CS 4644-DL / 7643-A: LECTURE 7 DANFEI XU

Topics:

- Convolutional Neural Networks: Past and Present
- Convolution Layers

Administrative:

- Assignment due on Sep $19^{\text {th }}$ (with 48 hr grace period)
- Will release proposal template today
- Proposal due Sep 26 ${ }^{\text {th }}$ 11:59pm (No Grace Period)
- Start finding a project team if you haven't!

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}
$$

Derivative is Gradient:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
$$

For each element of x, if it changes by a small amount, how much will y change?

Vector to Vector

$x \in \mathbb{R}^{N}, y \in \mathbb{R}^{M}$
Derivative is Jacobian:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \quad\left(\frac{\partial y}{\partial x}\right)_{n, m}=\frac{\partial y_{n}}{\partial x_{m}}
$$

For each element of x, if it changes by a small amount, how much will each element of y change?

Backprop with Vectors

Jacobians

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we have the Jacobian matrix J of shape $\boldsymbol{m} \times \boldsymbol{n}$, where $\mathrm{J}_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}$

$$
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}}{\partial x_{1}} & \cdots & \frac{\partial \mathbf{f}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\nabla^{\mathrm{T}} f_{1} \\
\vdots \\
\nabla^{\mathrm{T}} f_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Backprop with Vectors

4D input x :
4D output z:

$f(x)=\max (0, x)$ (elementwise)

Backprop with Vectors

Backprop with Vectors

For element-wise
4D input x :
4D output z: ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -instead use Hadamard (element-
 wise) multiplication

$$
\begin{aligned}
& \text { 4D dL/dx: } \\
& \left.\begin{array}{llll}
4 & 0 & 5 & 0
\end{array}\right] \longleftarrow\left(\frac{\partial L}{\partial x}\right)_{i}=\left\{\begin{array}{lll}
\left(\frac{\partial L}{\partial z}\right)_{i} & \text { if } x_{i}>0 & {[\mathrm{dL} / \mathrm{dz}]} \\
0 & \text { otherwise } & {\left[\begin{array}{ll}
4 & -1 \\
0 & 9
\end{array}\right] \longleftarrow} \\
\text { Upstream } \\
\text { gradient }
\end{array}\right.
\end{aligned}
$$

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Summary (Lecture 5 - here):

- Neural networks, activation functions
- NNs as Universal Function Approximators
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

Next: Convolutional Neural Networks

A bit of history...

The Mark I Perceptron machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 photocells to produce a 400-pixel image.
recognized letters of the alphabet

$$
f(x)= \begin{cases}1 & \text { if } w \cdot x+b>0 \\ 0 & \text { otherwise }\end{cases}
$$

update rule:

$$
w_{i}(t+1)=w_{i}(t)+\alpha\left(d_{j}-y_{j}(t)\right) x_{j, i},
$$

This image by Rocky Acosta is licensed under CC-BY 3.0

A bit of history...

Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

output pattern p

$$
\begin{aligned}
& \text { error } \\
& E_{p}
\end{aligned}
$$

Illustration of Rumelhart et al., 1986 by Lane McIntosh,
copyright CS231n 2017

Rumelhart et al., 1986: First time back-propagation became popular

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

Pretraining

RBM-initialized autoencoder

Fine-tuning with backprop

First strong results

Imagenet classification with deep convolutional neural networks

Illustration of Dahl et al. 2012 by Lane McIntosh,
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history:

Hubel \& Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN
the cat's striate cortex
1962
RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

Hierarchical organization

Simple cells: Response to light orientation

Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

Complex cells:
Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

No response

Response (end point)

A bit of history:

Neocognitron

 [Fukushima 1980]"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

A bit of history:
 Gradient-based learning applied to document recognition
 [LeCun, Bottou, Bengio, Haffner 1998]

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
"AlexNet"

Fast-forward to today: ConvNets are everywhere

Classification

Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission

Fast-forward to today: ConvNets are everywhere

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.
[Farabet et al., 2012]

Fast-forward to today: ConvNets are everywhere

Autonomous Driving: GPUs \& specialized chips are fast and compact enough for on-board compute!

https://www.nvidia.com/en-us/self-driving-cars/
https://blogs.nvidia.com/blog/2021/01/27/lidar-sensor-nvidia-drive/

Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission

Fast-forward to today: ConvNets are everywhere

Generalized convolution: spatial convolution

Choi et al., 2019

Kamnitsas et al., 2015

Fast-forward to today: ConvNets are everywhere

Generalized convolution: temporal convolution

Bai et al., 2018

Fast-forward to today: ConvNets are everywhere

 Generalized convolution: graph convolution

Kipf et al., 2017

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

Image-to-text

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

All images are CCO Public domain
httos://bixabav.com/en/luaqage-antique-cat-1643010/
httos://pixabav.com/en/teddy-plush-bears-cute-teddy-bear-1623436 https://pixabav.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay_com/en/woman-female-model-portrait-adult-983967 https://loixabay.com/en/handstand-lake-meditation-496008/ httos://pixabay.com/en/baseball-plaver-shortstop-infield-1045263

Captions generated by Justin Johnson using Neuraltalk2

Text-to-Image

[Reed, 2016] [Zhang, 2017] [Johnson, 2018] [Ramesh, 2021] [Frans, 2021]
[Saharia, 2022] [Ramesh, 2022]

"An avocado armchair"

Convolutional Neural Networks

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed \& slower to train / inference

Is this necessary?

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in a fixed location. Need to search in entire image.

Can we induce a bias in the design of a neural network layer to reflect this?

Convolution: A 1D Visual Example

From https://en.wikipedia.org/wiki/Convolution

Convolution

1-D Convolution is defined as the integral of the product of two functions after one is reflected about the y-axis and shifted.

Cross-correlation is convolution without the y-axis reflection.

Intuitively: given function f and filter g. How similar is $g(-x)$ with the part of $f(x)$ that it's operating on.

For ConvNets, we don't flip filters, so we are really using Cross-Correlation Nets!

Convolution in Computer Vision (non-Deep)

Convolution with Gaussian Filter (Gaussian Blur)

Convolution with Sobel Filter (Edge Detection)

Convolution: A 1D Visual Example

g() : filter / pattern template
$f()$: signal / observed data
$f^{*} g()$: how well data matches with the template

For Convolution Layers in NN, think of:
From https://en.wikipedia.org/wiki/Convolution

- g() as the weights to learn
- $f()$ as the input to the layer
- $f^{*} g()$ as the output of the layer (result of convolution)

Fully Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Convolution Layer

$32 \times 32 \times 3$ image -> preserve spatial structure

Convolution Layer

$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Filters always extend the full depth of the input volume
$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

1 number:
the result of taking a dot product between the filter and a small $5 \times 5 \times 3$ chunk of the image (i.e. $5^{*} 5 * 3=75$-dimensional dot product + bias)
$w^{T} x+b$

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

activation maps

For example, if we had 65×5 filters, we'll get 6 separate activation maps: activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview

[^0]

A closer look at spatial dimensions:

A closer look at spatial dimensions:

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter

The \# of grid that the filter shifts is called stride.
E.g., here we have stride = 1

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter with stride $=1$

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter with stride $=1$

=> 5×5 output

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter with stride $=1$

=> 5x5 output

But what about the features at the border?

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7×7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
e.g. $F=3=>$ zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

In practice: Common to zero pad the border

0	0	0	0	0	0			
0								
0								
0								
0								

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7×7 output!

$\mathrm{N}=$ input dimension
$P=$ padding size
$F=$ filter size
Output size $=(\mathrm{N}-\mathrm{F}+2 \mathrm{P}) /$ stride +1
$=(7-3+2$ * 1$) / 1+1=7$

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter applied with stride 2

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter applied with stride 2

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter applied with stride 2 => 3×3 output!

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter applied with stride 3 ?

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter applied with stride 3 ?
 doesn't fit!
 cannot apply 3×3 filter on $7 x 7$ input with stride 3.

Output size:
$(\mathbf{N}-\mathrm{F})$ / stride + 1
e.g. $N=7, F=3$:
stride $1=>(7-3) / 1+1=5$
stride $2=>(7-3) / 2+1=3$
stride $3=>(7-3) / 3+1=2.33: 1$
With padding of 1×1 :
stride $3=>(7-3+2) / 3+1=3$

Remember back to...

E.g. 32×32 input convolved repeatedly with 5×5 filters shrinks volumes spatially! (32-> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Remember back to...

With padding, we can keep the same spatial feature dimension throughout the convolution layers.

Examples time:

Input volume: 32x32x3
Conv layer: 105×5 filters with
 stride 1, pad 2

Output volume size: ?

Examples time:

Input volume: $32 \times 32 \times 3$
Conv layer: 105×5 filters with
 stride 1, pad 2

Output volume size:
$(32+2 * 2-5) / 1+1=32$ spatially, so
$32 \times 32 \times 10$

Examples time:

Input volume: $32 \times 32 \times 3$
Conv layer: 105×5 filters with stride
 1, pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3
 105×5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has $5 * 5 * 3+1=76$ params (+1 for bias) => $76 * 10=760$

Convolution layer: summary

Let's assume input is $\mathrm{W}_{1} \times \mathrm{H}_{1} \times \mathrm{C}$
Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size \mathbf{F}
- The stride S
- The zero padding \mathbf{P}

This will produce an output of $\mathrm{W}_{2} \times \mathrm{H}_{2} \times \mathrm{K}$ where:

- $\mathrm{W}_{2}=\left(\mathrm{W}_{1}-\mathrm{F}+2 \mathrm{P}\right) / \mathrm{S}+1$
- $\mathrm{H}_{2}=\left(\mathrm{H}_{1}-\mathrm{F}+2 \mathrm{P}\right) / \mathrm{S}+1$

Number of parameters: $\mathrm{F}^{2} \mathrm{CK}$ and K biases

Convolution layer: summary

Let's assume input is $\mathrm{W}_{1} \times \mathrm{H}_{1} \times \mathrm{C}$

$$
\begin{aligned}
K & \text { (powers of } 2, \text { e.g. } 32,64,128,512 \\
- & F=3, S=1, P=1 \\
- & F=5, S=1, P=2 \\
- & F=5, S=2, P=? \text { (whatever fits) } \\
- & F=1, S=1, P=0
\end{aligned}
$$

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride \mathbf{S}
- The zero padding \mathbf{P}

This will produce an output of $\mathrm{W}_{2} \times \mathrm{H}_{2} \times \mathrm{K}$ where:

- $\mathrm{W}_{2}=\left(\mathrm{W}_{1}-\mathrm{F}+2 \mathrm{P}\right) / \mathrm{S}+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$

Number of parameters: $\mathrm{F}^{2} \mathrm{CK}$ and K biases
(btw, 1×1 convolution layers make perfect sense)

(btw, 1×1 convolution layers make perfect sense)

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride S
- \quad The zero padding \mathbf{P}

CLASS torch.nn. Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation $=1$, groups $=1$, bias=True)

Applies a 2 D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $\left(N, C_{\text {in }}, H, W\right)$ and output $\left(N, C_{\text {out }}, H_{\text {out }}, W_{\text {out }}\right)$ can be precisely described as:

$$
\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{\mathrm{in}}-1} \operatorname{weight}\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)
$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
- At groups=1, all inputs are convolved to all outputs.
- At groups $=2$, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
- At groups= in_channels, each input channel is convolved with its own set of filters, of size: $\left\lfloor\frac{C_{\text {on }}}{C_{\text {in }}}\right\rfloor$.

The parameters kernel_size, stride, padding, dilation can either be:

- a single int - in which case the same value is used for the height and width dimension
- a tuple of two ints - in which case, the first int is used for the height dimension, and the second int for the width dimension

Next Time:

- Pooling
- Convolutional Neural Nets!

[^0]: Complex cells:
 Response to light orientation and movement

