CS 4644 / 7643-A: LECTURE 5 DANFEI XU

Topics:

- Backpropagation
- Neural Networks
- Jacobians
- PS1/HW1 are out! Due Sep 19th
- Project:
- Teaming thread on piazza
- Proposal due Sep $26^{\text {th }}$
- Will send out instruction soon
- Next lecture will be on how to pick a project

$$
-\log \left(\frac{1}{1+e^{-w \cdot x}}\right)
$$

$$
\frac{\partial L}{\partial w}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}
$$

Chain rule and Backpropagation!

Recap: Computation Graph
We will view the function / model as a computation graph

Key idea: break a complex model into atomic computation nodes that can be computed efficiently.

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

A General Framework

Directed Acyclic Graphs (DAGs)

A computation node

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$
$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: gradient switcher

Gradients add at branches

Duality in Fprop and Bprop

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

- This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

So far:

- Linear classifiers: a basic model
- Loss functions: measures performance of a model
- Backpropagation: an algorithm to calculate gradients of loss w.r.t. arbitrary differentiable function
- Gradient Descent: an iterative algorithm to perform gradient-based optimization

Next:

- What are neural networks?
- Non-linear functions
- How do we run backpropagation on neural nets?

Deep Representation Learning

Want: a function that transforms complex raw data space into a linearly-separable space.

The function needs to be non-linear!

Sigmoid
Tanh
FC
Tanh
FC
Input

Linear classifier

Neural networks: the original linear classifier

(Before) Linear score function: $\quad f=W x$

$$
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
$$

Neural networks: 2 layers

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
\begin{gathered}
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right) \\
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H_{1} \times D}, W_{2} \in \mathbb{R}^{H_{2} \times H_{1}}, W_{3} \in \mathbb{R}^{C \times H_{2}}
\end{gathered}
$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(Before) Linear score function: $f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural networks: why is max operator important?

(Before) Linear score function: $f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$
The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x
$$

Neural networks: why is max operator important?

(Before) Linear score function: $f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$
The function $\max (0, z)$ is called the activation function. Q: What if we try to build a neural network without one?

$$
f=W_{2} W_{1} x \quad W_{3}=W_{2} W_{1} \in \mathbb{R}^{C \times H}, f=W_{3} x
$$

A: We end up with a linear classifier again! (Non-linear) activation function allows us to build non-linear functions with NNs. NNs with certain non-linear activation functions are known as Universal Function Approximators.

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

- What the heck are universal function approximators?
- Why are NNs considered universal function approximators?
- Why does it matter?

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A quick primer on approximation theory.

A branch of mathematics that deals with how functions can be approximated by simpler or more tractable functions, while maintaining some measure of closeness to the original function.

Example: approximating $f(x)=e^{x}$.
e^{x} are known as transcendental functions: you cannot calculate its value with finitely many basic algebraic operations like multiplication, addition, and power.

But we can approximate e^{x} with a polynomial with bounded error:

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

NNs as function approximators

A single layer network with a sigmoid activation $\sigma=\frac{1}{1+e^{-x}}$ can be written as

$$
F(x)=\sum_{i=1}^{M} v_{i} \sigma\left(w_{i}^{T} x+b_{i}\right)
$$

Is the family of single layer network with sigmoid activation enough to approximate any reasonable function (more on this next slide)?

$$
\mathcal{F}=\left\{\sum_{i=1}^{M} v_{i} \sigma\left(w_{i}^{T} x+b_{i}\right): w_{i}, b_{i} \in \mathbb{R}^{N}, v_{i} \in \mathbb{R}\right\}
$$

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

The universal approximation theorem (Cybenko, G. 1989)
Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form

$$
\begin{equation*}
G(x)=\sum_{j=1}^{N} \alpha_{j} \sigma\left(y_{j}^{\mathrm{T}} x+\theta_{j}\right) \tag{2}
\end{equation*}
$$

are dense in $C\left(I_{n}\right)$. In other words, given any $f \in C\left(I_{n}\right)$ and $\varepsilon>0$, there is a sum, $G(x)$, of the above form, for which

$$
|G(x)-f(x)|<\varepsilon \quad \text { for all } \quad x \in I_{n} .
$$

Plain English: as long as the activation function is sigmoid-like and the function to be approximated is continuous, a neural network with a single hidden layer can approximate it as precisely as you want.

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A 1-D example of the universal approximation theorem

We want to approximate $g(x)$ bounded by some small error ϵ (shaded band) with a single layer NN $F(x)$

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A 1-D example of the universal approximation theorem

We want to approximate $g(x)$ bounded by some small error ϵ (shaded band) with a single layer NN $F(x)$

The universal approximation theorem guarantees the existence of such an $F(x)$
... but it doesn't tell us how to get it or what the size of the model (M) should be

Activation functions

Sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Activation functions

 Sigmoid$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU

$\max (0, x)$

ReLU is a good default choice for most problems

Leaky ReLU
 $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU

$$
\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}
$$

Why are they called Neural Networks, anyway?

Impulses carried toward cell body

Impulses carried toward cell body

Impulses carried toward cell body

Impulses carried toward cell body

Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

hidden layer 1 hidden layer 2

Biological Neurons:
Complex connectivity patterns

This image is CCO Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
[Dendritic Computation. London and Hausser]

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + bl) # calculate first hidden layer activations (4xI)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (IXI)
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```


Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
```

for t in range(2000):

```
for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
    h = 1 / (1 + np.exp(-x.dot(w1)))
    y_pred = h.dot(w2)
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    print(t, loss)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    grad_h = grad_y_pred.dot(w2.T)
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    grad_w1 = x.T.dot(grad_h * h * (1 - h))
    w1 -= 1e-4 * grad_w1
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2
```

```
    w2 -= 1e-4 * grad_w2
```

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

Define the network

Forward pass

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad w1 = x.T.dot(grad h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))

```
```

w1 -= 1e-4 * grad_w1

```
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
```

w2 -= 1e-4 * grad_w2

```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

```
```

grad_y_pred = 2.0*(y_pred - y)

```

Calculate the analytical gradients How?
```

w1 -= 1e-4 * grad_w1

```
w2 -= 1e-4 * grad_w2

\section*{Next: Vector Calculus!}


How do we do backpropagation with neural nets?

\section*{Recap: Vector derivatives}

\section*{Scalar to Scalar}
\(x \in \mathbb{R}, y \in \mathbb{R}\)
Regular derivative:
\[
\frac{\partial y}{\partial x} \in \mathbb{R}
\]

If \(x\) changes by a small amount, how much will y change?

\section*{Recap: Vector derivatives}

\section*{Scalar to Scalar}
\[
x \in \mathbb{R}, y \in \mathbb{R}
\]

Regular derivative:
\[
\frac{\partial y}{\partial x} \in \mathbb{R}
\]

If \(x\) changes by a small amount, how much will y change?
\[
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
\]

\section*{Vector to Scalar}
\[
x \in \mathbb{R}^{N}, y \in \mathbb{R}
\]

Derivative is Gradient:

For each element of \(x\), if it changes by a small amount, how much will y change?

\section*{Recap: Vector derivatives}

\section*{Scalar to Scalar}
\(x \in \mathbb{R}, y \in \mathbb{R}\)
Regular derivative:
\[
\frac{\partial y}{\partial x} \in \mathbb{R}
\]

If \(x\) changes by a small amount, how much will y change?

\section*{Vector to Scalar}
\[
x \in \mathbb{R}^{N}, y \in \mathbb{R}
\]

Derivative is Gradient:
\[
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
\]

For each element of \(x\), if it changes by a small amount, how much will y change?

\section*{Vector to Vector}
\(x \in \mathbb{R}^{N}, y \in \mathbb{R}^{M}\)
Derivative is Jacobian:
\[
\frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \quad\left(\frac{\partial y}{\partial x}\right)_{n, m}=\frac{\partial y_{n}}{\partial x_{m}}
\]

For each element of \(x\), if it changes by a small amount, how much will each element of \(y\) change?


\section*{Backprop with Vectors}


\section*{Gradients loss of wrt a variable have same dims as the original variable}


\section*{Jacobians}

Given a function \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\), we have the Jacobian matrix J of shape \(\boldsymbol{m} \times \boldsymbol{n}\), where \(\mathrm{J}_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}\)
\[
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}}{\partial x_{1}} & \cdots & \frac{\partial \mathbf{f}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\nabla^{\mathrm{T}} f_{1} \\
\vdots \\
\nabla^{\mathrm{T}} f_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
\]

\section*{Backprop with Vectors}

4D input \(x\) :
4D output z:


\section*{\(f(x)=\max (0, x)\) (elementwise)}


\section*{Backprop with Vectors}

4D input \(x\) :
4D output z:
\(\left[\begin{array}{r}1\end{array}\right]\)
\([-2\)
\(\left[\begin{array}{c}2\end{array}\right]\)
\([-1]\) \(\square\)
What does \(\frac{\partial z}{\partial x}\) look like?

\section*{Backprop with Vectors}

4D input \(x\) :
4D output z:
\(\left[\begin{array}{c}1 \\ {[ }\end{array}\right] \longrightarrow\)
\(\left[\begin{array}{c}2\end{array}\right]\)
\(\left[\begin{array}{c}1\end{array}\right]\)
 gradient

\section*{Backprop with Vectors}

4D input \(x\) :
4D output z:
\(\left.\begin{array}{l}{\left[\begin{array}{r}1 \\ {[ }\end{array}\right]} \\ {[-2}\end{array}\right] \longrightarrow\)

(elementwise)

[dL/dz] [dz/dx]
[4-159][1000]
\(\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right] \quad\) [dL/dz]
\(\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right] \longleftarrow\left[\begin{array}{lll}4 & -1 & 5\end{array}\right] \longleftarrow\) gradient
[0000]

\section*{Backprop with Vectors}


\section*{Backprop with Vectors}

For element-wise
4D input \(x\) :
4D output z: ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -instead use Hadamard (elementwise) multiplication


[dL/dz] [dz/dx]
[4-159][ 10000\(]\)
\(\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right] \quad[\mathrm{dL} / \mathrm{dz}]\)
 [0000]

\section*{Backprop with Vectors}

For element-wise
4D input \(x\) :
4D output z: ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -instead use Hadamard (element-
 wise) multiplication
\[
\begin{aligned}
& \text { 4D dL/dx: } \\
& \left.\begin{array}{llll}
4 & 0 & 5 & 0
\end{array}\right] \\
& \hline
\end{aligned}\left(\frac{\partial L}{\partial x}\right)_{i}=\left\{\begin{array}{lll}
\left(\frac{\partial L}{\partial_{z}}\right)_{i} & \begin{array}{l}
\text { if } x_{i}>0 \\
0
\end{array} & {[\mathrm{dL} / \mathrm{dz}]} \\
\text { otherwise } & {\left[\begin{array}{ll}
4 & -1 \\
5 & 9
\end{array}\right] \longleftarrow} & \text { Upstream } \\
\text { gradient }
\end{array}\right.
\]

\section*{Backprop with Matrices (or Tensors)}

Loss L still a scalar!


\section*{Backprop with Matrices (or Tensors)}

\section*{Loss L still a scalar!}


\section*{Backprop with Matrices (or Tensors)}

\section*{Loss L still a scalar!}


\section*{Backprop with Matrices (or Tensors)}

\section*{Loss L still a scalar!}


\section*{Backprop with Matrices}


Matrix Multiply
\[
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
\]
\[
\mathrm{dL} / \mathrm{dy}:[\mathrm{N} \times \mathrm{M}]
\]
\[
\left[\begin{array}{lll}
2 & 3 & -3
\end{array}\right]
\]
\[
\left[\begin{array}{llll}
-8 & 1 & 4 & 6
\end{array}\right]
\]

\section*{Backprop with Matrices}


What does the jacobian matrix look like?

\section*{Backprop with Matrices}



Jacobians:
dy/dx: [(N×M)x(N×D)]
\(d y / d w:[(N \times M) \times(D \times M)]\)
For a neural net with
\(\mathrm{N}=64, \mathrm{D}=\mathrm{M}=4096\)
Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

\section*{Backprop with Matrices}
\begin{tabular}{|c|}
\hline x : [ \(\mathrm{N} \times \mathrm{D}\) ] \\
\hline 2 1-3] \\
\hline \(\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]\) \\
\hline w: [D×M] \\
\hline [ 3 2 1-1] \\
\hline \(2132]\) \\
\hline [ 3 2 1-2] \\
\hline
\end{tabular}


Q: What parts of \(y\) are affected by one element of \(x\) ?
[13 9 -2 -6]
\(\left[\begin{array}{llll}5 & 2 & 17 & 1\end{array}\right]\)
dL/dy: \([\mathrm{N} \times \mathrm{M}]\)
[ 2 3-3 9 ]
\(\left[\begin{array}{llll}-8 & 1 & 4 & 6\end{array}\right]\)


\section*{Backprop with Matrices}
\[
\mathrm{x}:[\mathrm{N} \times \mathrm{D}]
\]
\[
\left[\begin{array}{rrr}
2 & 1 & -3
\end{array}\right]
\]
\[
\mathrm{w}:[\mathrm{D} \times \mathrm{M}]
\]
[ \(\begin{array}{llll}3 & 2 & \text {-1] }\end{array}\)
[ \(\left.\begin{array}{llll}2 & 1 & 3 & 2\end{array}\right]\)
[ \(\left.\begin{array}{llll}3 & 2 & 1 & -2\end{array}\right]\)



Matrix Multiply
\[
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
\]

Q: What parts of y are affected by one element of x ? A: \(x_{n, d}\) affects the whole row \(y_{n}\),
\[
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}
\]

Recall the branching gradient rule!

\section*{Backprop with Matrices}
\(\mathrm{x}:[\mathrm{N} \times \mathrm{D}]\)
\(\left[\begin{array}{lll}2 & \boxed{1} & -3\end{array}\right]\)
\(\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]\)
\(\mathrm{w}:[\mathrm{D} \times \mathrm{M}]\)
\(\left[\begin{array}{cccc}3 & 2 & 1 & -1\end{array}\right]\)
\(\left[\begin{array}{llll}2 & 1 & 3 & 2\end{array}\right]\)
\(\left[\begin{array}{llll}3 & 2 & 1 & -2\end{array}\right]\)


Q: What parts of \(y\)
are affected by one
element of x ?
A: \(x_{n, d}\) affects the whole row \(y_{n}\),

\section*{Backprop with Matrices}
\begin{tabular}{|c|}
\hline x : \([\mathrm{N} \times \mathrm{D}]\) \\
\hline [ 2 1-3] \\
\hline \(\left[\begin{array}{lll}-3 & 4 & 2\end{array}\right]\) \\
\hline w: [D×M] \\
\hline 3 2 1-1] \\
\hline \(21312]\) \\
\hline \(321-2]\) \\
\hline
\end{tabular}

\[
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
\]

Q: What parts of \(y\) are affected by one element of x ?
A: \(x_{n, d}\) affects the whole row \(y_{n}\),
\[
\begin{array}{r}
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}} \\
\begin{array}{l}
\text { How do we } \\
\text { calculate this? }
\end{array}
\end{array}
\]

\section*{Backprop with Matrices}
\begin{tabular}{|c|}
\hline x : \([\mathrm{N} \times \mathrm{D}]\) \\
\hline 2 [1-3] \\
\hline \(\left[\begin{array}{llll}-3 & 4 & 2\end{array}\right]\) \\
\hline w: [D×M] \\
\hline 3 2 1-1] \\
\hline [ 213 2] \\
\hline [ 3 1-2] \\
\hline
\end{tabular}

\[
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
\]

Q: What parts of \(y\)
Q: How much

A: \(x_{n, d}\) affects the whole row \(y_{n}\),
\[
\begin{array}{r}
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}} \\
\text { How dó we }
\end{array}
\]

\section*{Backprop with Matrices}


\section*{Backprop with Matrices}


\section*{Backprop with Matrices}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}
\[
\mathrm{w}:[\mathrm{D} \times \mathrm{M}]
\]
\(\left[\begin{array}{rrrr}{\left[\begin{array}{llll}3 & 2 & 1 & -1\end{array}\right]} \\ {\left[\begin{array}{llll}2 & 1 & 3 & 2\end{array}\right]} \\ {[ } & 2 & 1 & -2\end{array}\right]\)
\([\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]\)
Q: What parts of \(y\) are affected by one element of \(x\) ?
A: \(x_{n, d}\) affects the whole row \(y_{n}\).
\[
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T} \quad \frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} w_{d, m}=\frac{\partial L}{\partial y_{n}} w_{d}^{T}
\]

\section*{Backprop with Matrices}
\[
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
\]

\section*{By similar logic:}
\([\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]\)
\([\mathrm{D} \times \mathrm{M}][\mathrm{D} \times \mathrm{N}][\mathrm{N} \times \mathrm{M}]\)
\[
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T}
\]
\[
\frac{\partial L}{\partial w}=x^{T}\left(\frac{\partial L}{\partial y}\right)
\]

dL/dy: \([\mathrm{N} \times \mathrm{M}]\)
\(\left[\begin{array}{llll}2 & 3 & -3 & 9\end{array}\right]\)
\(\left[\begin{array}{llll}-8 & 1 & 4 & 6\end{array}\right]\)
[ \(\left.\begin{array}{llll}3 & 2 & 1 & -2\end{array}\right]\)

\section*{Backprop with Matrices}


By similar logic:
\([\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]\)
\[
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T}
\]
\([\mathrm{D} \times \mathrm{M}][\mathrm{D} \times \mathrm{N}][\mathrm{N} \times \mathrm{M}]\)
\[
\frac{\partial L}{\partial w}=x^{T}\left(\frac{\partial L}{\partial y}\right)
\]

For a neural net layer with \(N=64, D=M=4096\) The larges matrix ( \(W\) ) takes up to 0.13 GB memory

\section*{Summary:}
- Review backpropagation
- Neural networks, activation functions
- NNs as universal function approximators
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

Next Time: How to Pick a Project!```

