Introduction to Graph Deep Learning

Guest lecture for CS 7643 Deep Learning, Fall 2023

Jiaxuan You

Incoming Assistant Professor at UIUC CS

Interconnected world

Modern ML

How to Represent Interconnected Data?

Interconnected world

Graph-structured data

Graph: The language for describing entities with relations

Interconnected world

Modern ML

Goal of Graph Deep Learning Enable DL research for the interconnected data

Graph: Ubiquitous across Disciplines

MoleculeProteMolecule designD

Protein interaction Drug discovery

Social network *Recommender systems* **Economic network** *Policy making*

- Graphs: flexible and expressive
- Graphs can bridge interdisciplinary data

Machine Learning with Graphs is Hard

Arbitrary size and topological structure

Nodes have no fixed ordering

Graph Machine Learning Tasks

Node-level prediction "Classify user by their type in a social network"

Graph-level prediction *"Predict which molecules are drug-like"*

Edge-level prediction *"Recommend item nodes to user nodes"*

Graph ML Tasks

Key Idea: Node Embeddings

Graph ML Tasks

Key Idea: Node Embeddings

Slides adapted from Stanford CS224W Course

Graph Neural Networks (GNNs)

Deep Graph Encoders

Graph ML Setup

- Assume we have a graph G:
 - V is the vertex set
 - A is the adjacency matrix (assume binary)
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of **node features**
 - Social networks user attributes, molecule atom types, …
 - When there is no node feature in the graph dataset:
 - One-hot encodings cannot generalize to new nodes
 - Vector of constant 1: [1, 1, ..., 1] inductive, but less expressive
 - Edge feature can be incorporated as well
 - v: a node in V; N(v): the set of neighbors of v.
 - Node features:

A Naive Approach: MLP $\mathbf{X}_{in} = [\mathbf{A}, \mathbf{X}]$

- Join adjacency matrix and features
- Feed them into a deep neural net:

Issues with this idea: Problems: O(|V|) parameters

- Huge nur bler of planaheters plan of Might different sizes
- No inductive learning possible Deep Learning, Jiaxuan You, UIUC CS

Idea: Convolutional Networks

CNN on an image:

Convolutions

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Convolutions

Subsampling Fully connected

Subsampling

Real-World Graphs

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

From Images to Graphs

Single Convolutional neural network (CNN) layer with 3x3 filter:

Idea: transform information at the neighbors and combine it:

- Transform "messages" h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

Graph Convolutional Networks: one of the first GNN models

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away

The Math: GCN with Many Layers

Basic approach: Average neighbor messages and apply a neural network

Initial 0-th layer embeddings are equal to node features embedding of $h_{\nu}^{0} = x_{\nu}$ v at layer l $\sum_{v \in V} \frac{h_{u}^{(l)}}{|N(v)|} + B_{l} \frac{h_{v}^{(l)}}{|N_{v}|}, \forall l \in \{0, ..., L-1\}$ $h_{v}^{(l+1)}$ $u \in \overline{N(v)}$ $z_v = h_v^{(L)}$ Average of neighbor's Total number previous layer embeddings of layers **Embedding after L** Non-linearity layers of neighborhood (e.g., ReLU) aggregation Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Training the GNN Model

Need to define a loss function on the embeddings

Model Parameters

We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

 h_{v}^{l} : the hidden representation of node v at layer l

- W_k : weight matrix for neighborhood aggregation
- B_k: weight matrix for transforming hidden vector of self

How to train a GNN

- GNN provides us node embedding \boldsymbol{z}_{v}
- Supervised setting:
- we want to minimize the loss \mathcal{L} : min $\mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$
 - y: node/egde/graph label (from external sources)
 - L could be L2 if y is real number, or cross entropy if
 y is categorical
- Unsupervised setting:
 - Use graph structure/feature itself as supervision
 - E.g., link prediction, masked feature prediction, ...

Model Design: Overview

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Model Design: Overview

Slides adapted from Stanford CS224W Course

GNN vs CNN & Transformer

GNN vs CNN

Convolutional neural network (CNN) layer with 3x3 filter:

- GNN formulation: $h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L-1\}$
- CNN formulation: $\mathbf{h}_{v}^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_{l}^{u} \mathbf{h}_{u}^{(l)} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, \dots, L-1\}$

Key difference: We can learn different W_l^u for different "neighbor" u for pixel v on the image

GNN vs CNN

Convolutional neural network (CNN) layer with 3x3 filter:

CNN can be seen as a special GNN with fixed neighbor size and ordering:

- The size of the filter is pre-defined for a CNN.
- The advantage of GNN is it processes arbitrary graphs with different degrees for each node. **CNN** is not permutation invariant/equivariant.
- GNN form

- Switching the order of pixels will leads to different outputs.
- CNN form $(\Delta u \in \mathbb{N}(v))$

Key difference: We can learn different W_I^u for different "neighbor" u for pixel v on the image

Transformer

Transformer is one of the most popular architectures that achieves great performance in many sequence modeling tasks.

Key component: self-attention

 Every token/word attends to all the other tokens via matrix multiplication.

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

GNN vs Transformer

Transformer layer can be seen as a special GNN that runs on a fully-connected "token graph"!

Since each word attends to **all the other tokens**, **the computation graph** of a transformer layer is identical to that of a GNN on the **fully-connected "token graph"**.

Fully-connected Graph

Slides adapted from Stanford CS224W Course

Applications of GNNs

Tasks on Networks

Tasks we will be able to solve:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Subgraph detection
 - Identify certain subgraphs or paths within a graph
- Graph classification
 - Classify different graphs

Example (1): Financial Networks

• Financial Networks: Describe financial entities and their connections

International banking

- Nodes: Countries
- Edges: Capital flows

Image credit: The Political Economy of Global Finance: A Network Model

Bitcoin transactions

- Nodes: BTC wallets
- Edges: Transactions

Image credit: https://dailyblockchain.github.io/

ROLAND: GNN for Financial Networks

ROLAND framework:

- Transform financial networks as GNN computational graphs
- Learning from diverse objectives (node and edge level)

\$400.01/05

\$200, 01/02

\$100,01/01

company

Financial networks

bank

\$100,01/06

\$500.01/03

\$200, 01/02

client

Graph Neural Networks

bank

client

Learning objectives

Example (2): Recommender Systems

Users interacts with items

- Watch movies, buy merchandise, listen to music
- Nodes: Users and items
- Edges: User-item interactions
- Goal: Recommend items users might like

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users

Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Predict whether two nodes in a graph are related

Example (3): Traffic Prediction

Road Network as a Graph

- Nodes: Road segments
- Edges: Connectivity between road segments

Traffic Prediction via GNN

Predictions 0-0-0-0-0 Supersegments **Graph neural Google Maps** Anonymised travel data Analysed Training network API data Surfaced **Routes ranked** by ETA Used in Google Maps Google Maps Google Maps Candidate routing app user routes system A→B Image credit: DeepMind

Predict the best route via Graph Neural Networks

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME.

Example (4): Drug Discovery

- Antibiotics are small molecular graphs
 - Nodes: Atoms
 - Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Deep Learning for Antibiotic Discovery

A graph classification task

Predict promising molecules from a pool of existing candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Molecule Generation / Optimization

Graph generation: Generating novel molecules

Use case 1: Generate novel molecules with high drug likeness

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Frontiers of Graph ML Research

J. You, R. Ying, J. Leskovec. Position-aware Graph Neural Networks, ICML 2019.

Designing more Expressive GNNs

Position-aware task

- GNNs fail at Position-aware tasks ⊗
- v₁ and v₂ will always have the same computational graph, due to structure symmetry
- Q: Can we define deep learning methods that are position-aware?

Idea: P-GNN

- P-GNN proposes the first notion of **position embeddings for graphs**
 - Notably, Position embeddings are crucial for Transformers and LLMs

 v_1 's Position embedding v_3 's Position embedding

P-GNN inspires many successful application of Transformer + Graphs

• E.g., GAT-POS [Ma et al., 2021], Graphormer [Ying et al., 2021], ...

Graphs are Ubiquitous in ML problems

Neural networks

Q: What is your favorite animal?
A: My favorite animal is a dog.

Q: Why? A: Because dogs are loyal and friendly.

Q: What are two reasons that a dog might be in a bad mood? A: Two reasons that a dog might be in a bad mood are if it is hungry

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

ML tasks

 $\begin{array}{c|c}
 t_1 \\
 t_1 \\
 t_2 \\
 t_$

Graph can represent novel ML applications

(1) **Graphs** in Missing Data Problems

Data Matrix with Missing Values

Labels

 F_1

 F_2

 F_3

 F_4

Features

	F_1	F_2	F_3	F_4	Y
O_1	0.3	0.5	NA	0.1	y_1
O_2	NA	NA	0.6	0.2	y_2
O_3	0.3	NA	NA	0.5	?

 O_1

 O_2

03

Observations

 y_2

Bipartite Graph

(0.2)

0.5

0.5

(0.3)

0.6

0.3

0.1

- Real-world data often exhibit missing values
- Idea: Input data as heterogenous graph
 - Nodes: Data points and features
 - Edges: Link data points with features
- Graph offers unified solution for missing data problem
 - Feature imputation edge-level prediction
 - Label prediction node-level prediction
 - **10~20% lower MAE** than SOTA baselines

(2) New NN representation: Relational Graph

(Artificial) neural network

Brain network

Can we translate any graph (e.g., brain network) to a neural network?

- Study the performance of NNs with network science tools
- Bridge deep learning with neuroscience

(2) New NN representation: Relational Graph

Relational Graph

- Translate any graph → NN
- Computation is defined as message passing over the graph

Neural network layer Directed message

(3) **Graphs** in Multi-task Learning Problems

- Graph representation for multi-task learning (supervised/meta learning)
 - Nodes: Data points and ML tasks
 - Edges: A data point labeled by a task

Innovations

- Solve various multi-task settings via graph ML
- Explore new multi-task learning settings: Leverage auxiliary labels during inference
- ~13% improvement with auxiliary task info

Summary

- Why Graph Deep Learning?
 - Enable DL for interconnected data
- What is a GNN
 - **Key:** iterative node neighborhood aggregation
 - CNN & Transformer can be considered as special GNNs
- Applications of GNNs
 - Different levels: Node, edge, subgraph, graph
- Frontiers of Graph ML research
 - Design more expressive GNNs
 - Empower general ML pipeline with graphs