
Machine Learning Applications

CS 4644 / 7643-A: LECTURE 5
DANFEI XU

Topics:
• Backpropagation 
• Neural Networks
• Jacobians



Administrivia

• PS1/HW1 are out! Due Sep 19th

• Project: 
• Teaming thread on piazza
• Proposal due Sep 26th 

• Will send out instruction soon

• Next lecture will be on how to pick a project



Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

− 𝐥𝐨𝐠
𝟏

𝟏 + 𝒆!𝒘⋅𝒙



Decomposing a Function 

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



We will view the function / model as a 
computation graph

Key idea: break a complex model into 
atomic computation nodes that can be 
computed efficiently.

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations for 
gradient descent

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Recap: Computation Graph



Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 6
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f

Slide credit: Stanford CS231n Instructors

A computation node
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f

“local gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient switcher

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop

(C) Dhruv Batra 17

+

+

FPROP BPROP
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Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞)



Note that we must store the intermediate outputs of all layers!
⬣ This is because we will need them to compute the gradients (the gradient 

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

=
𝜕𝑣
𝜕𝑤#

𝜕𝐿
𝜕𝑞



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

𝜕𝐿
𝜕𝑤"

𝜕𝐿
𝜕𝑤!

𝜕𝐿
𝜕𝑤#

Gradient Descent!



So far:
• Linear classifiers: a basic model
• Loss functions: measures performance of a model
• Backpropagation: an algorithm to calculate gradients of 

loss w.r.t. arbitrary differentiable function
• Gradient Descent: an iterative algorithm to perform 

gradient-based optimization

Next:
• What are neural networks?
• Non-linear functions
• How do we run backpropagation on neural nets?



https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective

Input

Sigmoid

FC
Tanh

Tanh

FC

Deep Representation Learning

Want: a function that transforms
complex raw data space into a
linearly-separable space.

The function needs to be non-linear!



Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear 
classifier

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Neural networks: the original linear classifier

(Before) Linear score function:

Slide credit: Stanford CS231n Instructors
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10

Slide credit: Stanford CS231n Instructors



The function                   is called the activation function.
Q: What if we try to build a neural network without one?

32

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

Slide credit: Stanford CS231n Instructors



The function                   is called the activation function.
Q: What if we try to build a neural network without one?

33

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
(Non-linear) activation function allows us to build non-linear functions with NNs.
NNs with certain non-linear activation functions are known as Universal 
Function Approximators.

Slide credit: Stanford CS231n Instructors



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

- What the heck are universal function approximators?
- Why are NNs considered universal function approximators?
- Why does it matter?



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

A quick primer on approximation theory.
A branch of mathematics that deals with how functions can be approximated by 
simpler or more tractable functions, while maintaining some measure of 
closeness to the original function.

Example: approximating 𝑓(𝑥) = 𝑒$. 
𝑒$ are known as transcendental functions: you cannot calculate its value with 
finitely many basic algebraic operations like multiplication, addition, and power.

But we can approximate 𝑒$ with a polynomial with bounded error:

/
%&!

' 1
𝑘! 𝑥

%

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem 



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

NNs as function approximators
A single layer network with a sigmoid activation 𝜎 = !

!()!"
can be written as

𝐹 𝑥 =/
*&!

+
𝑣*𝜎(𝑤*,𝑥 + 𝑏*)

Is the family of single layer network with sigmoid activation enough to 
approximate any reasonable function (more on this next slide)?

ℱ = {/
*&!

+
𝑣*𝜎 𝑤*,𝑥 + 𝑏* : 𝑤* , 𝑏* ∈ ℝ', 𝑣* ∈ ℝ}

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem 



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

The universal approximation theorem (Cybenko, G. 1989)

Plain English: as long as the activation function is sigmoid-like and the function 
to be approximated is continuous, a neural network with a single hidden layer 
can approximate it as precisely as you want.

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem 



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

A 1-D example of the universal approximation theorem

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem 

We want to approximate 𝑔(𝑥) bounded 
by some small error 𝜖 (shaded band) with 
a single layer NN 𝐹(𝑥)



Aside: Universal Function Approximators
Claim: Neural Networks with certain non-linear activation functions are 
universal function approximators.

A 1-D example of the universal approximation theorem

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem 

We want to approximate 𝑔(𝑥) bounded 
by some small error 𝜖 (shaded band) with 
a single layer NN 𝐹(𝑥)

The universal approximation theorem 
guarantees the existence of such an 𝐹 𝑥

… but it doesn’t tell us how to get it or 
what the size of the model (𝑀) should be  
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

Slide credit: Stanford CS231n Instructors
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems

Slide credit: Stanford CS231n Instructors
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This image by Fotis Bobolas is 

licensed under CC-BY 2.0

Slide credit: Stanford CS231n Instructors

Why are they called Neural Networks, anyway?

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


49

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!

Slide credit: Stanford CS231n Instructors
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“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures

Slide credit: Stanford CS231n Instructors
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Example feed-forward computation of a neural network

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors

How?
matrix
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Next: Vector Calculus!

Slide credit: Stanford CS231n Instructors

How do we do backpropagation with neural nets?



Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Slide credit: Stanford CS231n Instructors
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if it 
changes by a small amount, 
how much will y change?

Slide credit: Stanford CS231n Instructors
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

Vector to Vector

Derivative is Jacobian:

For each element of x, if it changes 
by a small amount, how much will 
each element of y change?

Slide credit: Stanford CS231n Instructors

For each element of x, if it 
changes by a small amount, 
how much will y change?



62

f

Backprop with Vectors

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors
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f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors
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f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors

What’s the shape of -.
-/

?
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

It’s a vector of size Dz !
Intuitively: for each element 
of z, how much does it 
influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors



66

f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -/
-$

and -/
-0

?
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dz x Dy] 

[Dz x Dx] 

Jacobian 
matrices

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -/
-$

and -/
-0

?
How much does each element in 
𝑥 influence each element in 𝑧
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dz x Dy] 

[Dz x Dx] 

Jacobian 
matrices

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -.
-$

and -.
-0

?
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dz x Dy] 

[Dz x Dx] 

Jacobian 
matrices

Matrix multiplication

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -.
-$

and -.
-0

?

matmul([1 x Dz ], [[Dz x Dx]])
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dz x Dy] 

[Dz x Dx] 

Jacobian 
matrices

Matrix multiplication

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -.
-$

and -.
-0

?

matmul([1 x Dz ], [[Dz x Dx]])
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dz x Dy] 

[Dz x Dx] 

Jacobian 
matrices

Matrix multiplication

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

What about -.
-$

and -.
-0

?

matmul([1 x Dz ], [[Dz x Dx]])

“Downstream 
gradients”
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

Dy

Dx

Gradients loss of wrt a variable have same dims as the original variable

Slide credit: Stanford CS231n Instructors

“Downstream 
gradients”
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Jacobians

Given a function 𝑓:ℝ1 → ℝ2, we have the Jacobian matrix J of shape 𝒎× 𝒏 ,
where J*,4 =

-5#
-$$

Figure source: https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Slide credit: Stanford CS231n Instructors

What does -/
-$

look like?
Upstream
gradient

[dL/dz]
[4 -1 5 9]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Slide credit: Stanford CS231n Instructors

Upstream
gradient

[dz/dx] 
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ]

[dL/dz]
[4 -1 5 9]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Upstream
gradient

Slide credit: Stanford CS231n Instructors

Upstream
gradient

[dz/dx] 
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ]

[dL/dz]
[4 -1 5 9]

[dL/dz]
[4 -1 5 9]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Upstream
gradient

4D dL/dx:
[4 0 5 0]

Slide credit: Stanford CS231n Instructors

[dz/dx] 
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ]

[dL/dz]
[4 -1 5 9]

[dL/dz]
[4 -1 5 9]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

For element-wise 
ops, jacobian is 
sparse: off-diagonal 
entries always zero! 
Never explicitly 
form Jacobian --
instead use 
Hadamard (element-
wise) multiplication

Slide credit: Stanford CS231n Instructors

Upstream
gradient

4D dL/dx:
[4 0 5 0]

[dz/dx] 
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ]

[dL/dz]
[4 -1 5 9]

[dL/dz]
[4 -1 5 9]
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

z

Slide credit: Stanford CS231n Instructors

For element-wise 
ops, jacobian is 
sparse: off-diagonal 
entries always zero! 
Never explicitly 
form Jacobian --
instead use 
Hadamard (element-
wise) multiplication

Upstream
gradient

4D dL/dx:
[4 0 5 0]

[dL/dz]
[4 -1 5 9]



81

f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

[Dy×My]

[Dz×Mz]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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f

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dz×Mz)x(Dx×Mx)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?Flatten the two matrices -> vector-

vector gradients -> jacobian matrices!

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dz×Mz)×(Dy×My)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×M)x(N×D)]
dy/dw: [(N×M)x(D×M)]

What does the jacobian matrix look like?

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×M)x(N×D)]
dy/dw: [(N×M)x(D×M)]

For a neural net with
N=64, D=M=4096

Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?

Slide credit: Stanford CS231n Instructors

* =

𝑥 𝑤 𝑦
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Slide credit: Stanford CS231n Instructors

Recall the branching 
gradient rule!

* =

𝑥 𝑤 𝑦
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Slide credit: Stanford CS231n Instructors

Upstream 
gradient

local 
gradient
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  

Slide credit: Stanford CS231n Instructors

How do we 
calculate this?
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  

Slide credit: Stanford CS231n Instructors

How do we 
calculate this?
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A: 

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A: 

Slide credit: Stanford CS231n Instructors

Just a dot product!



95

Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A: 

[N×D]  [N×M] [M×D]  

Slide credit: Stanford CS231n Instructors

Just a matrix multiplication
No jacobian matrix needed!
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

Slide credit: Stanford CS231n Instructors

For a neural net layer with
N=64, D=M=4096

The larges matrix (𝑊) takes 
up to 0.13 GB memory



Summary:
• Review backpropagation
• Neural networks, activation functions
• NNs as universal function approximators
• Neurons as biological inspirations to DNNs
• Vector Calculus
• Backpropagation through vectors / matrices



Next Time: How to Pick a Project!
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