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DANFEI XU

Topics:
• Deep Learning Hardware and Software
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• Time to work on the project
• We will release the milestone presentation

schedule soon
• Start on PS3/HW3 if you haven’t

• Coding: If you passed individual testing cases but are failing 
end-to-end testing, double check your Multi-Headed Attention. 
The unit test doesn’t catch all errors.

• DO NOT MODIFY YOUR TEST CODE

Administrative



Recap: Attention, Transformer, LLMs

we are ea%ng
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Use c2 to 
compute s2, y2

estamos

Bahdanau et al, “Neural machine transla8on by jointly learning to align and translate”, ICLR 2015
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context vector 
c2

s1



Recap: Attention, Transformer, LLMs

Bahdanau et al, “Neural machine transla8on by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic Area
was signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a 
été signé en août 1992.”

Visualize attention weights at,i

Attention figures out 
different word 
orders

Diagonal attention means 
words correspond in order

Diagonal a5en6on means 
words correspond in order
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In order to make processing 
position-aware, concatenate 
input with positional encoding E

E(i) encodes the position of the 
i-th element in a sequence

E() can be a simple function 
(e.g., linear or sin functions) or a 
learned lookup table.

E(1) E(2) E(3)

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computa6on:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similari6es: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
A5en6on weights: A = soSmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Recap: Self-A-en/on Layer

0.1 0.2 0.3



Recap: Transformer Block

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x 
Output: Set of vectors y

Self-a9en:on is the only 
interac:on among vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

x1 x2 x3 x4



Recap: The Transformer

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a sequence 
of transformer blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-a9en:on is the only 
interac:on among vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable



Recap: Encoder-Decoder Transformer



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

How do we go from purpose driven models to LLMs?

https://github.com/Mooler0410/LLMsPracticalGuide



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

SSL | Autoregressive Language Modeling

Masking

Causal Mask

1 0 0 0

1 1 0 0

1 1 1 0

0 0 0 0

Hello

World

[EOS]

!

Hello

World

[PAD]

!

    Masked Attention Again!
Similarities: E = (QXT / sqrt(DQ)) * MASK

Attention Matrix: A = softmax(E,dim=1)

Output vectors: Y = AX

Yi = ∑jAi,jX

   Tokens only affected by preceding tokens

Radford et al. 2019 (GPT-2)



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

SSL | First successful GPT Model, Purely Autoregressive

Input Masking

Hello

World

Transformer Next Token Prediction

[EOS]

!

World

!

[EOS]

Hello

World

[PAD]

!
Ca

us
al

 M
as

k

Decoder

Optimize Negative Log Likelihood of Whole Sequence
loss = -(log(P(“World” | “Hello”) + log(P(“!” | “Hello World”) + 

log(P(“[EOS]” | “Hello World!”))
Radford et al. 2019 (GPT-2)



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

SSL | UL2 - Text-to-Text Pushed to Limits
Text

Paris

is

capitol

the

of

france

!

Tay et al. 2023



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

Data | Moving to truly Large Language Models

Today’s LLMs are driven data and model scaling

Kaplan et al. 2020



Recap: LLMs

CS 4644 / 7643 Deep Learning - William Held

Questions?

Llama 2 Corpus

Size
> 2 Trillion Tokens

Quality
Minimal details known

PALM-2 Corpus

Size
> 3.6 Trillion Tokens

Quality
No details known

GPT-4 Corpus

Size
Unknown (Est. 11T Tokens)

Quality
No details known

Touvron et al. 2023 (b) Anil et al. 202320 OpenAI 2023
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Today

- Deep learning hardware
- CPU, GPU

- Deep learning software
- PyTorch and TensorFlow
- Static and Dynamic computation graphs



Deep Learning 
Hardware

16
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Inside a computer
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en


20

CPU vs GPU
Cores Clock 

Speed
Memory Price Speed (throughput)

CPU
(Intel Core i9-
7900k)

10 4.3 GHz System 
RAM

$385 ~640 GFLOPS FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB 
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks
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Example: Matrix Multiplication
A x B

B x C
A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix MulIply)



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-
optimized, a little unfair)

66x 67x 71x 64x 76x

22



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

23
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25https://en.wikipedia.org/wiki/FLOPS#Hardware_costs

NVIDIA 
GeForce 
RTX4090
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NVIDIA AMDvs
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NVIDIA AMDvs
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CPU vs GPU
Cores Clock 

Speed
Memor
y

Price Speed

CPU
(Intel Core i7-
7700k)

10 4.3 GHz System 
RAM

$385 ~640 GFLOPs FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB 
GDDR6
X

$1499 ~35.6 TFLOPs FP32

GPU 
(Data Center)
NVIDIA A100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB 
HBM2

$3/hr 
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud 
TPUv3

2 Matrix Units 
(MXUs) per 
core, 4 cores

? 128 GB 
HBM

$8/hr
(GCP)

~420 TFLOPs (non-
standard FP)

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

TPU: Specialized 
hardware for deep 
learning
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Aside: NPUs 
Neural Processing Units (NPUs) are specialized hardware designed for Deep Learning 
applications. Example: GraphCore IPUs
General pros: larger on-device memory, lower power consumption
General cons: specialized computation units (compared to GPU and CPUs). Smaller 
instruction sets. Less supported by popular platforms (PyTorch, TensorFlow)

Graphcore M2000

Apple M1
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Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs
○ CS 8803 – GPU at GaTech

○ Taught by Prof. Hyesoon Kim

https://github.com/ROCm-Developer-Tools/HIP


CPU / GPU Communication

Model 
is here

31Data is here

Data access rate: RAM and the GPU 
over PCIe lanes is about 16 GB/s. 
GPU's internal memory (like GDDR6) 
is about 448 GB/s.



CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to 

prefetch data

32

Data access rate: RAM and the GPU 
over PCIe lanes is about 16 GB/s. 
GPU's internal memory (like GDDR6) 
is about 448 GB/s.



Deep Learning 
Software

33



A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook) 
mostly features absorbed 
by PyTorch

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

34

Chainer
(Preferred Networks)
The company has officially migrated its research 
infrastructure to PyTorch 

JAX
(Google)



A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook) 
mostly features absorbed 
by PyTorch

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...
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Chainer
(Preferred Networks)
The company has officially migrated its research 
infrastructure to PyTorch 

JAX
(Google)

We’ll focus on these



Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*

36



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs

37



Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

38

https://twitter.com/karpathy/status/597631909930242048?lang=en
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The point of deep learning frameworks

(1)Quick to develop and test new ideas
(2)Automatically compute gradients
(3)Run it all efficiently on GPU (wrap cuDNN, cuBLAS, 

OpenCL, etc)
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad: 
- Have to compute 

our own gradients
- Can’t run on GPU

Good: 
Clean API, easy to 
write numeric code
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!
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PyTorch
(More details)
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PyTorch: Fundamental Concepts

torch.Tensor: Like a numpy array, but can run on GPU

torch.nn.Module: A neural network layer; may store state 
or learnable weights

torch.autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients
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PyTorch: Versions

For this class we are using PyTorch version >= 2.0.0
(newest is v2.1.0)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!
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PyTorch: Tensors

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss
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PyTorch: Tensors
Create random tensors 
for data and weights
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PyTorch: Tensors

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Backward pass: 
manually compute 
gradients
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PyTorch: Tensors

Gradient descent 
step on weights
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PyTorch: Tensors

To run on GPU, just use a 
different device!
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PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables 
autograd

Operations on Tensors with 
requires_grad=True cause PyTorch 
to build a computational graph
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PyTorch: Autograd

Forward pass looks exactly 
the same as before, but we 
don’t need to track 
intermediate values -
PyTorch keeps track of them 
for us in the graph
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PyTorch: Autograd

Compute gradient of loss 
with respect to w1 and w2
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PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
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PyTorch: Autograd

Make gradient step on weights, then zero 
them. Torch.no_grad means “don’t build a 
computational graph for this part”
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PyTorch: Autograd

PyTorch methods that end in underscore 
modify the Tensor in-place; methods that 
don’t return a new Tensor
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PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values 
for the backward pass
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PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values 
for the backward pass

Define a helper function to make it 
easy to use the new function
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PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass
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PyTorch: New Autograd Functions

In practice you almost never need 
to define new autograd functions! 
Only do it when you need custom 
backward. In this case we can just 
use a normal PyTorch function
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PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your life 
easier
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PyTorch: nn

Define our model as a 
sequence of layers; each 
layer is an object that 
holds learnable weights



67

PyTorch: nn

Forward pass: feed data to 
model, and compute loss
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PyTorch: nn

torch.nn.functional has useful 
helpers like loss functions

Forward pass: feed data to 
model, and compute loss
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PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)
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PyTorch: nn

Make gradient step on 
each model parameter
(with gradients disabled)
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PyTorch: optim

Use an optimizer for 
different update rules
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PyTorch: optim

After computing gradients, use 
optimizer to update params 
and zero gradients
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PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 
using autograd!
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PyTorch: nn
Define new Modules

Define our whole model 
as a single Module
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PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)
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PyTorch: nn
Define new Modules

Define forward pass using 
child modules

No need to define 
backward - autograd will 
handle it
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PyTorch: nn
Define new Modules

Construct and train an 
instance of our model
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PyTorch: nn
Define new Modules
Very common to mix and match 
custom Module subclasses and 
Sequential containers



79

PyTorch: nn
Define new Modules

Define network component 
as a Module subclass
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PyTorch: nn
Define new Modules

Stack multiple instances of the 
component in a sequential
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PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

https://github.com/pytorch/vision


PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

82

https://twitter.com/karpathy/status/597631909930242048?lang=en
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and 
rebuild it from scratch on every iteration
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs

Building the graph and 
computing the graph happen at 
the same time.

Seems inefficient, especially if we 
are building the same graph over 
and over again...
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Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for 
backprop)

Step 2: Reuse the same graph on 
every iteration
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TensorFlow
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TensorFlow Versions

Default static graph, 
optionally dynamic 
graph (eager mode).

Pre-2.0 (1.14 latest) 2.0+
Default dynamic graph, 
optionally static graph.
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TensorFlow: 
Neural Net
(Pre-2.0)

(Assume imports at the 
top of each snippet)
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TensorFlow: 
Neural Net
(Pre-2.0)

First define
computational graph

Then run the graph 
many times
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())
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TensorFlow: 
Neural Net

Convert input numpy 
arrays to TF tensors.
Create weights as 
tf.Variable  
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TensorFlow: 
Neural Net

Use tf.GradientTape() 
context to build 
dynamic computation 
graph.
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TensorFlow: 
Neural Net

All forward-pass 
operations in the 
contexts (including 
function calls) gets 
traced for computing 
gradient later.
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TensorFlow: 
Neural Net

Forward pass
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TensorFlow: 
Neural Net

tape.gradient() uses the 
traced computation 
graph to compute 
gradient for the weights
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TensorFlow: 
Neural Net

Backward pass
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TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights
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TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights
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TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights
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TensorFlow: 
Loss

Use predefined 
loss functions
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Keras (https://keras.io/) 

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras) 

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

TensorFlow: High-Level Wrappers

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/estimator
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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@tf.function: 
compile static 
graph

tf.function decorator 
(implicitly) compiles 
python functions to 
static graph for better 
performance
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@tf.function: 
compile static 
graph

Here we compare the 
forward-pass time of 
the same model under 
dynamic graph mode 
and static graph mode

Ran on Google Colab, April 2020
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@tf.function: 
compile static 
graph

Static graph is in theory
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer / computation 
graph. 

Ran on Google Colab, April 2020
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@tf.function: 
compile static 
graph

Static graph is in theory
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer / computation 
graph.

Ran on Google Colab, April 2020



Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU

116
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Static PyTorch: TorchScript
graph(%self.1 : 
__torch__.torch.nn.modules.module.___torch_mangl
e_4.Module,

%input : Float(3, 4),
%h : Float(3, 4)):

%19 : 
__torch__.torch.nn.modules.module.___torch_mangl
e_3.Module = 
prim::GetAttr[name="linear"](%self.1)
%21 : Tensor = 

prim::CallMethod[name="forward"](%19, %input)
%12 : int = prim::Constant[value=1]() # 

<ipython-input-40-26946221023e>:7:0
%13 : Float(3, 4) = aten::add(%21, %h, %12) # 

<ipython-input-40-26946221023e>:7:0
%14 : Float(3, 4) = aten::tanh(%13) # 

<ipython-input-40-26946221023e>:7:0
%15 : (Float(3, 4), Float(3, 4)) = 

prim::TupleConstruct(%14, %14)
return (%15)

Build static graph with torch.jit.trace



PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
Dynamic Graphs

Static: TorchScript

118

TensorFlow
Dynamic: Eager

Static: @tf.function



Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic

119



Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

120

- Recurrent networks



Dynamic Graph Applications

The cat ate a big rat

121

- Recurrent networks
- Recursive networks



Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

122

Figure copyright Justin Johnson, 2017. Reproduced with permission.



Dynamic Graph Applica2ons

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

123
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Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism: 
split computation 
graph into parts & 
distribute to GPUs/ 
nodes

Data parallelism: split 
minibatch into chunks & 
distribute to GPUs/ nodes
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PyTorch: Data Parallel
nn.DataParallel
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number 
of GPUs (8+).

nn.DistributedDataParallel
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each 
process / nodes.

Horovod (https://github.com/horovod/horovod): Supports both PyTorch and 
TensorFlow 

https://pytorch.org/docs/stable/nn.html#dataparallel-layers-multi-gpu-distributed

https://github.com/horovod/horovod
https://pytorch.org/docs/stable/nn.html
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PyTorch vs. TensorFlow



My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs 
make it very easy to develop and debug. Can build model using the 
default API then compile static graph using JIT. Almost all academic 
research uses PyTorch

TensorFlow’s syntax became a lot more intuitive after 2.0. Not 
perfect but still has a wide industry usage. Can use same 
framework for research and production. 
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