CS 4644-DL / 7643-A: Lecture 20 Danfei xu

Self-Supervised Learning (Continued) Large Vision and Language Models

Pretext tasks from image transformations

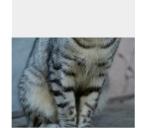


image completion

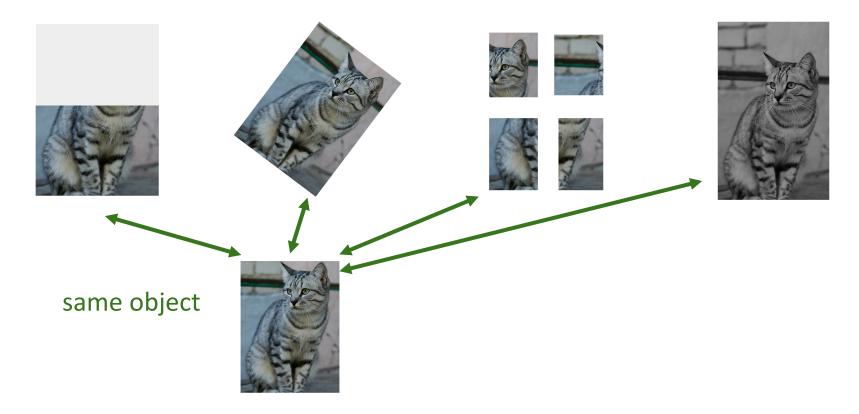
rotation prediction

"jigsaw puzzle"

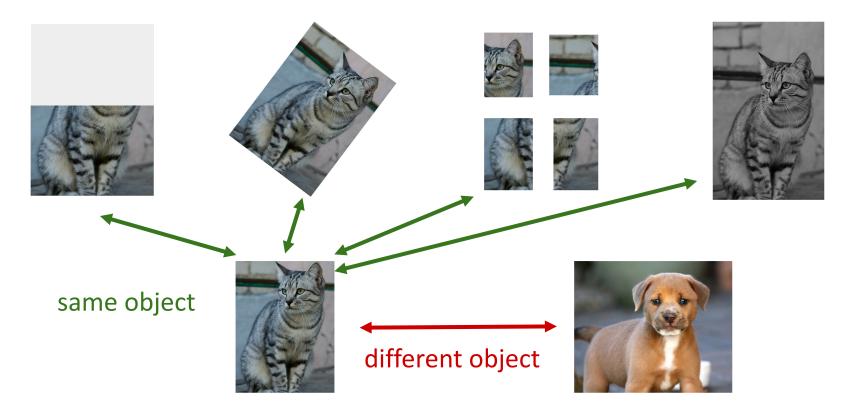
colorization

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

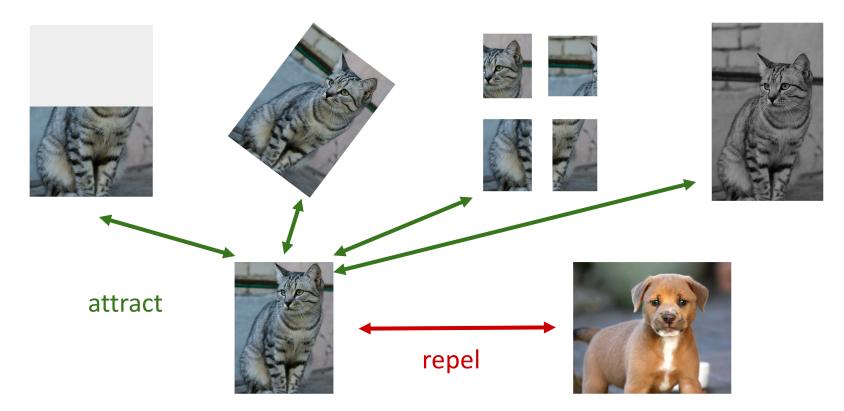
A more general pretext task?



A more general pretext task?



Contrastive Representation Learning



Today's Agenda

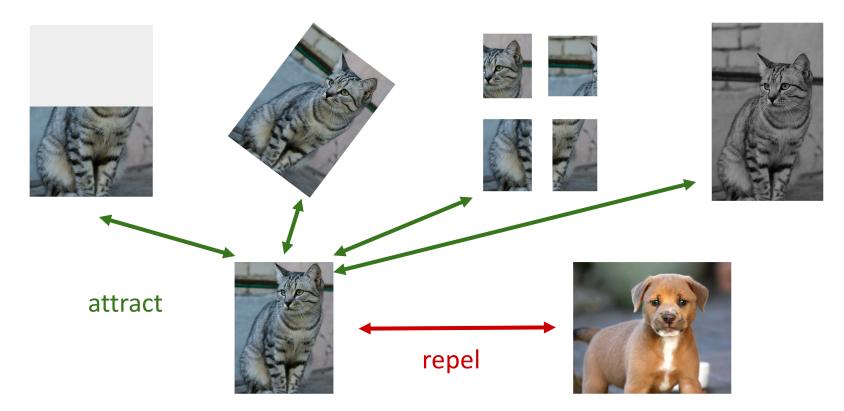
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

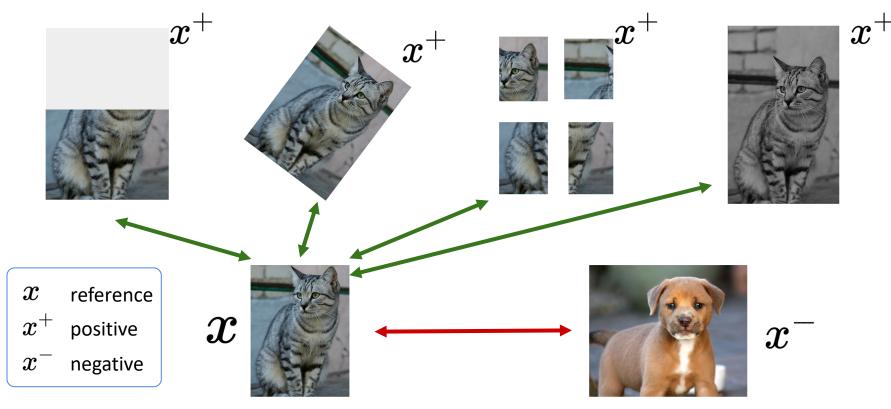
Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning



Contrastive Representation Learning



What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder function** f that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-).

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Loss function given 1 positive sample and N - 1 negative samples:

 x_3

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive score for the N-1 negative pair

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

$$\begin{split} L &= -\mathbb{E}_X \left[\log \frac{\overline{\exp(s(f(x), f(x^+))})}{ \exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right] \\ & \text{score for the positive} \\ & \text{pair} \\ \end{split} \end{split}$$

This seems familiar ...

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

A formulation of contrastive learning Loss function given 1 positive sample and N - 1 negative samples: $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

SimCLR: A Simple Framework for Contrastive Learning

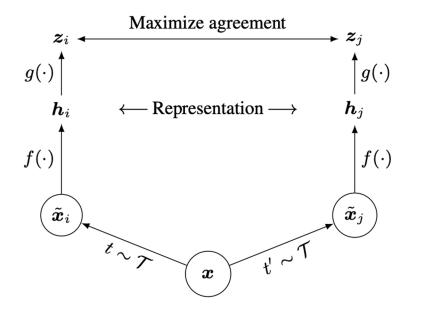
Cosine similarity as the score function:

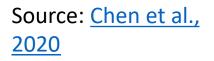
$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network *h(·)* to project features to a space where contrastive learning is applied

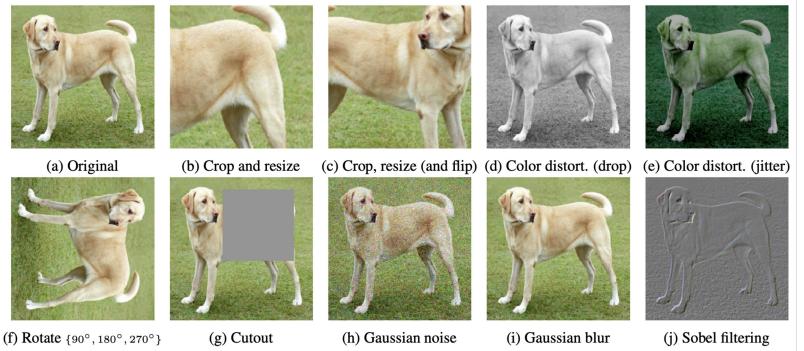
Generate positive samples through data augmentation:

• random cropping, random color distortion, and random blur.





SimCLR: generating positive samples from data augmentation



Source: <u>Chen et al.</u>, 2020

SimCLR

Generate a positive pair by sampling data augmentation functions Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $h_{2k-1} = f(\tilde{x}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

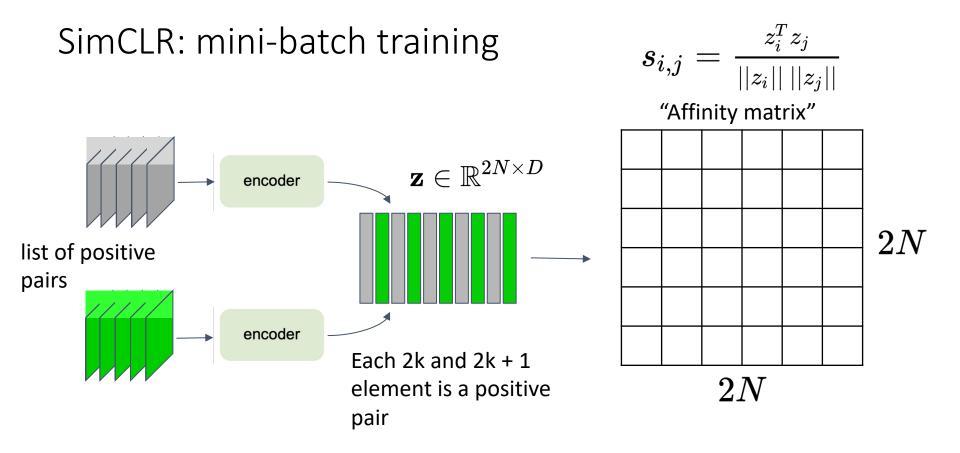
Source: <u>Chen et al.,</u> 2020

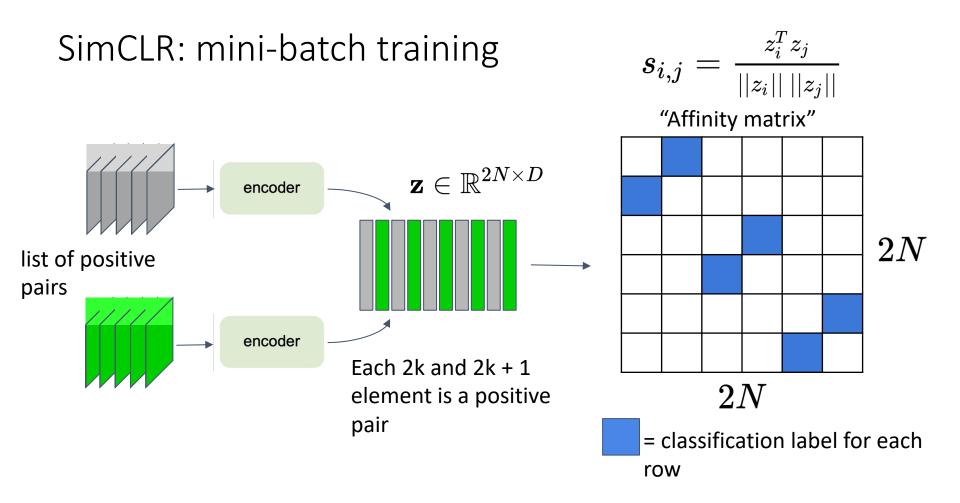
Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair # representation $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the batch $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ as x^{-} update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al.,

2020

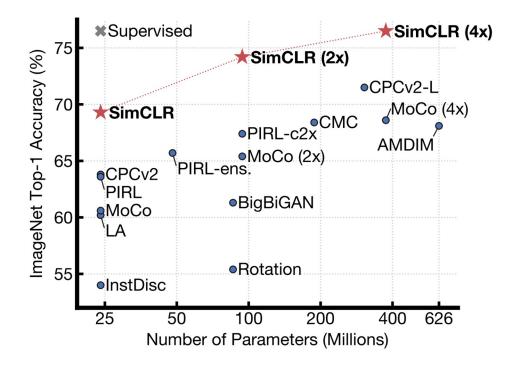
Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair # representation $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive Iterate through and use define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the batch each of the 2N sample as • $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ as x^{-} reference, compute update networks f and q to minimize \mathcal{L} average loss end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al.,

2020





Training linear classifier on SimCLR features



Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.



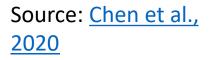
Semi-supervised learning on SimCLR features

Method	Architecture	Label:	fraction 10%			
Wellou	Architecture	Top 5				
Supervised baseline	ResNet-50	48.4	80.4			
Methods using other label-propagation:						
Pseudo-label	ResNet-50	51.6	82.4			
VAT+Entropy Min.	ResNet-50	47.0	83.4			
UDA (w. RandAug)	ResNet-50	-	88.5			
FixMatch (w. RandAug)	ResNet-50	-	89.1			
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2			
Methods using representation learning only:						
InstDisc	ResNet-50	39.2	77.4			
BigBiGAN	RevNet-50 $(4 \times)$	55.2	78.8			
PIRL	ResNet-50	57.2	83.8			
CPC v2	ResNet-161(*)	77.9	91.2			
SimCLR (ours)	ResNet-50	75.5	87.8			
SimCLR (ours)	ResNet-50 ($2\times$)	83.0	91.2			
SimCLR (ours)	ResNet-50 $(4 \times)$	85.8	92.6			

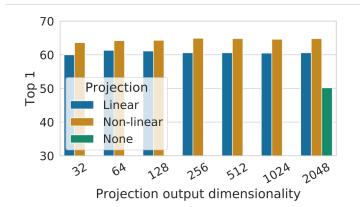
Table 7. ImageNet accuracy of models trained with few labels.

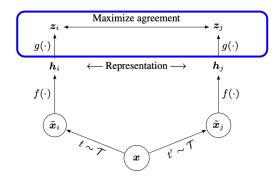
Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.



SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

Source: <u>Chen et al.</u>, 2020

SimCLR design choices: large batch size

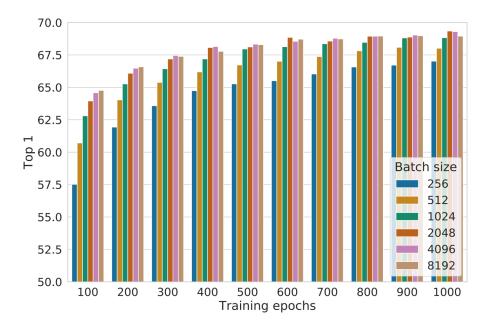
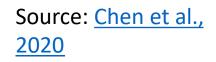


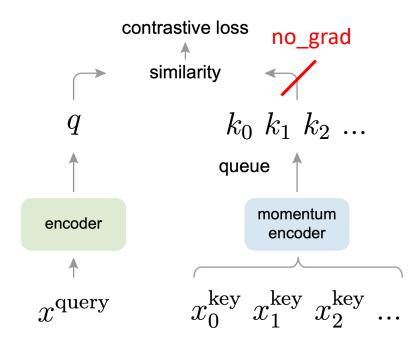
Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)



Momentum Contrastive Learning (MoCo)

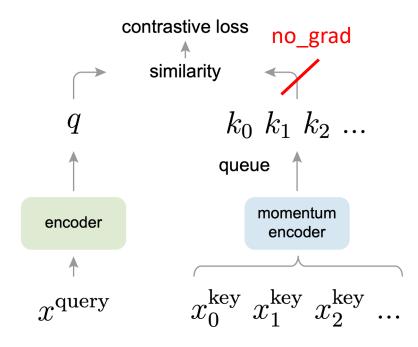


Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

Momentum Contrastive Learning (MoCo)

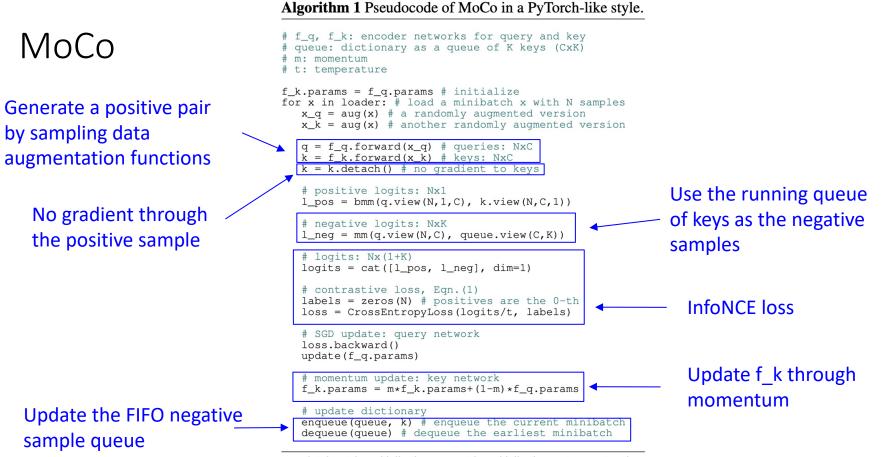


Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

 $\theta_{k} \leftarrow m\theta_{k} + (1-m)\theta_{q}$

Source: He et al., 2020



bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

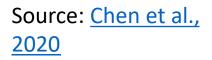
Source: <u>He et al., 2020</u>

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).



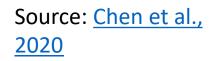
MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	\checkmark	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "MLP": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.



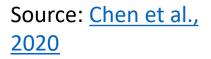
MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train				ImageNet	
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longer unsupervised training follow:						
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** \times **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).



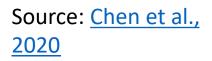
MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

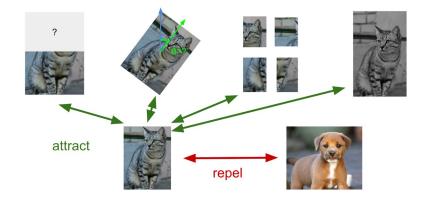
Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch. † : based on our estimation.

Key takeaways:

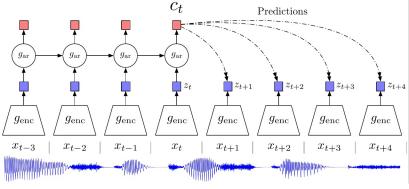
- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)



Instance vs. Sequence Contrastive Learning



Instance-level contrastive learning: contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo



Source: van den Oord et al., 2018

Sequence-level contrastive learning: contrastive learning based on sequential / temporal orders. Example: Contrastive Predictive Coding (CPC)

Contrastive Predictive Coding (CPC)

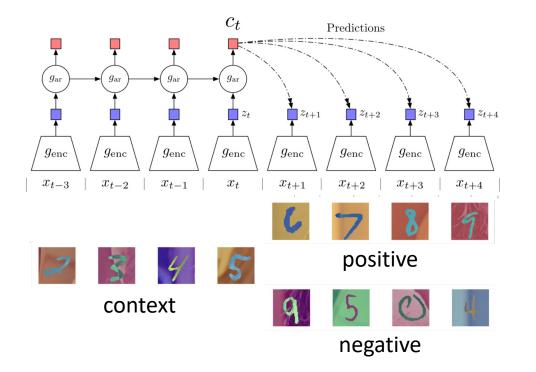


Figure source

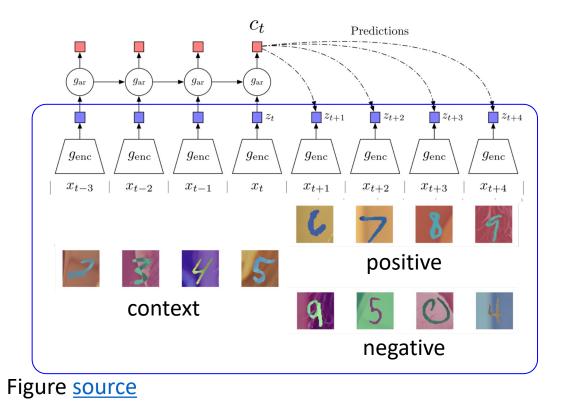
Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Source: <u>van den Oord et al.,</u> <u>2018</u>,

Contrastive Predictive Coding (CPC)



1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: <u>van den Oord et al.,</u> <u>2018</u>,

Contrastive Predictive Coding (CPC)

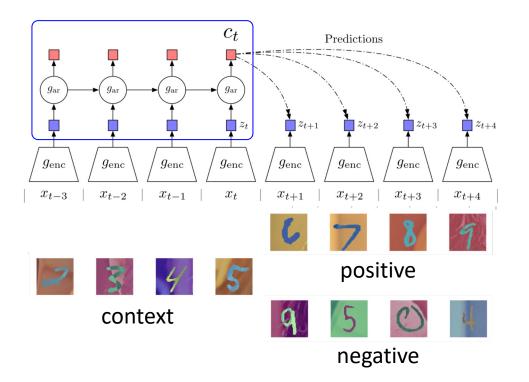


Figure source

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}).

Contrastive Predictive Coding (CPC)

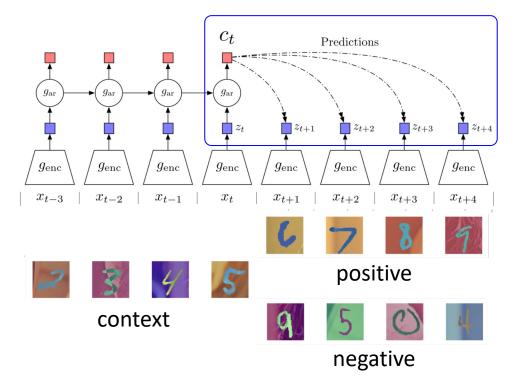


Figure source

1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}).

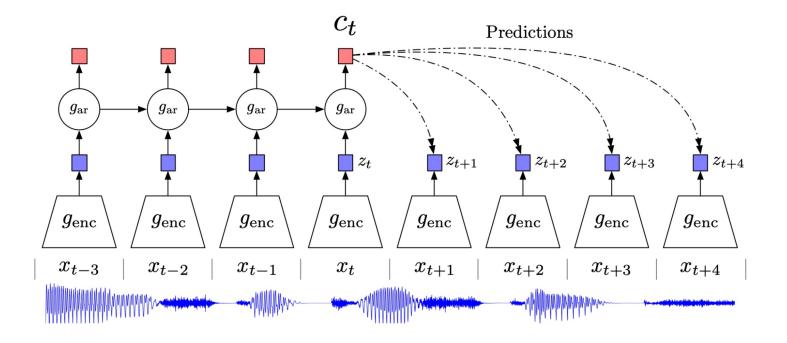
3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

, where W_k is a trainable matrix.

Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling audio sequences



Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling audio sequences

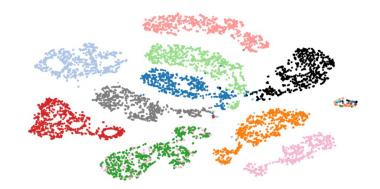


Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

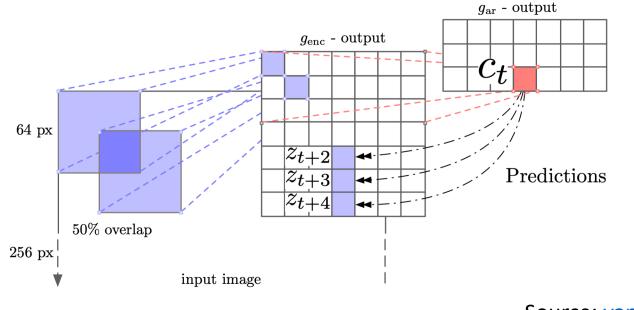
Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset) Source: van den Oord et al.,

2018

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.



Source: <u>van den Oord et al.,</u> <u>2018</u>,

CPC example: modeling visual context

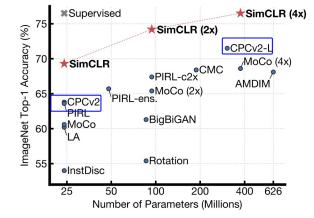
Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext taskbased self-supervised learning method.
- Doesn't do as well compared to newer instancebased contrastive learning methods on image feature learning.

Source: van den Oord et al.,

2018



A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+))>>\operatorname{score}(f(x),f(x^-))$$

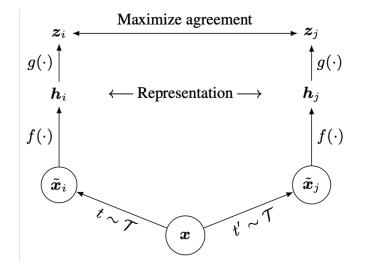
InfoNCE loss: N-way classification among positive and negative samples $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^{+})$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

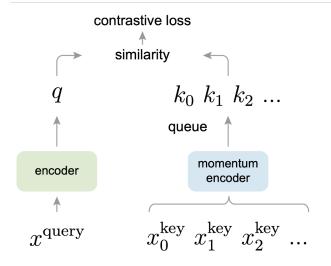
SimCLR: a simple framework for contrastive representation learning

- **Key ideas**: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint



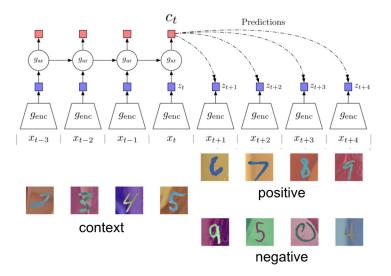
MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning



CPC: sequence-level contrastive learning

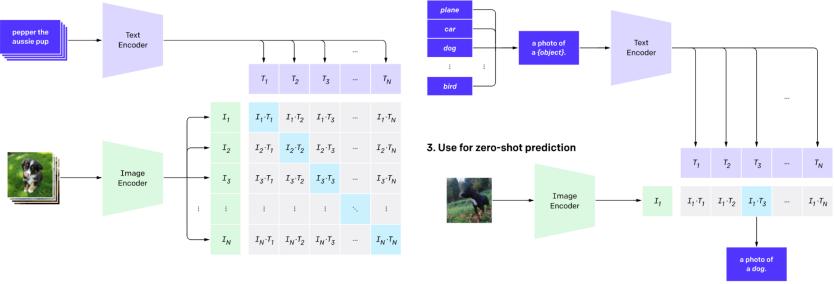
- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instancelevel methods.



Other examples

Contrastive learning between image and natural language sentences

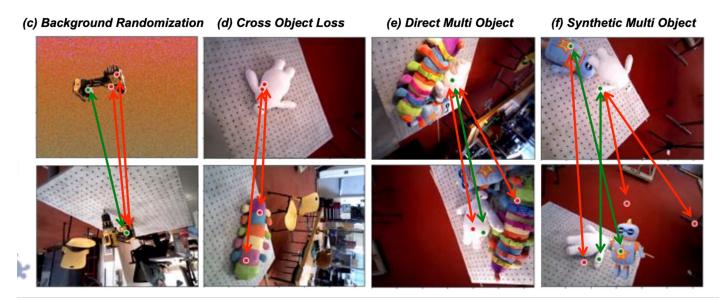
1. Contrastive pre-training



2. Create dataset classifier from label text

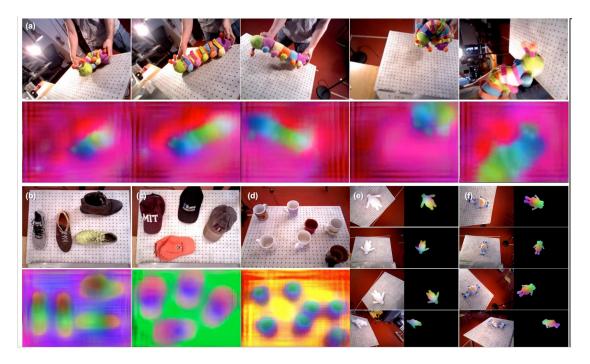
Other examples

Contrastive learning on pixel-wise feature descriptors



Dense Object Net, Florence et al., 2018

Other examples



Dense Object Net, Florence et al., 2018

Vision and Language Models: Connecting the Pixel and Semantic Worlds at Scale

Why Vision-Language Models?

- Language is the most intuitive interface for an unstructured data space (e.g., natural images)
- Important to ground sensory information to semantic concepts
- Complementary information sources for a given task
- Claim: you cannot learn language without grounding

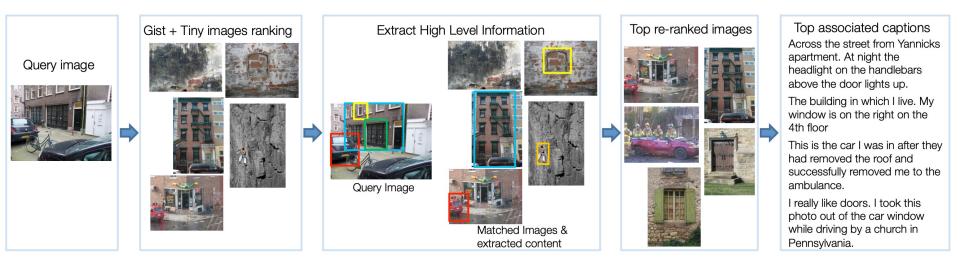
History: the first captioning model (Ordonez, 2011)

Im2Text: Describing Images Using 1 Million Captioned Photographs

Vicente Ordonez Girish Kulkarni Tamara L Berg Stony Brook University Stony Brook, NY 11794 {vordonezroma or tlberg}@cs.stonybrook.edu

Abstract

History: the first captioning model (Ordonez, 2011)

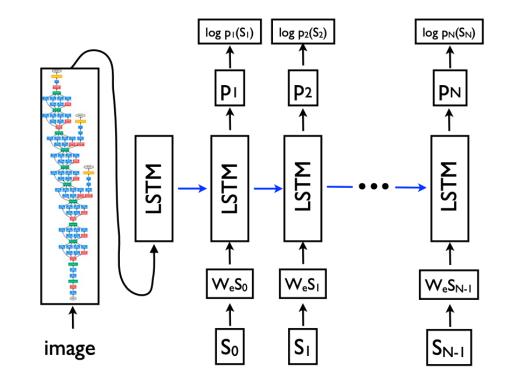


History: the first deep captioning model (Vinyals, 2015)

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals	Alexander Toshev	Samy Bengio	Dumitru Erhan
Google	Google	Google	Google
vinyals@google.com	toshev@google.com	bengio@google.com	dumitru@google.com

History: the first deep captioning model (Vinyals, 2015)



History: the first VQA model (Agrawal, 2015)

VQA: Visual Question Answering

www.visualqa.org

Aishwarya Agrawal*, Jiasen Lu*, Stanislaw Antol*, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of *free-form* and *open-ended* Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vga).

History: the first VQA model (Agrawal, 2015)

Is something under	yes	no
the sink broken?	yes	no
	yes	no
What number do	33	5
you see?	33	6
	33	7

Does this man have children?	yes yes yes	yes yes yes
	no	no
Is this man crying?	no	yes
	no	yes

Can you park	no	no
Can you park here?	no	no
nere	no	yes
What color is	white and orange	red
the hydrant?	white and orange white and orange	red yellow

Has the pizza been	yes	yes
baked?	yes	yes
What kind of cheese is topped on this pizza?	feta feta ricotta	mozzarella mozzarella mozzarella

What kind of store is this?	bakery bakery pastry	art supplies grocery grocery
Is the display case as full as it could be?	no	no
	no	yes
	no	ves

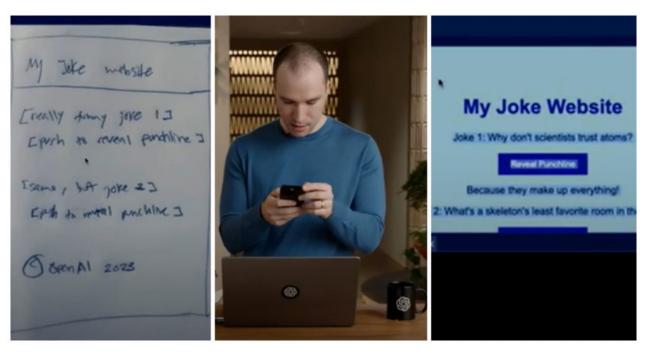
ow many pickles re on the plate?	1 1 1	1 1
/hat is the shape f the plate?	circle round round	circl roun roun

0

How many bikes are there?	2 2 2	3 4 12
14/h = 4 =	48	4
What number is the bus?	48	46
the buse	48	number 6

What does the sign say?	stop stop stop	stop stop yield
What shape is this sign?	octagon octagon octagon	diamond octagon round

Foundation VLM (2019-)



Hand-drawn sketch to website source code GPT 4v(ision) (OpenAI, 2023)

Major Areas

- **Representation**: how to convert raw data into meaningful features
- **Translation**: transform one modality to another
- Alignment: discover relationships between elements across modalities
- **Fusion**: join features from modalities to support prediction
- **Co-learning**: transferring knowledge from one modality to another

Language->Vision: Language-guided Image Gen

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

riding a horse lounging in a tropical resort in space playing basketball with cats in space

in a photorealistic style in the style of Andy Warhol as a pencil drawing

 \rightarrow

https://openai.com/dall-e-2/

Vision->Language: Image Captioning

A cat sitting on a suitcase on the floor

g on a A ca n the floor brai

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

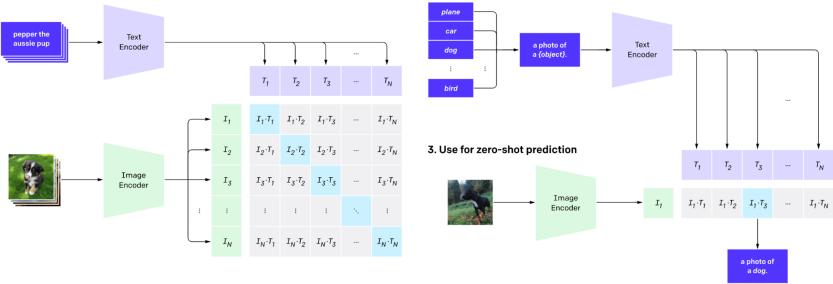
Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Image – Language Association

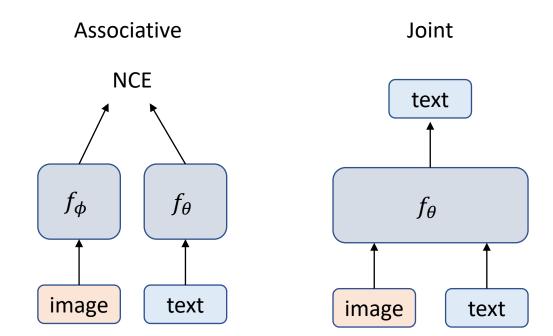
1. Contrastive pre-training

Contrastive learning between image and natural language sentences



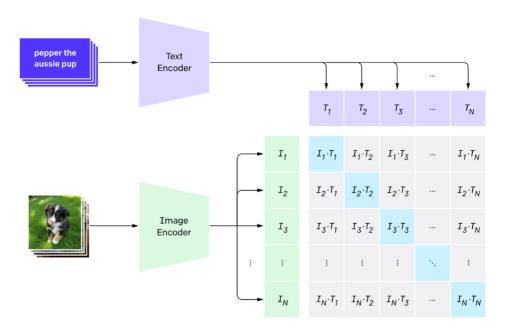
2. Create dataset classifier from label text

Image – language encoding architectures



CLIP: Associative Encoding

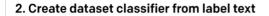
1. Contrastive pre-training

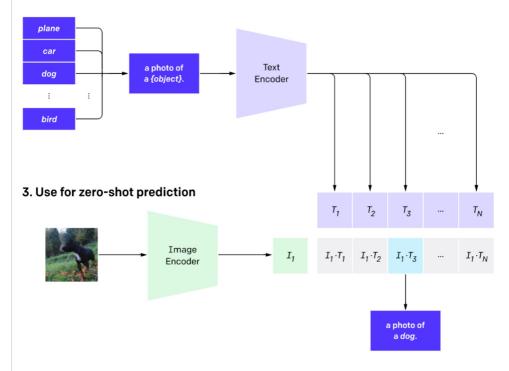


CLIP: Training

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

CLIP: Zero-shot Classification





CLIP: Zero-shot Classification

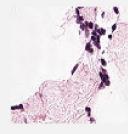
```
# Load the model
device = "cuda" if torch.cuda.is available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)
# Download the dataset
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)
# Prepare the inputs
image, class_id = cifar100[3637]
image_input = preprocess(image).unsqueeze(0).to(device)
text inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)
# Calculate features
with torch.no_grad():
    image_features = model.encode_image(image_input)
    text features = model.encode text(text inputs)
# Pick the top 5 most similar labels for the image
image_features /= image_features.norm(dim=-1, keepdim=True)
text features /= text features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image features @ text features.T).softmax(dim=-1)
values, indices = similarity[0].topk(5)
```

https://github.com/openai/CLIP

CLIP: Zero-shot Classification

PatchCamelyon (PCam)

healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels



 $\pmb{\times}$ this is a photo of $\pmb{\mathsf{lymph}}\ \pmb{\mathsf{node}}\ \pmb{\mathsf{tumor}}\ \pmb{\mathsf{tissue}}$

✓ this is a photo of healthy lymph node tissue

ImageNet-A (Adversarial)

lynx (47.9%) Ranked 5 out of 200 labels

X a photo of a fox squirrel.

× a photo of a mongoose.

× a photo of a skunk.

✓ a photo of a lynx.

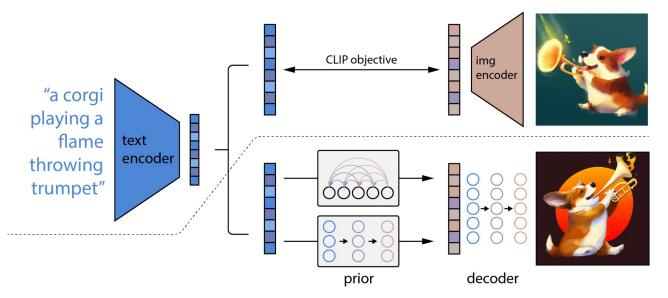
CIFAR-10 bird (40.9%) Ranked 1 out of 10 labels

CLEVR Count

4 (75.0%) Ranked 2 out of 8 labels

in the second	X a photo of 3 objects.
	✓ a photo of 4 objects.
	X a photo of 5 objects.
	X a photo of 6 objects.
	× a photo of 10 objects.

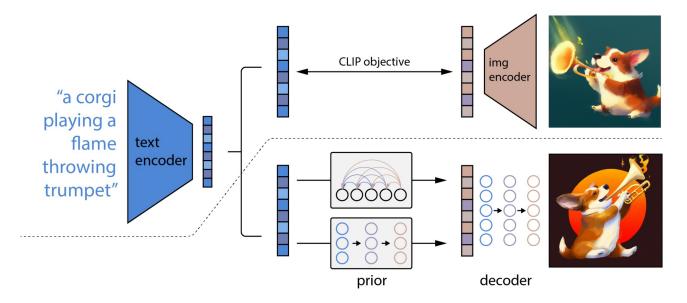
Generating Images from CLIP Latents (DALL-E 2)



- Train image diffusion with classifier-free guidance using CLIP image embedding
- Train another diffusion model to predict CLIP image embedding from the CLIP embedding of the input text.

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)

Generating Images from CLIP Latents (DALL-E 2)

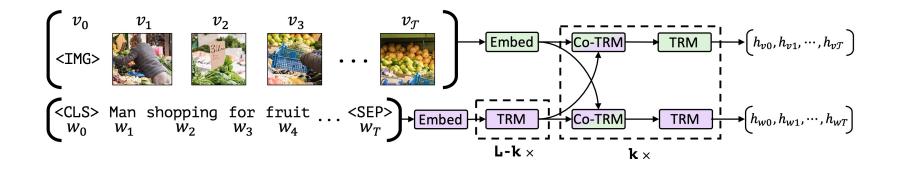


Learning objective for the text to image CLIP embedding diffusion model:

$$L_{\text{prior}} = \mathbb{E}_{t \sim [1,T], z_i^{(t)} \sim q_t} \left[\| f_{\theta}(z_i^{(t)}, t, y) - z_i \|^2 \right]$$

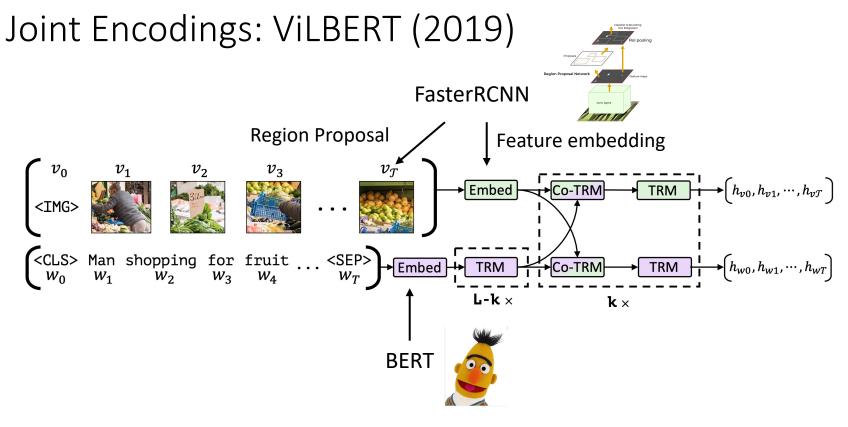
Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)

Joint Encodings: ViLBERT (2019)



Vision and Language Joint Pretraining

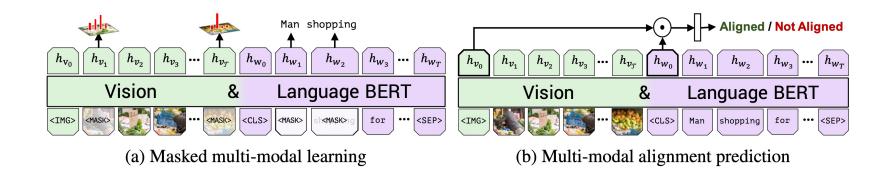
VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Vision and Language Joint Pretraining

VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)

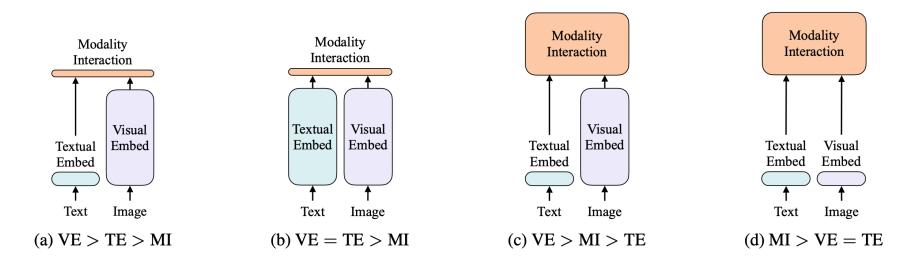
Joint Encodings: ViLBERT (2019)



Vision and Language Joint Pretraining

VILBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)

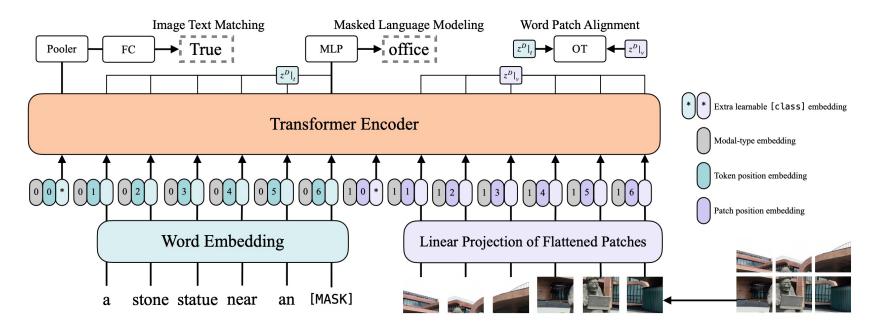
Joint Encodings: ViLT (2021)



Categories of vision-language model in terms of model complexity / capacity

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)

Joint Encodings: ViLT (2021)



Vision and Language Joint Pretraining

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)

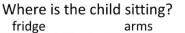
Data matters Scaling Up Foundation Vision and Language Models

Pre-foundation model era (2015 – 2020)

Who is wearing glasses? man woman

Is the umbrella upside down?

yes



How many children are in the bed?

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

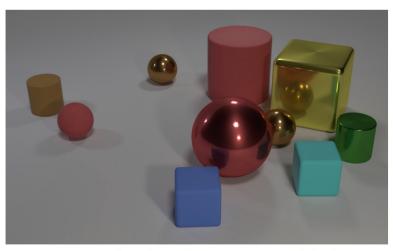
A horse carrying a large load of hay and two people sitting on it.

Bunk bed with a narrow shelf sitting underneath it.

Visual Question Answering (Goyal and Knot, 2017)

Image Captioning (MS-COCO)

Pre-foundation model era (2015 – 2020)



Q: Are there an equal number of large things and metal spheres? Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere? Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere? Q: How many objects are either small cylinders or metal things?

Diagnostic Language and Visual Reasoning (CLEVR, Johnson et al., 2016)

The "Foundation Model Era" (2020-now)

blue cat

Russian Blue

CAT, LED Lamps, Postcards (Package of slingly FamilyTrophy.com -Family.

Blue Wooden Cat

Ink sketch of a cat

Blue Eves Greeting Card

Alicia Vannov Call Framed Prints - Cat Kitten Bl.

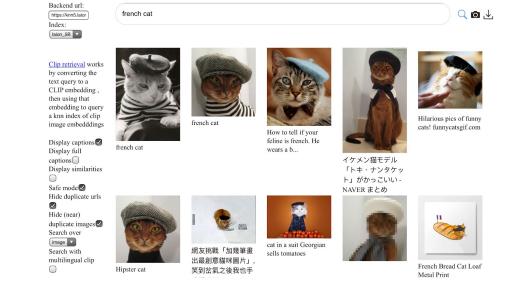
Kitten Digital Art -Soft Kitty by William Paul M

and Other Stories

- **LAION-400M**: 400 million image-text pairs
- Built using Common Crawl datasets,
- Extracting image-text pairs from HTML data.
- Post-processing filters unsuitable pairs using OpenAI's CLIP model.
- A10TB webdataset with CLIP embeddings and kNN indices.

QO

The "Foundation Model Era" (2020-now)



- LAION-5B: Significantly larger than LAION-400M
- Crawled using 50 billion webpages + CLIP filtering
- 2.3 billion pairs in English + 2.2 billions in other languages + 1 billion unassignable languages (e.g., names).

The "Foundation Model Era" (2020-now)

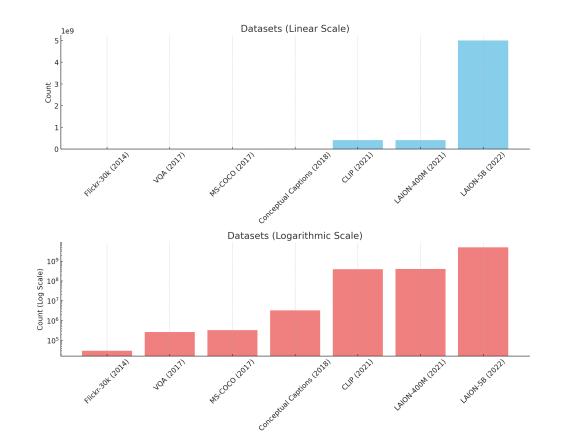
Stable Diffusion @

Stable Diffusion was made possible thanks to a collaboration with <u>Stability Al</u> and <u>Runway</u> and builds upon our previous work:

High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz, Patrick Esser, Björn Ommer CVPR '22 Oral | GitHub | arXiv | Project page

<u>Stable Diffusion</u> is a latent text-to-image diffusion model. Thanks to a generous compute donation from <u>Stability AI</u> and support from <u>LAION</u>, we were able to train a Latent Diffusion Model on 512x512 images from a subset of the <u>LAION-5B</u> database. Similar to Google's <u>Imagen</u>, this model uses a frozen CLIP VIT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM. See this section below and the model card.

A snapshot of vision-language dataset



Automatic data crawling is great but ...

tomclancysthedivision2_gc18images_0001

Enchantments-JUN16-13.jpg

""""""""They Shall Not Grow Old"""". Watching Peter Jackson tinker with WW1 is like watching George Lucas tinker with """"Star Wars""". Only way more offensive. pic.twitter.com/PkteSrh9tR""

The International Code Council (ICC) has ratified a change to the 2021 International Building Code (IBC) to allow the use of shipping containers in commercial construction. Photo © www.bigstockphoto.com

https://laion-aesthetic.datasette.io/laion-aesthetic-6pls/images?_next=300

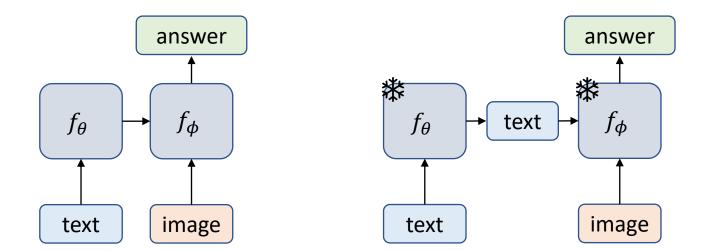
Composing Vision and Language Models

How to compose *trained* L and V models?

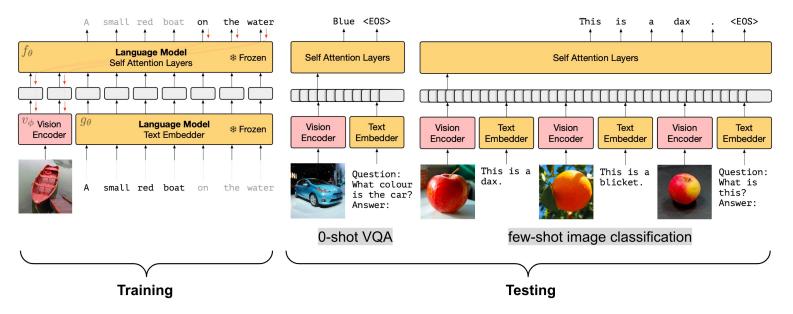
How to compose *trained* L and V models?

Fast finetuning

Language as interface



Finetuning VLM: Frozen LM, finetune VM



- Train image encoder with frozen language model.
- At test time, can do 0-shot VQA or few-shot classification through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)

Finetuning VLM: Frozen LM, finetune VM

- Train image encoder with frozen language model.
- At test time, can do 0-shot VQA or few-shot classification through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)

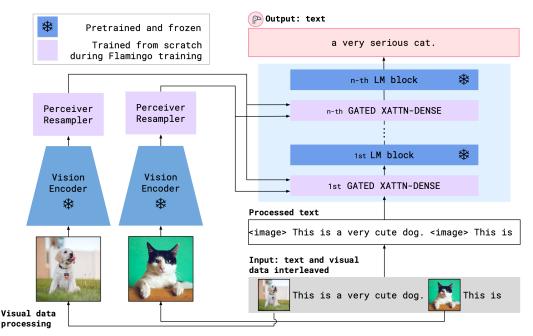
Finetuning VLM: Frozen LM, finetune VM

n-shot Acc.	n=0	n=1	n=4	$\mid au$	n-shot Acc.	n=0	n=1	n=4	$\mid au$
Frozen	29.5	35.7	38.2	X	Frozen	5.9	9.7	12.6	X
Frozen scratch	0.0	0.0	0.0	X	Frozen 400mLM	4.0	5.9	6.6	X
Frozen finetuned	24.0	28.2	29.2	X	Frozen finetuned	4.2	4.1	4.6	X
<i>Frozen</i> train-blind	26.2	33.5	33.3	×	Frozen train-blind	3.3	7.2	0.0	X
Frozen _{VQA}	48.4	_	-		Frozen _{VQA}	19.6	_	_	X
Frozen VQA-blind	39.1	_	-		Frozen VQA-blind	12.5	-	_	X
Oscar [23]	73.8	_	-	🗸	MAVEx [42]	39.4	-	_	

- Training large VLM from scratch does not work at all
- Finetuning LM degrades performance
- "Blind" baselines till works, showing the innate power of LM

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)

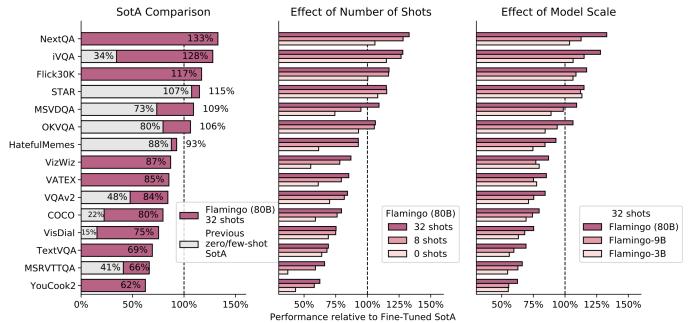
Finetuning VLM: freeze both LM and VM



- Interleaved text-image input
- Only finetune the cross attention (XATTN-DENSE) layers

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)

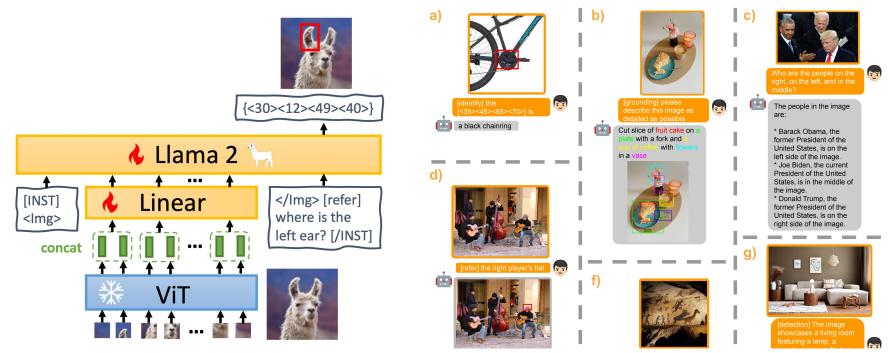
Finetuning VLM: freeze both LM and VM



- Largely outperforms previous zero/few shot SotA
- More in-context learning examples do help
- Larger model gives better results

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)

Finetuning VLM: freeze both LM and VM



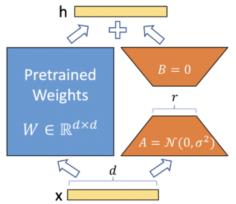
Freeze VM and LM. Train the linear layer and LORA finetune Llama 2

MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning (Chen et al., 2023)

Low-rank finetuning (LORA) quickly finetune a billion-parameter model

Problem: finetuning still takes a lot of data, especially if the model is huge and/or the domain gap is large. **Fact**: finetuning is just adding a W_{δ} to the existing weight matrix W, i.e., $W^* = W + W_{\delta}$ **Hypothesis**: W_{δ} is *low-rank*, meaning that W_{δ} can be decomposed into two smaller matrices A and B, i.e., $W_{\delta} = A^T B.$ So what?: A and B have a lot fewer parameters than

the full W. Requires less data and faster to train.



Low-rank finetuning (LORA) quickly finetune a billion-parameter model

🤗 PEFT

Õ

State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods

õ

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full fine-tuning.

Seamlessly integrated with 🔐 Accelerate for large scale models leveraging DeepSpeed and Big Model Inference.

Supported methods:

1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

2. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

3. P-Tuning: GPT Understands, Too

- 4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning
- 5. AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
- 6. (IA)³: Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
- 7. MultiTask Prompt Tuning: Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning
- 8. LoHa: FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning
- 9. LoKr: KronA: Parameter Efficient Tuning with Kronecker Adapter based on Navigating Text-To-Image Customization:From LyCORIS Fine-Tuning to Model Evaluation implementation

import torch
from peft import inject_adapter_in_model, LoraConfig

class DummyModel(torch.nn.Module):

def __init__(self):
 super().__init__()
 self.embedding = torch.nn.Embedding(10, 10)
 self.linear = torch.nn.Linear(10, 10)
 self.lm_head = torch.nn.Linear(10, 10)

def forward(self, input_ids):

x = self.embedding(input_ids) x = self.linear(x) x = self.lm_head(x) return x

```
lora_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    target_modules=["linear"],
```

)

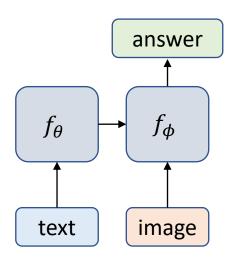
model = DummyModel()
model = inject_adapter_in_model(lora_config, model)

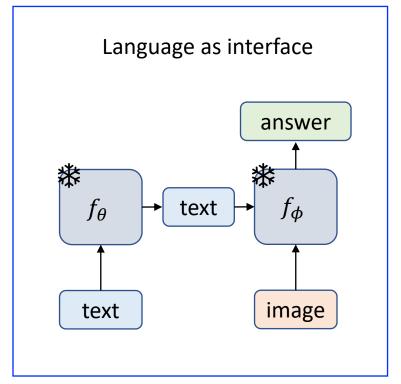
dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]])
dummy_outputs = model(dummy_inputs)

https://github.com/huggingface/peft

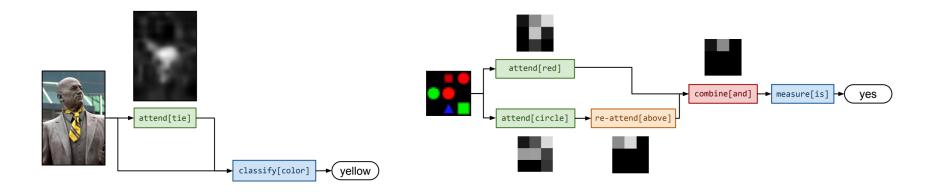
How to compose *trained* L and V models?

Fast finetuning





Neural Module Networks (Andreas et al., 2015)



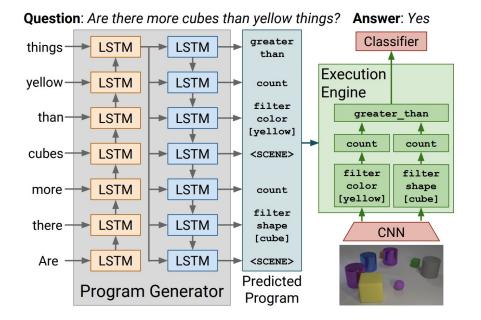
Idea: train modular networks (attend, classify). Use a controller network to decide how to compose the modules together to solve a task

Neural Module Networks (Andreas et al., 2015)

how many different lights in various different shapes and sizes?	what is the color of the horse?	what color is the vase?	is the bus full of passen- gers?	is there a red shape above a circle?
<pre>measure[count](attend[light])</pre>	classify[color](attend[horse])	classify[color](attend[vase])	<pre>measure[is](combine[and](attend[bus], attend[full])</pre>	<pre>measure[is](combine[and](attend[red], re-attend[above](attend[circle])))</pre>
four (four)	brown (brown)	green (green)	yes (yes)	no (no)

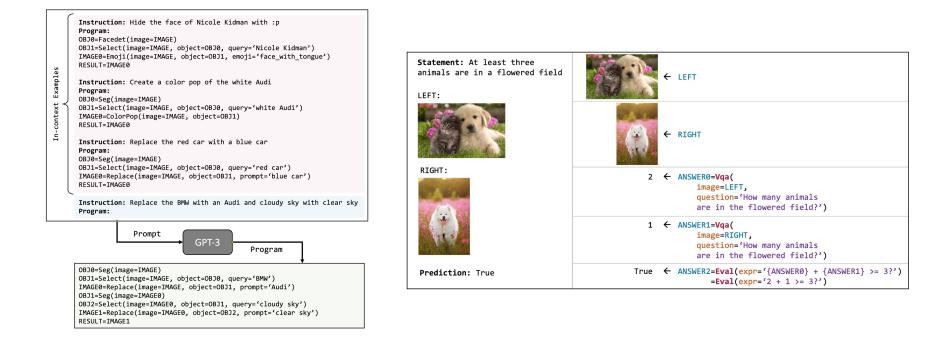
what is stuffed with toothbrushes wrapped in plastic?	where does the tabby cat watch a horse eating hay?	what material are the boxes made of?	is this a clock?	is a red shape blue?
classify[what](attend[stuff])	classify[where](attend[watch])	classify[material](attend[box])	<pre>measure[is](attend[clock])</pre>	<pre>measure[is](combine[and](attend[red], attend[blue]))</pre>
container (cup)	pen (barn)	leather (cardboard)	yes (no)	yes (no)

Inferring and Executing Programs for Visual Reasoning (Johnson et al., 2017)

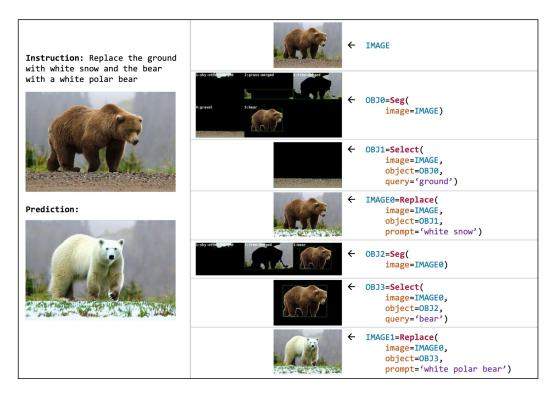


Similar to NMN, but train a *program generator* using REINFORCE Reward comes from whether the answer is correct

Visual Programming: Compositional visual reasoning without training (Gupta et al., 2023)



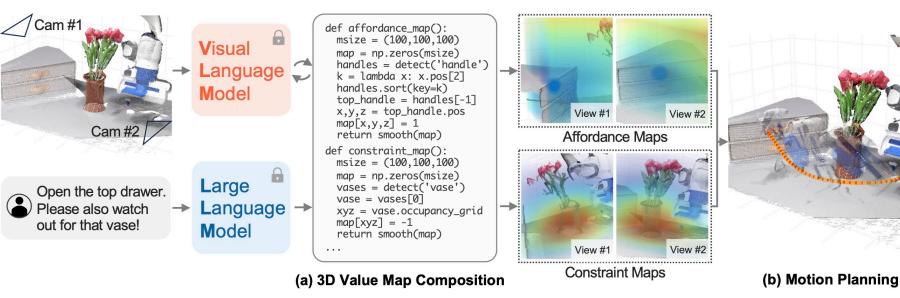
Visual Programming: Compositional visual reasoning without training (Gupta et al., 2023)



ProgPrompt (Singh et al., 2023): Program to Actions

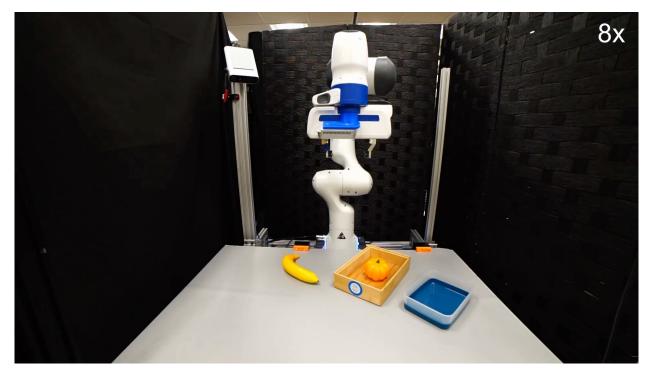
Use large language models (LLMs) to generate program-like semantic plans from natural language command.

VoxPoser (Huang et al., 2023): Program to Grounded Actions



Use LLMs to guide VMs to find where to act next in a 3D scene

VoxPoser (Huang et al., 2023): Program to Grounded Actions



"Sort the paper trash into the blue tray."

Summary: Large Vision and Language Models

- Very active field of research, with a history as long as modern deep learning (2011 -)
- Foundation vision and language models have revolutionized the research paradigm post 2019.
- Trending towards larger model and dataset.
- Many active research on how to finetune / adapt VLMs with small amount of compute / data.
- The future is going to be multimodal.