
CS 4644-DL / 7643-A: Lecture 20
Danfei xu

Self-Supervised Learning (Continued)
Large Vision and Language Models
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Pretext tasks from image transformations

image 
completion

rotation 
prediction

“jigsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?
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A more general pretext task?

same object
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A more general pretext task?

same object

different object
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Contrastive Representation Learning

attract

repel
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Contrastive Representation Learning

attract

repel
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Contrastive Representation Learning

reference

positive

negative
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A formulation of contrastive learning
What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder 
function f that yields high score for positive pairs (x, x+) and low 
scores for negative pairs (x, x-).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

...
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive 
pair

score for the N-1 negative 
pairs

This seems familiar …
Cross entropy loss for a N-way softmax classifier!
I.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound
Detailed derivation: Poole et al., 2019

https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf
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SimCLR: A Simple Framework for Contrastive Learning

Source: Chen et al., 
2020

Use a projection network h(·) to project 
features to a space where contrastive learning 
is applied

Generate positive samples through data 
augmentation:

● random cropping, random color 
distortion, and random blur.

Cosine similarity as the score function:

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: generating positive samples from data 
augmentation

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

Generate a positive pair 
by sampling data 
augmentation functions

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR

Source: Chen et al., 
2020

InfoNCE loss:
Use all non-positive 
samples in the batch 
as x -

Generate a positive pair 
by sampling data 
augmentation functions

Iterate through and use 
each of the 2N sample as 
reference, compute 
average loss

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR: mini-batch training

list of positive 
pairs

Each 2k and 2k + 1 
element is a positive 
pair

“Affinity matrix”
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SimCLR: mini-batch training

= classification label for each 
row 

Each 2k and 2k + 1 
element is a positive 
pair

“Affinity matrix”

list of positive 
pairs
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Training linear classifier on SimCLR features

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Freeze feature encoder, train a linear 
classifier on top with labeled data.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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Semi-supervised learning on SimCLR features

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10% 
of labeled data on ImageNet.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: projection head

Linear / non-linear projection heads improve 
representation learning.

A possible explanation: 
● contrastive learning objective may discard 

useful information for downstream tasks
● representation space z is trained to be 

invariant to data transformation. 
● by leveraging the projection head g(ᐧ), more 

information can be preserved in the h
representation space

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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SimCLR design choices: large batch size

Large training batch size is crucial for 
SimCLR!

Large batch size causes large memory 
footprint during backpropagation: 
requires distributed training on TPUs 
(ImageNet experiments) 

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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Momentum Contrastive Learning (MoCo)

no_grad

Source: He et al., 2020

Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the number 
of keys: can support a large number of 
negative samples.

https://arxiv.org/abs/1911.05722
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Momentum Contrastive Learning (MoCo)
Key differences to SimCLR:

● Keep a running queue of keys (negative 
samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the number 
of keys: can support a large number of 
negative samples.

no_grad

Source: He et al., 2020

● The key encoder is slowly progressing through 
the momentum update rules:

https://arxiv.org/abs/1911.05722
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MoCo
Generate a positive pair 
by sampling data 
augmentation functions

No gradient through 
the positive sample 

Use the running queue 
of keys as the negative 
samples

InfoNCE loss

Update f_k through 
momentum

Update the FIFO negative 
sample queue

Source: He et al., 2020

https://arxiv.org/abs/1911.05722
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“MoCo V2”

A hybrid of ideas from SimCLR and MoCo:
● From SimCLR: non-linear projection head and strong data 

augmentation.
● From MoCo: momentum-updated queues that allow training on a 

large number of negative samples (no TPU required!).

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2
Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

Source: Chen et al., 
2020

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 
2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with negative 
sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

https://arxiv.org/pdf/2002.05709.pdf
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MoCo vs. SimCLR vs. MoCo V2

Source: Chen et al., 
2020

Key takeaways:

● Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

● Decoupling mini-batch size with negative 
sample size allows MoCo-V2 to 
outperform SimCLR with smaller batch 
size (256 vs. 8192). 

● … all with much smaller memory 
footprint! (“end-to-end” means SimCLR 
here)

https://arxiv.org/pdf/2002.05709.pdf
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Instance vs. Sequence Contrastive Learning

Instance-level contrastive learning: 
contrastive learning based on 
positive & negative instances.

Examples: SimCLR, MoCo

Sequence-level contrastive learning: 
contrastive learning based on 
sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 2018

https://arxiv.org/abs/1807.03748
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

Contrastive: contrast between “right” 
and “wrong” sequences using 
contrastive learning.

Predictive: the model has to predict 
future patterns given the current 
context.

Coding: the model learns useful 
feature vectors, or “code”, for 
downstream tasks, similar to other 
self-supervised methods.context

positive

negative

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

2. Summarize context (e.g., half of a 
sequence) into a context code ct using 
an auto-regressive model (gar).

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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Contrastive Predictive Coding (CPC)

Source: van den Oord et al., 
2018, 

Figure source

context

positive

negative

1. Encode all samples in a sequence 
into vectors zt = genc(xt )

2. Summarize context (e.g., half of a 
sequence) into a context code ct using 
an auto-regressive model (gar).

3. Compute InfoNCE loss between the 
context ct and future code zt+k using 
the following time-dependent score 
function:

, where Wk is a trainable matrix.

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding
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CPC example: modeling audio sequences

Source: van den Oord et al., 
2018, 

https://arxiv.org/abs/1807.03748
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CPC example: modeling audio sequences

Linear classification on trained 
representations (LibriSpeech 
dataset) Source: van den Oord et al., 

2018, 

https://arxiv.org/abs/1807.03748
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CPC example: modeling visual context

Source: van den Oord et al., 
2018, 

Idea: split image into patches, model rows of patches from top to bottom as a 
sequence. I.e., use top rows as context to predict bottom rows.

https://arxiv.org/abs/1807.03748
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CPC example: modeling visual context

Source: van den Oord et al., 
2018, 

● Compares favorably with other pretext task-
based self-supervised learning method.

● Doesn’t do as well compared to newer instance-
based contrastive learning methods on image 
feature learning.

https://arxiv.org/abs/1807.03748
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Summary: Contrastive Representation Learning
A general formulation for contrastive learning:

InfoNCE loss: N-way classification among positive and negative samples

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

https://arxiv.org/abs/1807.03748


43

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive 
representation learning

● Key ideas: non-linear projection head to allow 
flexible representation learning

● Simple to implement, effective in learning visual 
representation

● Requires large training batch size to be effective; 
large memory footprint
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum 
sample encoder

● Decouples negative sample size from minibatch 
size; allows large batch training without TPU

● MoCo-v2 combines the key ideas from SimCLR, 
i.e., nonlinear projection head, strong data 
augmentation, with momentum contrastive 
learning 
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
● Contrast “right” sequence with “wrong” 

sequence.
● InfoNCE loss with a time-dependent score 

function.
● Can be applied to a variety of learning 

problems, but not as effective in learning 
image representations compared to instance-
level methods.
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Other examples

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Contrastive learning between image and natural language sentences
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Other examples

Dense Object Net, Florence et al., 2018

Contrastive learning on pixel-wise feature descriptors
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Other examples

Dense Object Net, Florence et al., 2018



Vision and Language Models:
Connecting the Pixel and Semantic Worlds at Scale



Why Vision-Language Models?

● Language is the most intuitive interface for an unstructured data 
space (e.g., natural images)

● Important to ground sensory information to semantic concepts
● Complementary information sources for a given task
● Claim: you cannot learn language without grounding



History: the first captioning model (Ordonez, 2011)



History: the first captioning model (Ordonez, 2011)



History: the first deep captioning model (Vinyals, 2015)



History: the first deep captioning model (Vinyals, 2015)



History: the first VQA model (Agrawal, 2015)



History: the first VQA model (Agrawal, 2015)



Foundation VLM (2019-)

Hand-drawn sketch to website source code
GPT 4v(ision) (OpenAI, 2023)



Major Areas

● Representation: how to convert raw data into meaningful features

● Translation: transform one modality to another

● Alignment: discover relationships between elements across modalities

● Fusion: join features from modalities to support prediction

● Co-learning: transferring knowledge from one modality to another

Slide credit: Desmont Elliott



https://openai.com/dall-e-2/

Language->Vision: Language-guided Image Gen 
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Vision->Language: Image Captioning

A tennis player in action 
on the court

Captions generated using 
neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

Contrastive learning between image and natural language sentences

Image – Language Association



Image – language encoding architectures

Associative Joint

textimage

𝑓!𝑓"

NCE

textimage

𝑓!

text



CLIP: Associative Encoding

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021



CLIP: Training

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021



CLIP: Zero-shot Classification

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021



CLIP: Zero-shot Classification

https://github.com/openai/CLIP



CLIP: Zero-shot Classification

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021



Generating Images from CLIP Latents (DALL-E 2)

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)

• Train image diffusion with classifier-free guidance using CLIP image embedding
• Train another diffusion model to predict CLIP image embedding from the CLIP 

embedding of the input text.



Generating Images from CLIP Latents (DALL-E 2)

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)

Learning objective for the text to image CLIP embedding diffusion model:



Joint Encodings: ViLBERT (2019)

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)

Vision and Language Joint Pretraining



Joint Encodings: ViLBERT (2019)

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)

Vision and Language Joint Pretraining

FasterRCNN

Feature embeddingRegion Proposal

BERT



Joint Encodings: ViLBERT (2019)

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)

Vision and Language Joint Pretraining



Joint Encodings: ViLT (2021)

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)

Categories of vision-language model in terms of 
model complexity / capacity



Joint Encodings: ViLT (2021)

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)

Vision and Language Joint Pretraining



Data matters
Scaling Up Foundation Vision and Language Models



Pre-foundation model era (2015 – 2020)

Visual Question Answering
(Goyal and Knot, 2017)

Image Captioning
(MS-COCO)



Pre-foundation model era (2015 – 2020)

Diagnostic Language and Visual Reasoning
(CLEVR, Johnson et al., 2016)



The “Foundation Model Era” (2020-now)

• LAION-400M: 400 million image-text pairs
• Built using Common Crawl datasets, 
• Extracting image-text pairs from HTML data. 
• Post-processing filters unsuitable pairs using OpenAI's CLIP model.
• A10TB webdataset with CLIP embeddings and kNN indices. 



The “Foundation Model Era” (2020-now)

• LAION-5B: Significantly larger than LAION-400M
• Crawled using 50 billion webpages + CLIP filtering
• 2.3 billion pairs in English + 2.2 billions in other languages + 1 

billion unassignable languages (e.g., names).



The “Foundation Model Era” (2020-now)



A snapshot of vision-language dataset



Automatic data crawling is great but …

https://laion-aesthetic.datasette.io/laion-aesthetic-6pls/images?_next=300



Composing Vision and Language Models



How to compose trained L and V models?



How to compose trained L and V models?

Language as interface

text image

𝑓! 𝑓"

Fast finetuning

text

answer

text image

𝑓! 𝑓"

answer



Finetuning VLM: Frozen LM, finetune VM

• Train image encoder with frozen language model.
• At test time, can do 0-shot VQA or few-shot classification 

through in-context learning 

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

• Train image encoder with frozen language model. 
• At test time, can do 0-shot VQA or few-shot classification 

through in-context learning 

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

• Training large VLM from scratch does not work at all
• Finetuning LM degrades performance
• “Blind” baselines till works, showing the innate power of LM

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: freeze both LM and VM

• Interleaved text-image input
• Only finetune the cross attention (XATTN-DENSE) layers

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM

• Largely outperforms previous zero/few shot SotA
• More in-context learning examples do help
• Larger model gives better results

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM

Freeze VM and LM. Train the linear layer and LORA finetune Llama 2

MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning (Chen et al., 2023)



92

Problem: finetuning still takes a lot of data, especially if 
the model is huge and/or the domain gap is large.
Fact: finetuning is just adding a 𝑊! to the existing 
weight matrix 𝑊, i.e., 𝑊∗ = 𝑊 +𝑊!
Hypothesis: 𝑊! is low-rank, meaning that 𝑊! can be 
decomposed into two smaller matrices 𝐴 and 𝐵, i.e., 
𝑊! = 𝐴#𝐵. 
So what?: 𝐴 and 𝐵 have a lot fewer parameters than 
the full 𝑊. Requires less data and faster to train.

Low-rank finetuning (LORA)
quickly finetune a billion-parameter model

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”, 2021



93

Low-rank finetuning (LORA)
quickly finetune a billion-parameter model

https://github.com/huggingface/peft



How to compose trained L and V models?

Language as interface

text image

𝑓! 𝑓"

Fast finetuning

text

answer

text image

𝑓! 𝑓"

answer



Neural Module Networks (Andreas et al., 2015)

Idea: train modular networks (attend, classify). Use a controller network to 
decide how to compose the modules together to solve a task



Neural Module Networks (Andreas et al., 2015)



Inferring and Executing Programs for Visual 
Reasoning (Johnson et al., 2017)

Similar to NMN, but train a program generator using REINFORCE
Reward comes from whether the answer is correct



Visual Programming: Compositional visual 
reasoning without training (Gupta et al., 2023)



Visual Programming: Compositional visual 
reasoning without training (Gupta et al., 2023)



ProgPrompt (Singh et al., 2023): Program to Actions

Use large language models (LLMs) to generate program-like semantic 
plans from natural language command.



VoxPoser (Huang et al., 2023): Program to Grounded Actions

Use LLMs to guide VMs to find where to act next in a 3D scene



VoxPoser (Huang et al., 2023): Program to Grounded Actions

“Sort the paper trash into the blue tray.”



Summary: Large Vision and Language Models

● Very active field of research, with a history as long as modern deep 
learning (2011 -)

● Foundation vision and language models have revolutionized the research 
paradigm post 2019.

● Trending towards larger model and dataset.
● Many active research on how to finetune / adapt VLMs with small amount 

of compute / data.
● The future is going to be multimodal.


