Introduction to
 Graph Deep Learning

Guest lecture for CS 7643 Deep Learning, Fall 2023

Jiaxuan You

Incoming Assistant Professor at UIUC CS

Interconnected world

Gap

\longrightarrow

Modern ML

How to Represent Interconnected Data?

Interconnected world

Graph-structured data

Graph: The language for describing entities with relations

Interconnected world

Modern ML

Goal of Graph Deep Learning Enable DL research for the interconnected data

Graph: Ubiquitous across Disciplines

Molecule Molecule design

Protein interaction
Drug discovery

Image credit: Medium
Social network
Recommender systems

Economic network Policy making

- Graphs: flexible and expressive
- Graphs can bridge interdisciplinary data

Machine Learning with Graphs is Hard

Graphs

- Arbitrary size and topological structure
- Nodes have no fixed ordering

Graph Machine Learning Tasks

Node-level prediction
"Classify user by their type in a social network"

Graph-level prediction
"Predict which molecules are drug-like"

Edge-level prediction "Recommend item nodes to user nodes"

Graph ML Tasks

Key Idea: Node Embeddings

Node-level prediction

Graph-level prediction

Edge-level prediction

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Graph ML Tasks

Node-level prediction

Graph-level prediction

Edge-level prediction

Key Idea: Node Embeddings

Graph Neural Networks (GNNs)

Slides adapted from Stanford CS224W Course

Graph Neural Networks (GNNs)

Deep Graph Encoders

Graph ML Setup

- Assume we have a graph G :
- V is the vertex set
- \boldsymbol{A} is the adjacency matrix (assume binary)
- $\boldsymbol{X} \in \mathbb{R}^{m \times|V|}$ is a matrix of node features
- Social networks - user attributes, molecule - atom types, ...
- When there is no node feature in the graph dataset:
- One-hot encodings - cannot generalize to new nodes
- Vector of constant 1: [1, 1, ..., 1] - inductive, but less expressive
- Edge feature can be incorporated as well
- v : a node in $V ; N(v)$: the set of neighbors of v.
- Node features:

A Naïve Approach: MLP

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
- $O(|V|)$ parameters
- Not applicable to graphs of different sizes
- Sensitive to node ordering

Idea: Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Real-World Graphs

But our graphs look like this:

or this:

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

From Images to Graphs

Single Convolutional neural network (CNN) layer with 3×3 filter:

Image

Graph

Idea: transform information at the neighbors and combine it:
" Transform "messages" h_{i} from neighbors: $W_{i} h_{i}$

- Add them up: $\sum_{i} W_{i} h_{i}$

Graph Convolutional Networks

- Graph Convolutional Networks: one of the first GNN models

Determine node computation graph

Propagate and transform information

Idea: Aggregate Neighbors

- Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

- Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

- Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!

Deep Model: Many Layers

- Model can be of arbitrary depth:
- Nodes have embeddings at each layer
- Layer-0 embedding of node u is its input feature, x_{u}
- Layer- k embedding gets information from nodes that are K hops away

The Math: GCN with Many Layers

- Basic approach: Average neighbor messages and apply a neural network

Training the GNN Model

Need to define a loss function on the embeddings

Model Parameters

$$
\begin{aligned}
& \mathrm{h}_{v}^{(0)}=\mathrm{x}_{v} \\
& \mathrm{~h}_{v}^{(l+1)}=\sigma\left(\mathrm{W}_{l} \sum_{u \in \mathrm{~N}(v)} \frac{\text { (i.e., what we learn) }}{\mathrm{h}_{u}^{(l)}}\right. \\
& \mathrm{z}_{v}=\mathrm{h}_{v}^{(L)} \\
& |\mathrm{N}(v)| \\
& \text { Final node embedding }
\end{aligned}
$$

We can feed these embeddings into any loss function and run SGD to train the weight parameters
h_{v}^{l} : the hidden representation of node v at layer l

- W_{k} : weight matrix for neighborhood aggregation
- B_{k} : weight matrix for transforming hidden vector of self

How to train a GNN

- GNN provides us node embedding \boldsymbol{z}_{v}
- Supervised setting:
- we want to minimize the loss \mathcal{L} :

$$
\min _{\Theta} \mathcal{L}\left(\boldsymbol{y}, f\left(\boldsymbol{z}_{v}\right)\right)
$$

- y: node/egde/graph label (from external sources)
- \mathcal{L} could be L2 if \boldsymbol{y} is real number, or cross entropy if y is categorical
- Unsupervised setting:
- Use graph structure/feature itself as supervision
- E.g., link prediction, masked feature prediction, ...

Model Design: Overview

(1) Define a neighborhood aggregation function

(2) Define a loss function on the embeddings

Model Design: Overview

(3) Train on a set of nodes, i.e., a batch of computational graphs

INPUT GRAPH

Model Design: Overview

Slides adapted from Stanford CS224W Course

GNN vs CNN \& Transformer

GNN vs CNN

Convolutional neural network (CNN) layer with 3×3

 filter:

Image

Graph

- GNN formulation: $\mathrm{h}_{v}^{(l+1)}=\sigma\left(\mathrm{W}_{l} \sum_{u \in \mathrm{~N}(v)} \frac{\mathrm{h}_{u}^{(l)}}{\mathrm{N}(v) \mid}+\mathrm{B}_{l} \mathrm{~h}_{v}^{(l)}\right), \forall l \in\{0, \ldots, L-1\}$
- CNN formulation: $\mathrm{h}_{v}^{(l+1)}=\sigma\left(\sum_{u \in \mathrm{~N}(v)} \mathrm{W}_{l}^{u} \mathrm{~h}_{u}^{(l)}+\mathrm{B}_{l} \mathrm{~h}_{v}^{(l)}\right), \forall l \in\{0, \ldots, L-1\}$

Key difference: We can learn different W_{l}^{u} for different "neighbor" u for pixel v on the image

GNN vs CNN

Convolutional neural network (CNN) layer with 3×3 filter:

CNN can be seen as a special GNN with fixed neighbor size and ordering:

- The size of the filter is pre-defined for a CNN.
- The advantage of GNN is it processes arbitrary graphs with different degrees for each node. CNN is not permutation invariant/equivariant.
- GNN form
- CNN form
- Switching the order of pixels will leads to different outputs.

Key difference: We can learn different W_{l}^{u} for different "neighbor" u for pixel v on the image

Transformer

Transformer is one of the most popular architectures that achieves great performance in many sequence modeling tasks.

Key component: self-attention

- Every token/word attends to all the other tokens via matrix multiplication.

GNN vs Transformer

Transformer layer can be seen as a special GNN that runs on a fully-connected "token graph"!

Since each word attends to all the other tokens, the computation graph of a transformer layer is identical to that of a GNN on the fully-connected "token graph".

Text

Fully-connected Graph

Slides adapted from Stanford CS224W Course

Applications of GNNs

Tasks on Networks

Tasks we will be able to solve:

- Node classification
- Predict a type of a given node
- Link prediction
- Predict whether two nodes are linked
- Subgraph detection
- Identify certain subgraphs or paths within a graph
- Graph classification
- Classify different graphs

Example (1): Financial Networks

- Financial Networks: Describe financial entities and their connections

International banking

- Nodes: Countries
- Edges: Capital flows

Image credit: The Political Economy of Global Finance: A Network Model

Bitcoin transactions

- Nodes: BTC wallets
- Edges: Transactions

ROLAND: GNN for Financial Networks

- ROLAND framework:

- Transform financial networks as GNN computational graphs
- Learning from diverse objectives (node and edge level)

```
Self-supervised
(from raw data) \(\left\{\begin{array}{l}\text { Will a user make a transaction? Yes } \\ \text { What is the amount? \$500 } \\ \text { When will it happen? 01/03 }\end{array}\right.\)
Supervised
[ Does a user involve fraud? No sources)


Financial networks


Graph Neural Networks


Learning objectives

\section*{Example (2): Recommender Systems}
- Users interacts with items
- Watch movies, buy merchandise, listen to music
- Nodes: Users and items
- Edges: User-item interactions
- Goal: Recommend items users might like


\section*{PinSage: Graph-based Recommender}

Task: Recommend related pins to users


Task: Learn node embeddings \(z_{i}\) such that
\[
\begin{aligned}
& d\left(z_{\text {cake } 1}, z_{\text {cake } 2}\right) \\
& <d\left(z_{\text {cake } 1}, z_{\text {sweater }}\right)
\end{aligned}
\]

Predict whether two nodes in a graph are related


\section*{Example (3): Traffic Prediction}


\section*{Road Network as a Graph}
- Nodes: Road segments
- Edges: Connectivity between road segments


\section*{Traffic Prediction via GNN}

\section*{Predict the best route via Graph Neural Networks}


\section*{Example (4): Drug Discovery}
- Antibiotics are small molecular graphs
- Nodes: Atoms
- Edges: Chemical bonds

penicillins

cephalosporins





Image credit: CNN

\section*{Deep Learning for Antibiotic Discovery}

\section*{- A graph classification task}
- Predict promising molecules from a pool of existing candidates


Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell
180.4 (2020): 688-702.

\section*{Molecule Generation / Optimization}

\section*{Graph generation: Generating novel molecules}

(e) State \(-G_{t+1}\)
(b) GCPN \(-\pi_{\theta}\left(a_{t} \mid G_{t} \cup C\right)\)
(c) Action \(-\mathrm{a}_{t} \sim \pi_{\theta}\)
(d) Dynamics
\(p\left(G_{t+1} \mid G_{t}, a_{t}\right)\)
0.1 Step reward Final reward
(f) Reward \(-r_{t}\)

embedding

(a) State \(-G_{t}\) Scaffold \(-C\)

Use case 1: Generate novel molecules
with high drug likeness

0.945

0.941


Use case 2: Optimize existing molecules to have desirable properties


\section*{Frontiers of Graph ML Research}

\section*{Designing more Expressive GNNs}

\section*{Position-aware task}

- GNNs fail at Position-aware tasks \(*\)
- \(v_{1}\) and \(v_{2}\) will always have the same computational graph, due to structure symmetry

- Q: Can we define deep learning methods that are position-aware?

\section*{Idea: P-GNN}
- P-GNN proposes the first notion of position embeddings for graphs
- Notably, Position embeddings are crucial for Transformers and LLMs

- P-GNN inspires many successful application of Transformer + Graphs
- E.g., GAT-POS [Ma et al., 2021], Graphormer [Ying et al., 2021], ...

\section*{Graphs are Ubiquitous in ML problems}


Input data


Graph is a superset for existing ML input data


Neural networks


Understand and inspire ML methods with graphs


ML tasks


Graph can represent novel ML applications

\section*{(1) Graphs in Missing Data Problems}

Data Matrix with Missing Values
\begin{tabular}{|l|l|l|l|l|}
\hline & \(F_{1}\) & \(F_{2}\) & \(F_{3}\) & \(F_{4}\) \\
\hline\(O_{1}\) & 0.3 & 0.5 & NA & 0.1 \\
\hline\(O_{2}\) & NA & NA & 0.6 & 0.2 \\
\hline\(O_{3}\) & 0.3 & NA & NA & 0.5 \\
\hline
\end{tabular}

Labels
\begin{tabular}{|c|}
\hline\(Y\) \\
\hline\(y_{1}\) \\
\hline\(y_{2}\) \\
\hline\(?\) \\
\hline
\end{tabular}

\section*{Bipartite Graph}

- Real-world data often exhibit missing values
- Idea: Input data as heterogenous graph
- Nodes: Data points and features
- Edges: Link data points with features
- Graph offers unified solution for missing data problem
- Feature imputation - edge-level prediction
- Label prediction - node-level prediction
- 10~20\% lower MAE than SOTA baselines

\section*{(2) New NN representation: Relational Graph}

(Artificial) neural network


Brain network

Can we translate any graph (e.g., brain network) to a neural network?
- Study the performance of NNs with network science tools
- Bridge deep learning with neuroscience

\section*{(2) New NN representation: Relational Graph}


\section*{Relational Graph}
- Translate any graph \(\rightarrow\) NN
- Computation is defined as message passing over the graph


Neural network layer Directed message computation

\section*{(3) Graphs in Multi-task Learning Problems}
- Graph representation for multi-task learning (supervised/meta learning)
- Nodes: Data points and ML tasks
- Edges: A data point labeled by a task

- Innovations
- Solve various multi-task settings via graph ML
- Explore new multi-task learning settings: Leverage auxiliary labels during inference
- ~13\% improvement with auxiliary task info


\section*{Summary}
- Why Graph Deep Learning?
- Enable DL for interconnected data
- What is a GNN
- Key: iterative node neighborhood aggregation
- CNN \& Transformer can be considered as special GNNs
- Applications of GNNs
- Different levels: Node, edge, subgraph, graph
- Frontiers of Graph ML research
- Design more expressive GNNs
- Empower general ML pipeline with graphs```

