CS 4644-DL / 7643-A DANFEI XU

Topics:

- Backpropagation
- Computation Graph and Automatic Differentiation

Recap: Multiclass SVM loss

Given an example $\left(\boldsymbol{x}_{i} \boldsymbol{y}_{\boldsymbol{i}}\right) \quad$ Loss $=0$: where x_{i} is the image and where y_{i} is the (integer) label,

scores for other classes score for correct class
and using the shorthand for the scores vector: $\boldsymbol{s}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{W}\right)$
the SVM loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \begin{cases}0 & \text { if } s_{y_{i}} \geq s_{j}+1 \\
s_{j}-s_{y_{i}}+1 & \text { otherwise }\end{cases} \\
& =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
\end{aligned}
$$

"Hinge Loss"

Recap: Regularization

Q: How do we pick between W and 2 W ?
A: Opt for simpler functions to avoid overfitTrain Data

How? Regularization!

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)} \begin{gathered}
\lambda \begin{array}{c}
\lambda=\text { regularization strength } \\
\text { (hyperparameter) }
\end{array}
\end{gathered}
$$

Data Ioss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Recap: Softmax Classifier and Cross Entropy Loss

Want to interpret raw classifier scores as probabilities

$$
p_{\theta}\left(Y=y_{i} \mid X=x_{i}\right)=\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}
$$

Softmax
Function

How do we optimize the classifier? We maximize the probability of $p_{\theta}\left(y_{i} \mid x_{i}\right)$

1. Maximum Likelihood Estimation (MLE):

Choose weights to maximize the likelihood of observed data. In this case, the loss function is the Negative Log-Likelihood (NLL).

Finding a set of weights θ that maximizes the probability of correct prediction: $\underset{\theta}{\operatorname{argmax}} \Pi p_{\theta}\left(y_{i} \mid x_{i}\right)$ This is equivalent to:

$$
\begin{gathered}
\underset{\theta}{\operatorname{argmax}} \sum \ln p_{\theta}\left(y_{i} \mid x_{i}\right) \\
L_{i}=-\ln p_{\theta}\left(y_{i} \mid x_{i}\right)=-\ln \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
\end{gathered}
$$

2. Information theory view:

Derive NLL from the cross entropy measurement. Also known as the cross-entropy loss

Cross Entropy: $\quad H(p, q)=-\sum p(x) \ln q(x)$
Cross Entropy Loss -> NLL

$$
\begin{aligned}
& \boldsymbol{H}_{\boldsymbol{i}}\left(p, p_{\theta}\right)=-\sum_{\boldsymbol{y} \in \boldsymbol{Y}} p\left(\boldsymbol{y} \mid x_{i}\right) \ln p_{\theta}\left(\boldsymbol{y} \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \\
& \quad=-\ln p_{\theta}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \\
& L=\sum \boldsymbol{H}_{\boldsymbol{i}}\left(p, p_{\theta}\right)=-\sum \ln p_{\theta}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid x_{i}\right) \equiv \boldsymbol{N} L L
\end{aligned}
$$

Q: Why softmax?

Why this?

Use logistic function as example. Same as softmax but for binary classification

$$
\sigma(x)=\frac{e^{x}}{1+e^{x}}
$$

Consider the following three basis for NLL:

1. Squash and clip value to $(0,1]$
2. Logistic function
3. Logistic function but no log (just negative likelihood)
4. NLL w/ logistic: Strong guidance when classifier is wrong

Only saturate at convergence,
e.g. $\sigma(3) \approx 0.95$

Recap: gradient-based optimization

As weights change, the gradients change as well

- This is often somewhatsmooth locally, so small changes in weights produce small changes in the loss

We can therefore think about iterative algorithms that take current values of weights and modify them a bit

Recap: The gradient descent algorithm

- 1. Choose a model: $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{W})=\mathrm{Wx}$

2. Choose loss function: $\boldsymbol{L}_{i}=\left|\boldsymbol{y}-\boldsymbol{W} \boldsymbol{x}_{\boldsymbol{i}}\right|^{2}$
3. Calculate partial derivative for each parameter: $\frac{\partial L}{\partial w_{i}}$
4. Update the parameters: $w_{i}=w_{i}-\frac{\partial L}{\partial w_{i}}$
5. Add learning rate to prevent too big of a step: $w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}}$

- Repeat 3-5
- We can find the steepest descent direction by computing the derivative:

$$
\frac{\partial f}{\partial w}=\lim _{h \rightarrow 0} \frac{f(w+h)-f(w)}{h}
$$

- Gradient is multi-dimensional derivatives
- Notation: $\frac{\partial f}{\partial w}$ is the gradient of f (e.g., a loss function) with respect to variable w (e.g., a weight vector).
- $\frac{\partial f}{\partial w}$ is of the same shape as w
- Intuitively: Measures how the function changes as the variable w changes by a small step size
- Steepest descent direction is the negative gradient Gradient descent: Minimize loss by changing parameters

Δx

Image and equation from:
https://en.wikipedia.org/wiki/Derivative
\#/media/File:Tangent_animation.gif

Composing simple functions creates complex analytical gradients

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

$$
\frac{\partial L}{\partial w}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}
$$

This time: Chain rule and Backpropagation!

Functions can be made arbitrarily complex (subject to memory and computational limits), e.g.:

$$
f(x, W)=\sigma\left(W _ { 5 } \sigma \left(W _ { 4 } \sigma \left(W_{3} \sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)\right.\right.\right.
$$

We can use any type of differentiable function (layer) we want!

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight are propagated to affect the loss function at the end

To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

The backpropagation algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

This is a computation graph!

$$
\frac{\partial L}{\partial w}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}
$$

Backpropagation (roughly):

1. Calculate local gradients for each node (e.g., $\frac{\partial u}{\partial w}$)
2. Trace the computation graph (backward) to calculate the global gradients for each node w.r.t. to the loss function.

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$$
f(x, y, z)=(x+y) z
$$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\end{aligned}
$$

1. Calculate local gradients

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$
$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$

1. Calculate local gradients

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$
$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$
$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{array}{|cc|}
\hline \frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} & \frac{\partial q}{\partial y} \\
\qquad \begin{array}{cc}
\text { Upstream } \\
\text { gradient }
\end{array} & \text { Lǒcal } \\
\text { gradien }
\end{array}
$$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\left.\underbrace{\frac{\partial f}{\partial x}}_{\substack{\text { Upstream } \\ \text { gradient }}}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \right\rvert\,
$$

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\underbrace{\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}}_{\substack{\text { Upstream } \\ \text { gradient }}}
$$

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$
Q: What is an add gate?

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$

$$
\begin{aligned}
& \text { add gate: gradient replicator } \\
& f=a+b \\
& \frac{\partial f}{\partial a}=\frac{\partial f}{\partial b}=1
\end{aligned}
$$

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$
add gate: gradient replicator
Q: What is a max gate?

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$
add gate: gradient replicator max gate: gradient router
only the path selected by the max operator gets the upstream gradient

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$
add gate: gradient replicator max gate: gradient router Q: What is a mul gate?

Patterns in backward flow

How does a local gradient modify the upstream gradient? $f=2(x y+\max (z, w))$
add gate: gradient replicator max gate: gradient router mul gate: gradient switcher

$$
\begin{aligned}
& f=a \cdot b \\
& \frac{\partial f}{\partial a}=b \quad \frac{\partial f}{\partial b}=a
\end{aligned}
$$

Upstream gradients add at fork branches

... as long as the branches join at some point in the graph

Upstream gradients add at fork branches

Claim: $\frac{\partial L}{\partial x}=\frac{\partial L}{\partial f_{1}} \frac{\partial f_{1}}{\partial x}+\frac{\partial L}{\partial f_{2}} \frac{\partial f_{2}}{\partial x}$
$=1 \cdot e^{x}+1 \cdot 2 x=e^{x}+2 x$
Derivation: $L=e^{x}+x^{2}$

$$
\frac{\partial L}{\partial x}=e^{x}+2 x
$$

Upstream gradients add at fork branches

$$
=x^{2} \cdot e^{x}+e^{x} \cdot 2 x
$$

Derivation: $L=e^{x} \cdot x^{2}$

$$
\frac{\partial L}{\partial x}=e^{x} \cdot 2 x+e^{x} \cdot x^{2}
$$

Duality in F (orward)prop and $\mathrm{B}($ ack $)$ prop

Given this computation graph, the training algorithm will:

- Calculate the current model's outputs (called the forward pass)
- Calculate the gradients for each module (called the backward pass)

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)

- We can calculate the gradient of the loss with respect to the module's weights

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)

- We can calculate the gradient of the loss with respect to the module's weights
- We will also pass the gradient of the loss with respect to the module's inputs
- This is not required for update the module's weights, but passes the gradients back to the previous module

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)

- We can calculate the gradient of the loss with respect to the module's weights
- We will also pass the gradient of the loss with respect to the module's inputs
- This is not required for update the module's weights, but passes the gradients back to the previous module
- Becomes the upstream gradient for the previous module

$$
w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}}
$$

In the backward pass, we seek to calculate the gradients of the loss with respect to the module's parameters

- Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)
- We can calculate the gradient of the loss with respect to the module's weights
- We will also pass the gradient of the loss with respect to the module's inputs
- This is not required for update the module's weights, but passes the gradients back to the previous module
- Becomes the upstream gradient for the previous module
- Gradient descent: update weight with gradient with respect to loss

$$
W=W-\alpha \frac{\partial L}{\partial W}
$$

Backpropagation does not really spell out how to efficiently carry out the necessary computations

But the idea can be applied to any directed acyclic graph (DAG)

- Graph represents an ordering constraining which paths must be calculated first

Given an ordering, we can then iterate from the last module backwards, applying the chain rule

- We will store, for each node, its gradient outputs for efficient computation
- We will do this automatically by tracing the entire graph, aggregate and assign gradients at each function / parameters, from output to input.

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering

Auto-Diff

- A family of algorithms for implementing chain-rule on computation graphs

Deep Learning Framework = Differentiable Programming Engine

- Computation = Graph
- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering
- What do we need to do?
- Generic code for representing the graph of modules
- Specify modules (both forward and backward function)

Modularized implementation: forward / backward API

```
Graph (or Net) object (rough psuedo code)
class ComputationalGraph(object):
    #
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
    return inputs_gradients
```

Modularized implementation: forward / backward API

Modularized implementation: forward / backward API

Writing code == building graph

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))
```

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))

Neural Turing Machine

- Computation graphs are not limited to mathematical functions!
- Can have control flows (if statements, loops) and backpropagate through algorithms!
- Can be done dynamically so that gradients are computed, then nodes are added, repeat

Program Space

Autodiff from scratch: micrograd repo, video tutorial

Next time:

- More on backprop but for (shallow) neural nets!
- Jacobians
- Activation functions

