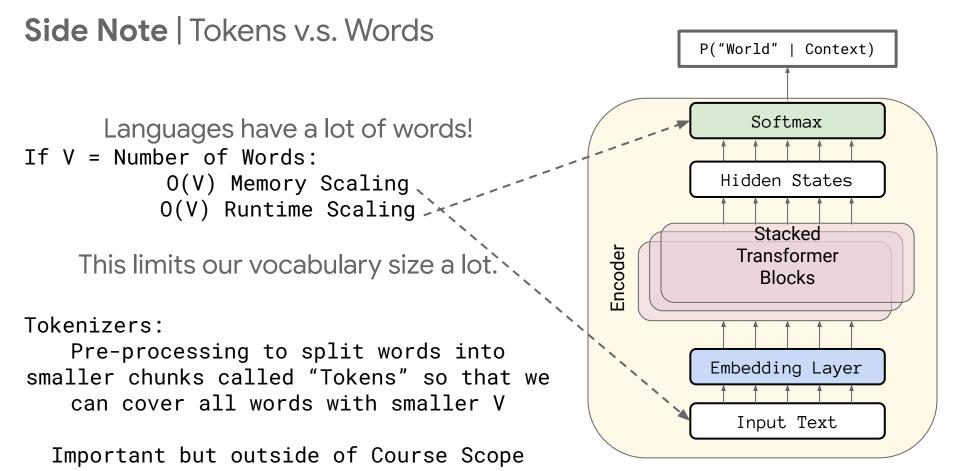












CS 4644 / 7643 Deep Learning - William Held

<u>HuggingFace Tokenizer Summary</u>

Data | BERT used existing curation!

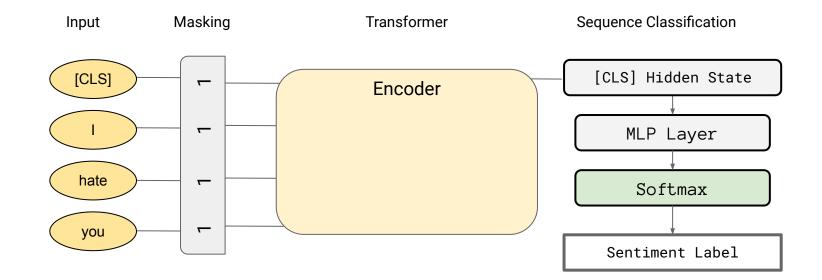
BERT Corpus English Wikipedia + BooksCorpus

> Size ∼3 Billion Tokens

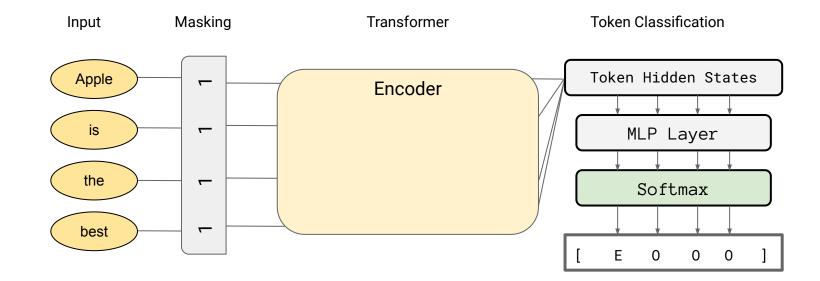
<u>Quality</u>

High quality text, Broad "Academic" Knowledge, Limited Diversity

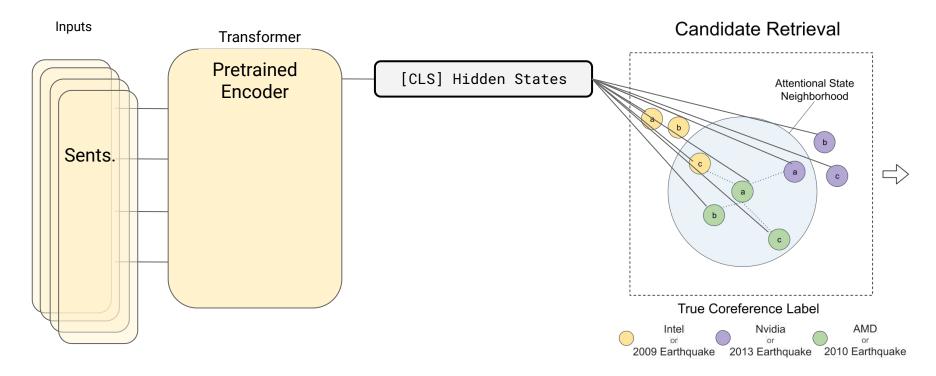
Applications | Encoders as "Foundation" Language Models



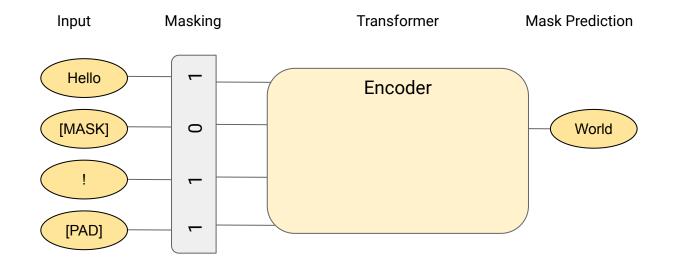
Applications | Encoders as "Foundation" Language Models



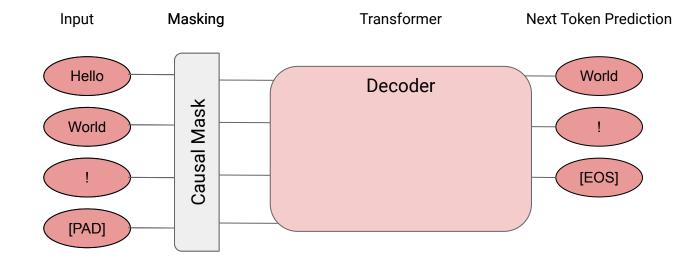
Applications | Encoders as "Foundation" Language Models

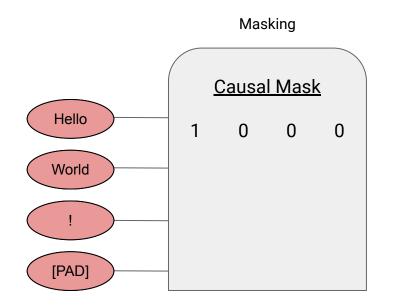


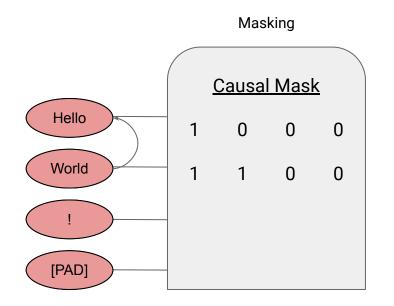
Questions?

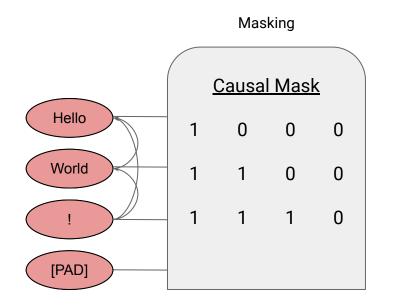


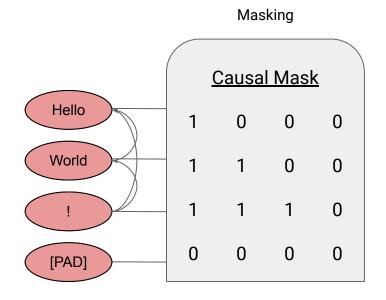
SSL | "How does GPT work?"







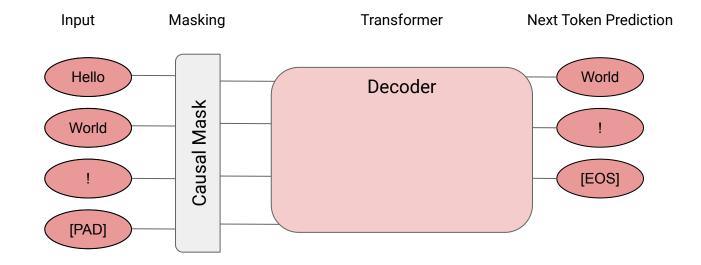




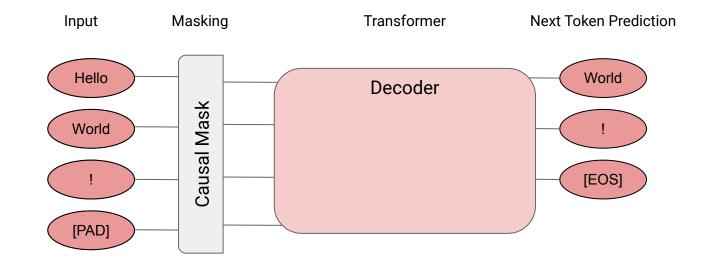
Masked Attention Again! Similarities: E = (QXT / sqrt(DQ)) * MASKAttention Matrix: A = softmax(E, dim=1)Output vectors: Y = AX $Y_i = \sum_i A_{i,i} X$

Tokens only affected by preceding tokens

SSL | First successful GPT Model, Purely Autoregressive



SSL | First successful GPT Model, Purely Autoregressive



Radford et al. 2019 (GPT-2)

Data | Increasing Token Count via Human Curation Heuristics

GPT-2 Corpus

All Reddit Outbound links with at least 3 karma

<u>Size</u>

~10 Billion Tokens

<u>Quality</u>

High quality text, Broad Knowledge, Improved Diversity

URL Domain	# Docs	% of Total Docs
bbc.co.uk	116K	1.50%
theguardian.com	115K	1.50%
washingtonpost.com	89K	1.20%
nytimes.com	88K	1.10%
reuters.com	79K	1.10%
huffingtonpost.com	72K	0.96%
cnn.com	70K	0.93%
cbc.ca	67K	0.89%
dailymail.co.uk	58K	0.77%
go.com	48K	0.63%

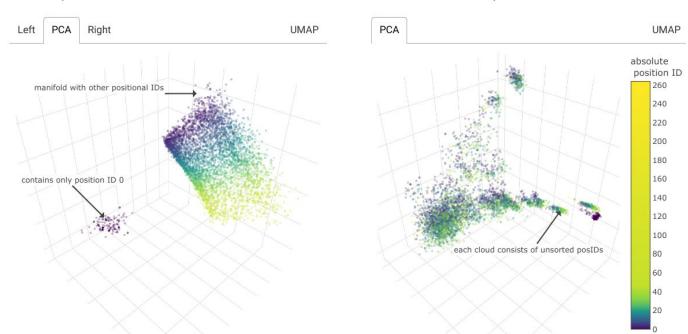
SSL | Architecture Comparison

Ok, but what should I use?

SSL | Classification Comparison

Model	MNLI	CoLA	SST-2	MRPC	STS-B	QQP	QNLI	RTE	Avg
GPT-2-original GPT-2-finetuned	85.9/85.6 85.8/85.5	54.8 40.9	94.5 94.5	86.9/82.2 87.0/81.0	86.3/85.2 85.6/84.3	72.5/89.3 71.4/88.5	91.2 91.5	69.8 69.0	80.9 78.8
RoBERTa-large	90.1/89.7	63.8	96.1	91.2/88.3	90.9/90.7	72.5/89.6	94.5	85.9	86.5

SSL | Pretrained Retrieval Comparison



GPT-2 separates into two clusters

Bert consists of multiple small clusters

SSL | Generative Comparison

Encoders can't generate!

SSL | Encoder-Only vs. Decoder-Only

Encoder

- + Retrieval
- + Classification
- No Generative Abilities

<u>Decoder</u>

- + Generative Abilities
- Retrieval
- Classification

SSL | Encoder-Only vs. Decoder-Only

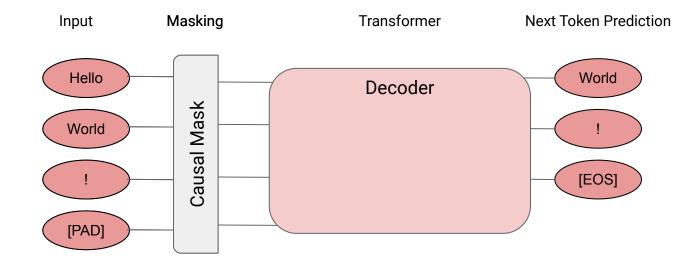
Encoder

- + Retrieval
- + Classification
- No Generative Abilities

<u>Decoder</u>

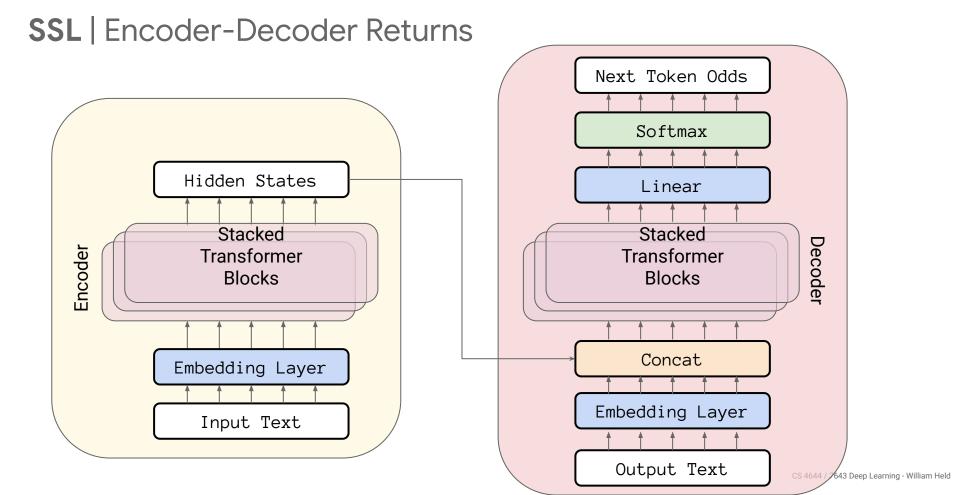
- + Generative Abilities This is pretty essential
- Retrieval
- Classification

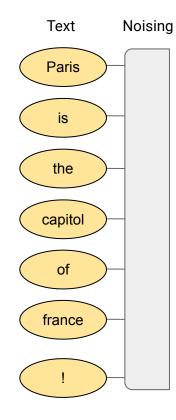
Questions?

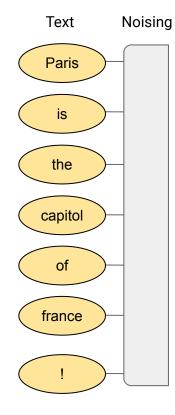


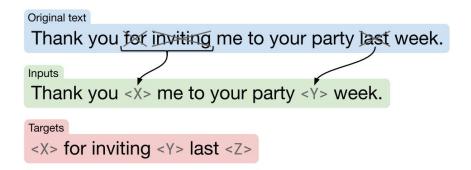
Autoregressive Language Model

SSL | Encoder-Only vs. Decoder-Only

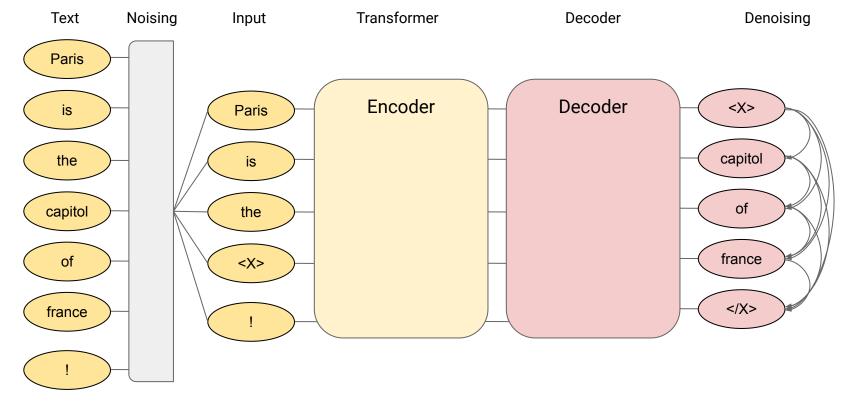


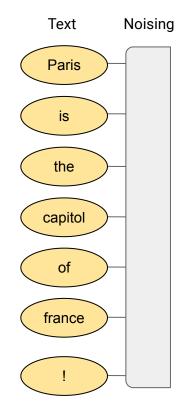


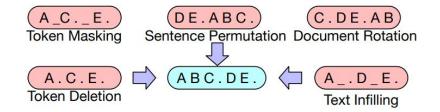




SSL | Universal Text-to-Text







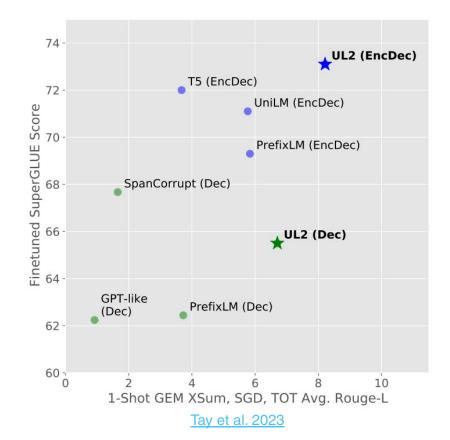
SSL | UL2 - Text-to-Text Pushed to Limits

Text Paris Learning Paradigms Supervised is Finetuning In-context (extreme denoising) Learning Decoder-only the Zero-Shot OR capitol Language Generation Encoder-Decoder Language of Understanding (sequential denoising / prefix Structured Knowledge Grounding france Long Range Mixture-of-Denoisers Reasoning **Task Paradigms**

Regardless of noise, Loss Function remains the same still!

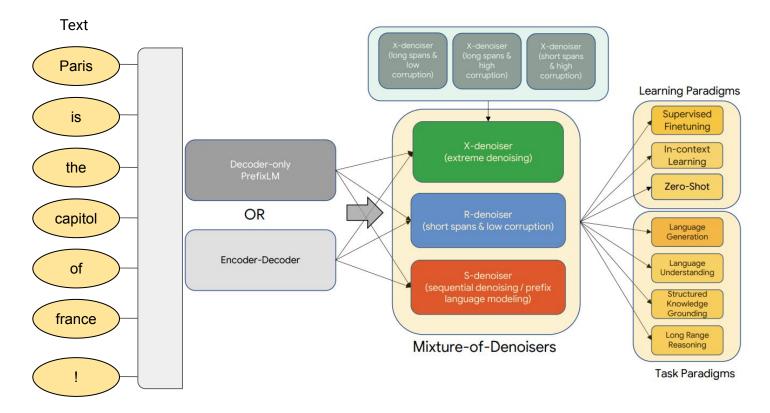
Continue using Negative Log Likelihood loss = -(log(P(Denoised Sequence | Noised Sequence))

SSL | Universal Text-to-Text Is Architecture Agnostic

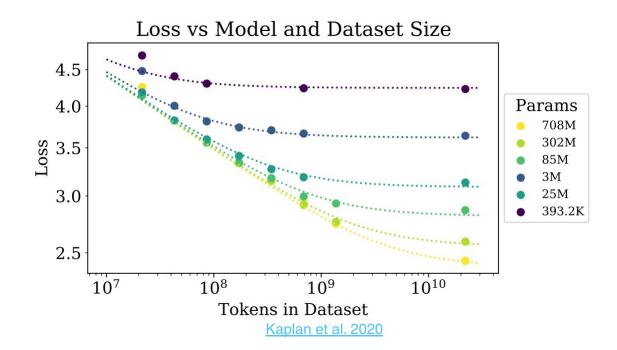


CS 4644 / 7643 Deep Learning - William Held

Questions?



Today's LLMs are driven data and model scaling



We could get a lot more data from CommonCrawl!

We could get a lot more data from CommonCrawl! A lot of it is spam though...

We could get a lot more data from CommonCrawl! A lot of it is spam though... How do we get "useful" data?

Data | C4 - First Scaling of Data Via Common Crawl

T5 Corpus (AKA C4)

All Common Crawl Text Which Meets Heuristics

<u>Size</u> ~350 Billion Tokens

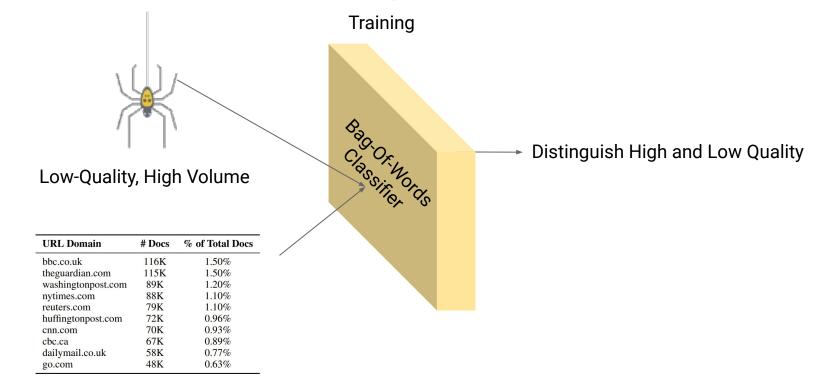
Quality

Varying quality text, Broad Knowledge, Improved Diversity

- We only retained lines that ended in a terminal punctuation mark (i.e. a period, exclamation mark, question mark, or end quotation mark).
- We discarded any page with fewer than 3 sentences and only retained lines that contained at least 5 words.
- We removed any page that contained any word on the "List of Dirty, Naughty, Obscene or Otherwise Bad Words".⁶
- Many of the scraped pages contained warnings stating that Javascript should be enabled so we removed any line with the word Javascript.
- Some pages had placeholder "lorem ipsum" text; we removed any page where the phrase "lorem ipsum" appeared.
- Some pages inadvertently contained code. Since the curly bracket "{" appears in many programming languages (such as Javascript, widely used on the web) but not in natural text, we removed any pages that contained a curly bracket.
- Since some of the scraped pages were sourced from Wikipedia and had citation markers (e.g. [1], [citation needed], etc.), we removed any such markers.
- Many pages had boilerplate policy notices, so we removed any lines containing the strings "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", or "use cookies".
- To deduplicate the data set, we discarded all but one of any three-sentence span occurring more than once in the data set.

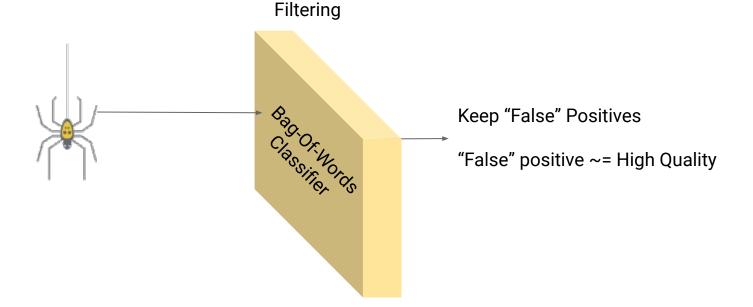
Raffel et al. 2019

Data | GPT-3 - Increased Scaling Via Curation



High Quality, Medium Volume

Data | GPT-3 - Increased Scaling Via Curation



Data | GPT-2 to Original GPT-3 was mostly data scaling

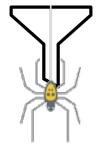
GPT-3 Corpus

Common-Crawl Filtered using GPT-2 Training Data

> <u>Size</u> ∼400 Billion Tokens

Quality

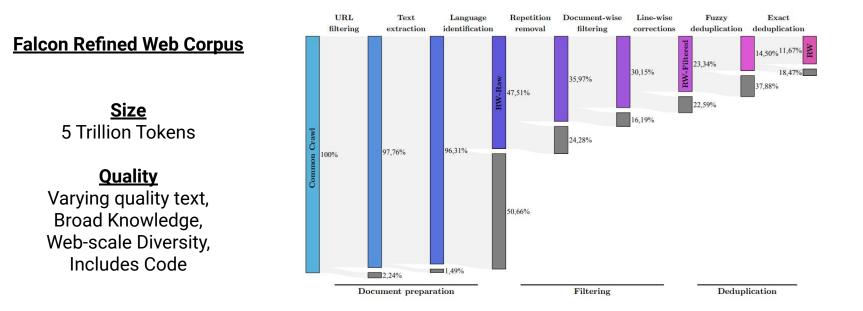
High-ish quality text, Broad Knowledge, Web-scale Diversity



Data | Recent Open Source models focus heavily on data scaling

<u>Llama 1 Corpus</u>	Dataset	Sampling prop.	Epochs	Disk size	
	CommonCraw	1 67.0%	1.10	3.3 TB	
Size	C4	15.0%	1.06	783 GB	
~1.4 Trillion Tokens	Github	4.5%	0.64	328 GB	
Quality Varying quality text,	Wikipedia	4.5%	2.45	83 GB	
Broad Knowledge,	Books	4.5%	2.23	85 GB	
Web-scale Diversity, Includes Code!	ArXiv	2.5%	1.06	92 GB	
	StackExchange	e 2.0%	1.03	78 GB	

Data | Recent Open Source models focus heavily on data scaling



Data | Data Mixture has become the biggest "secret"

Llama 2 Corpus

PALM-2 Corpus

<u>GPT-4 Corpus</u>

<u>Size</u> > 2 Trillion Tokens

<u>Quality</u> Minimal details known <u>Size</u> > 3.6 Trillion Tokens

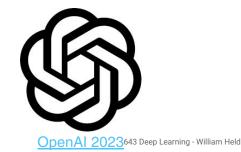
<u>Size</u> Unknown (Est. 11T Tokens)

<u>Quality</u> No details known

 \mathcal{O}

Touvron et al. 2023 (b)

<u>Quality</u> No details known



Questions?

Llama 2 Corpus

PALM-2 Corpus

<u>GPT-4 Corpus</u>

<u>Size</u> > 2 Trillion Tokens

Quality Minimal details known

Touvron et al. 2023 (b)

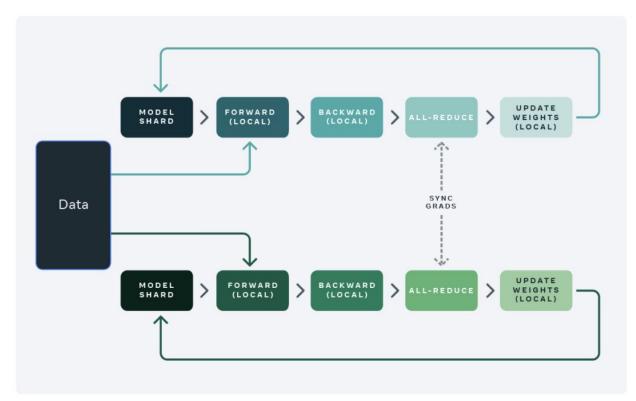
<u>Size</u> > 3.6 Trillion Tokens

<u>Size</u> Unknown (Est. 11T Tokens)

<u>Quality</u> No details known

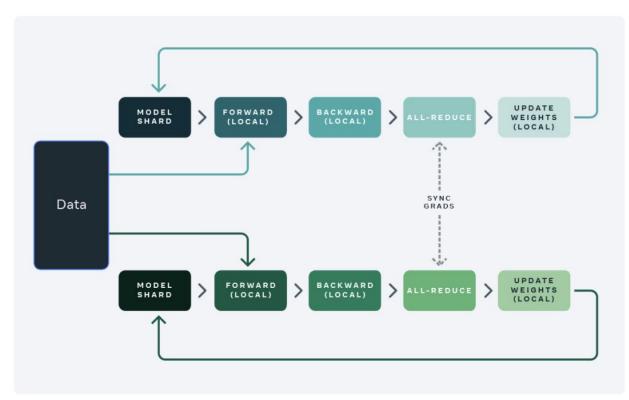
<u>Quality</u> No details known

Scaling Parameters | Data Parallel Training



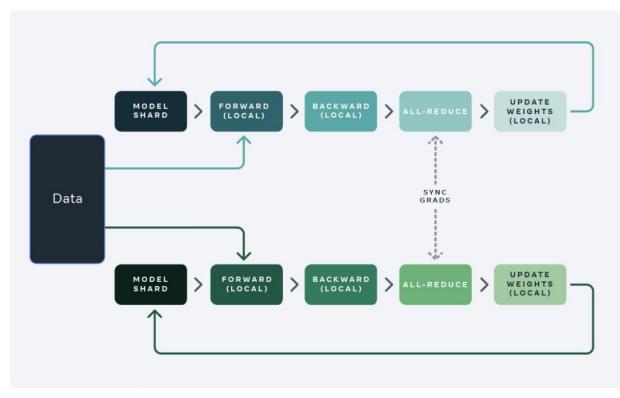
https://engineering.fb.com/2021/07/15/open-source/fsdp/

Scaling Parameters | Data Parallel Training



Total memory increases linearly with shards

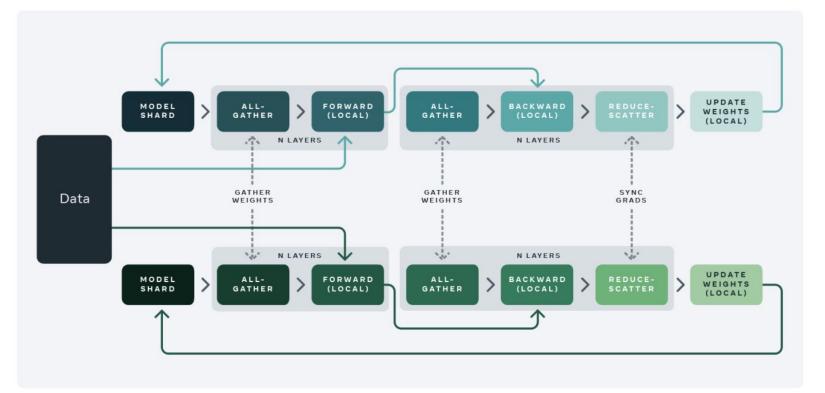
Scaling Parameters | Data Parallel Training



Max memory constrains model size

S 4644 / 7643 Deep Learning - William Held

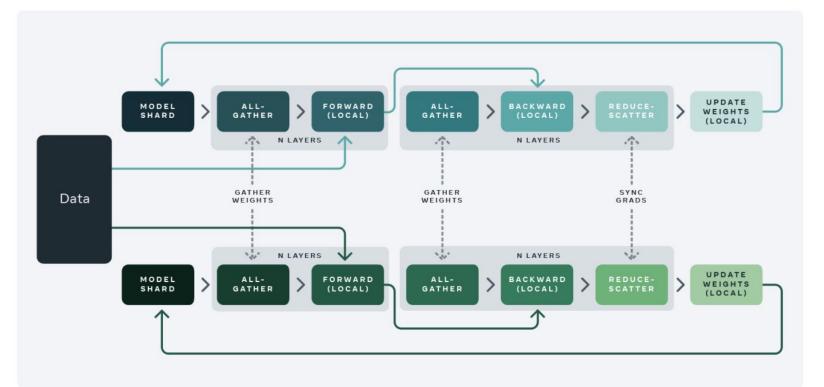
Scaling Parameters | *Fully* Sharded Data Parallel Training



https://engineering.fb.com/2021/07/15/open-source/fsdp/

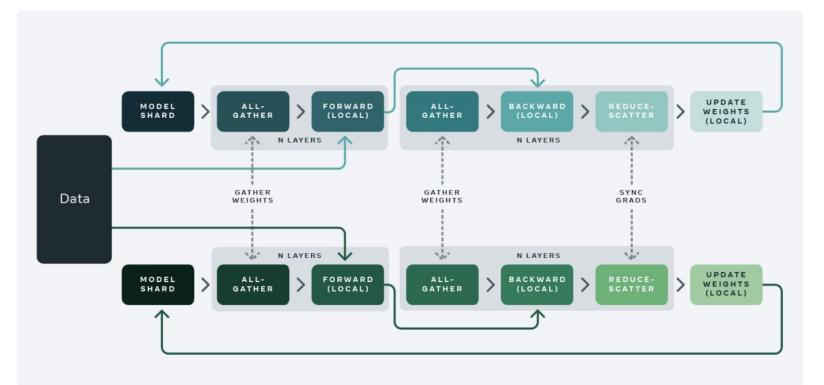
CS 4644 / 7643 Deep Learning - William Held

Scaling Parameters | *Fully* Sharded Data Parallel Training

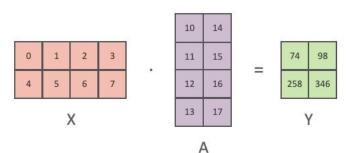


Total memory is constant

Scaling Parameters | *Fully* Sharded Data Parallel Training

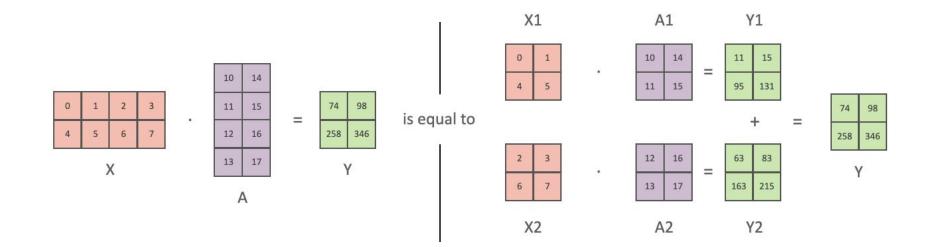


Max single GPU memory constrains layer size

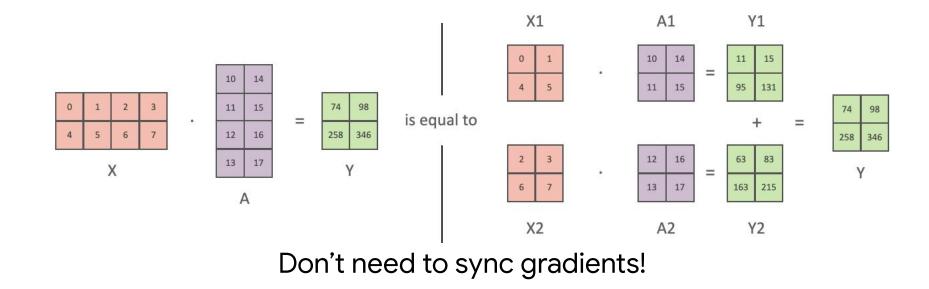


https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

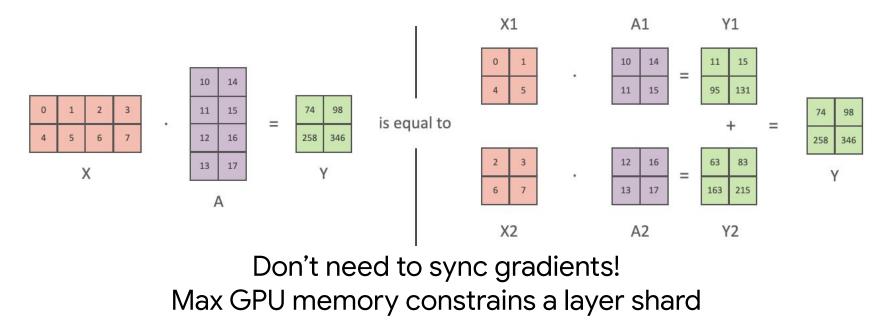
CS 4644 / 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

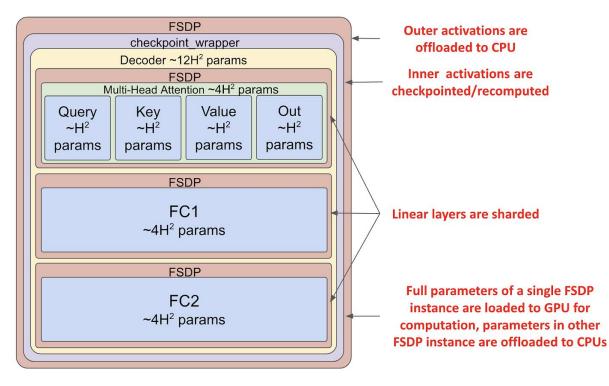


https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | FSDP + TP = ~Limitless Scaling



<u>1 Trillion Parameter Model with Tensor Parallelism and FSDP</u>

Final Questions?

Fill out my anonymous feedback form

