
CS 4644-DL / 7643-A: LECTURE 9
DANFEI XU

Topics:
• Convolutional Neural Networks Architectures (cont.)
• Training Neural Networks (Part 1)



Administrative
• PS1/HW1 due today (grace period till Sep 21st) 
• PS2/HW2 out: Difficult assignment. Start early!
• Project proposal due Sep 26th. No extension!



CNN Architectures 

3

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64
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..

.

3x3 conv, 64
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3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv
X

identity

F(x) + x

F(x)

relu

X
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both test and training error
-> The deeper model performs worse, but it’s not caused by overfitting!
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Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power 
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize



11

Case Study: ResNet
[He et al., 2015]

A deeper model can emulate a shallower model: copy 
layers from shallower model, set extra layers to identity 

Thus deeper models should do at least as good as shallow 
models 

conv

relu

X

H(x)

conv

Identity

relu

X

H(x)
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Case Study: ResNet
[He et al., 2015]

A deeper model can emulate a shallower model: copy 
layers from shallower model, set extra layers to identity 

Thus deeper models should do at least as good as shallow 
models 

Deeper models are harder to optimize. They don’t learn 
identity functions (no-op) to emulate shallow models 

conv

relu

X

H(x)

conv

Identity

relu

X

H(x)
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Case Study: ResNet
[He et al., 2015]

A deeper model can emulate a shallower model: copy 
layers from shallower model, set extra layers to identity 

Thus deeper models should do at least as good as shallow 
models 

Deeper models are harder to optimize. They don’t learn 
identity functions (no-op) to emulate shallow models 

Solution: Change the network so learning identity 
functions (no-op) as extra layers is easy

conv

relu

X

H(x)

conv

Identity

relu

X

H(x)
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Case Study: ResNet
[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

conv

conv

relu

“Plain” layers
X

H(x)
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Case Study: ResNet
[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

conv

conv

relu

“Plain” layers
X

H(x)

relu

Residual block

conv

conv
X

identity

H(x) = F(x) + x

F(x)

relu

X

Identity mapping: 
H(x) = x if F(x) = 0 



relu
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Case Study: ResNet
[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

Residual block

conv

conv
X

identity
F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

16

H(x) = F(x) + x

Identity mapping: 
H(x) = x if F(x) = 0 



Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample
spatially using stride 2 
(/2 in each dimension) 
Reduce the activation 
volume by half. 

3x3 conv, 64 
filters

3x3 conv, 128 
filters, /2 
spatially with 
stride 2
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample
spatially using stride 2 
(/2 in each dimension) 
Reduce the activation 
volume by half.

- Additional conv layer at 
the beginning (stem)

Beginning 
conv layer
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample
spatially using stride 2 
(/2 in each dimension) 
Reduce the activation 
volume by half.

- Additional conv layer at 
the beginning (stem)

- No FC layers at the end 
(only FC 1000 to output 
classes)

No FC layers 
besides FC 
1000 to 
output 
classes

Global 
average 
pooling layer 
after last 
conv layer
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

Total depths of 18, 34, 50, 
101, or 152 layers for 
ImageNet
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Case Study: ResNet
[He et al., 2015]

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256  
input

For deeper networks (ResNet-
50+), use “bottleneck” layer to 
improve efficiency (similar to 
GoogLeNet)

28x28x256  
output

22

BN, relu

BN, relu



Case Study: ResNet
[He et al., 2015]

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

28x28x256  
input

For deeper networks (ResNet-
50+), use “bottleneck” layer to 
improve efficiency (similar to 
GoogLeNet)

1x1 conv, 64 filters to 
project to 28x28x64

3x3 conv operates over 
only 64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)

28x28x256  
output

23

BN, relu

BN, relu



24

Training ResNet in practice:

- Batch Normalization after every CONV layer (this lecture)
- Xavier initialization from He et al. (this lecture)
- SGD + Momentum (this lecture)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]
Case Study: ResNet



Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lower training error as expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 
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Case Study: ResNet
[He et al., 2015]

Experimental Results
- Able to train very deep 

networks without degrading 
(152 layers on ImageNet, 1202 
on Cifar)

- Deeper networks now achieve 
lower training error as expected

- Swept 1st place in all ILSVRC 
and COCO 2015 competitions 

ILSVRC 2015 classification winner (3.6% 
top 5 error) -- better than “human 
performance”! (Russakovsky 2014)

26
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity... Inception-v4: Resnet + Inception!
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: most 
parameters, most 
operations
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: 
most efficient
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory 
heavy, lower accuracy
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on 
model, highest accuracy
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Network ensembling



Improving ResNets...
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[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, 
Wide Resnet models

- ILSVRC’16 classification winner

“Good Practices for Deep Feature Fusion”
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Adaptive feature map reweighting
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Completion of the challenge:
Annual ImageNet competition no longer 
held after 2017 -> now moved to Kaggle.



But research into CNN architectures is still flourishing

38



Improving ResNets...
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[He et al. 2016]

- Improved ResNet block design from 
creators of ResNet

- Creates a more direct path for 
propagating information throughout 
network

- Gives better performance

Identity Mappings in Deep Residual Networks

conv

BN

ReLU

conv

ReLU

BN



Improving ResNets...
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[Zagoruyko et al. 2016]

- Argues that residuals are the 
important factor, not depth

- Use wider residual blocks (F x k filters 
instead of F filters in each layer)

- 50-layer wide ResNet outperforms 
152-layer original ResNet

- Increasing width instead of depth 
more computationally efficient 
(parallelizable)

Wide Residual Networks

Basic residual block Wide residual block

3x3 conv, F

3x3 conv, F

3x3 conv, F x k

3x3 conv, F x k



Improving ResNets...
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[Xie et al. 2016]

- Also from creators of 
ResNet

- Increases width of 
residual block through 
multiple parallel 
pathways 
(“cardinality”)

- Parallel pathways 
similar in spirit to 
Inception module

Aggregated Residual Transformations for Deep 
Neural Networks (ResNeXt)

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

256-d out

256-d in

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

256-d out

256-d in

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

...

32 
paths



Pool

Conv

Dense Block 1

Conv

Input

Conv

Dense Block 2

Conv

Pool

Conv

Dense Block 3

Softmax

FC

Pool

Other ideas...

[Huang et al. 2017]

- Dense blocks where each layer is 
connected to every other layer in 
feedforward fashion

- Alleviates vanishing gradient, 
strengthens feature propagation, 
encourages feature reuse

- Showed that shallow 50-layer 
network can outperform deeper 
152 layer ResNet

Densely Connected Convolutional Networks (DenseNet)

Conv

Conv

1x1 conv, 64

1x1 conv, 64

Input

Concat

Concat

Concat

Dense Block



Learning to search for network architectures...
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[Zoph et al. 2016]

Neural Architecture Search with Reinforcement Learning (NAS)

- “Controller” network that learns to design a good 
network architecture (output a string 
corresponding to network design)

- Iterate:
1) Sample an architecture from search space
2) Train the architecture to get a “reward” R 

corresponding to accuracy
3) Compute gradient of sample probability, and 

scale by R to perform controller parameter 
update (i.e. increase likelihood of good 
architecture being sampled, decrease 
likelihood of bad architecture) 



Learning to search for network architectures...
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[Zoph et al. 2017]

Learning Transferable Architectures for Scalable Image 
Recognition

- Applying neural architecture search (NAS) to 
a large dataset like ImageNet is expensive

- Design a search space of building blocks 
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure 
on smaller CIFAR-10 dataset, then transfer 
architecture to ImageNet

- Many follow-up works in this 
space e.g. AmoebaNet (Real et 
al. 2019) and ENAS (Pham, 
Guan et al. 2018)



But sometimes smart heuristic is better than NAS ...
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[Tan and Le. 2019]

EfficientNet: Smart Compound Scaling

- Increase network capacity by scaling width, 
depth, and resolution, while balancing 
accuracy and efficiency.

- Search for optimal set of compound scaling 
factors given a compute budget (target 
memory & flops).

- Scale up using smart heuristic rules
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Amount of compute required to reach “AlexNet performance”

https://openai.com/blog/ai-and-efficiency/

https://openai.com/blog/ai-and-efficiency/
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https://paperswithcode.com/sota/image-classification-on-imagenet

This Lecture
Transformer
(later this sem.)



What we have learned so far …
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Deep Neural Networks:
• What they are (composite parametric, non-linear functions)
• Where they come from (biological inspiration, brief history of ANN)
• How they are optimized, in principle (analytical gradient via 

computational graphs, backpropagation)
• What they look like in practice (Deep ConvNets for vision)



Next few lectures:
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Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Regularization
• Advanced Optimization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble



Today: Training Deep NNs (Part 1)
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• Details of the non-linear activation functions
• Data normalization
• Weight Initialization



Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

53

𝜎(𝑥)

𝑥



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Problems:

1. Saturated neurons “kill” the 
gradients

54

𝜎(𝑥)

𝑥



sigmoid 
gate

x
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𝜎(𝑥)

𝑥



sigmoid 
gate

x

What happens when x = -10?
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𝜎(𝑥)

𝑥



sigmoid 
gate

x

What happens when x = -10?
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𝜎(𝑥)

𝑥



sigmoid 
gate

x

What happens when x = -10?
What happens when x = 10?
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𝜎(𝑥)

𝑥



sigmoid 
gate

x

What happens when x = -10?
What happens when x = 10?
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𝜎(𝑥)

𝑥



sigmoid 
gate

x

What happens when x = -10?
What happens when x = 10?

60

Non-zero but small: 
still problematic, causes 
vanishing gradient

𝜎(𝑥)

𝑥
𝜕𝜎
𝜕𝑥



Why is this a problem?
If all the gradients flowing back will be 
zero and weights will never change (aka 
“Vanishing Gradient”)

sigmoid 
gate

x

61

𝜎(𝑥)

𝑥



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered 
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?

65

We know that local gradient of sigmoid is always positive



Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is positive
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is positive

Sign of gradient for all wi is the same as the sign of upstream gradient.
That is, local gradient cannot change the sign of global gradient
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Consider what happens when the input to a neuron is 
always positive...

Local gradient cannot change the sign of 
global gradient. 

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

68

𝑤!

𝑤"



Consider what happens when the input to a neuron is 
always positive...

Local gradient cannot change the sign of 
global gradient. 
Can easily lead to all-positive or all-negative 
gradient update (zig-zag).

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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𝑤!

𝑤"



Consider what happens when the input to a neuron is 
always positive...

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

70

Remark: both upstream gradient and local input can
change the sign of gradient irrespective of the 
activation, but having a zero-centered activation 
function (output spans both positive and negative) can 
further minimize the “zig-zag” effect

zig zag path
𝑤!

𝑤"



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered (output does not span 
both positive and negative)

71



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered (output does not span 
both positive and negative)

3. exp() is a bit compute expensive
72



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Worst problem in practice: 
Saturated neurons “kill” the 
gradients / vanishing gradient
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
Always 0 -> no update in weights -> 
stays 0, A.K.A. “dead ReLU”
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Negative saturation encodes 

presence of features (all goes to 
− 𝛼), not magnitude

- Similar in backprop (𝛼𝑒! when 
𝑥 is negative)

- Compared with Leaky ReLU: 
smooth gradient at 0 (no kink), 
better optimization landscape

[Clevert et al., 2015]
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(Alpha default = 1)



Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property: 
under certain condition, the 
output of a feedforward network 
stays around zero-mean and 
unit variance

[Klambauer et al. ICLR 2017]
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Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property: 
under certain condition, the 
output of a feedforward network 
stays around zero-mean and 
unit variance

[Klambauer et al. ICLR 2017]
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α = 1.6732632423543772848170429916717 
λ = 1.0507009873554804934193349852946

(Klambauer et al, Self-Normalizing Neural Networks, 
ICLR 2017)



TLDR: In practice:

- Many possible choices beyond what we’ve talked 
here, but …
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing
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Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when 
the input to a neuron is always positive...

In addition to upstream and local gradient, 
input also determines the sign of the gradient. 
To reduce biases in gradient, we want the 
input to span both positive and negative value

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing
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Data Preprocessing
In practice, you could also PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize



Examples: images

- Subtract the per-pixel mean(e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers,)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images
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Examples: other domains

• Natural language processing: Normalize word 
embeddings like Word2Vec or GloVe vectors so that 
they have a unit norm

• Graph Neural Networks (GNN): the feature vector of a 
node might be scaled by the inverse of its degree or the 
square root of its degree.

• Audio data: Spectral normalize waveforms to ensure 
that the frequency components are on a similar scale.

• Reinforcement learning: reward can be normalized to 
have zero mean and unit variance to stabilize learning.
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Weight Initialization
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- Q: what happens when W=same initial value is used?
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤'(𝑥 = 𝑤)(𝑥 if 𝑤' = 𝑤)
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤'(𝑥 = 𝑤)(𝑥 if 𝑤' = 𝑤)
- Want to maintain variance through the layers.
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

99

What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?
Hint:

100
Visualize distribution of activations



Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Visualize distribution of activations



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

102

Initialize with higher values
What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?
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Visualize distribution of activations



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

More generally, gradient 
explosion (high w-> high 
output -> high gradient).
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Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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Visualize distribution of activations



“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
[substituting value of y]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Σ Var(xiwi) = Din Var(xiwi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din



Weight Initialization: What about ReLU?

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation 
get killed.
Solution: make the non-zero 
output variance twice as 
large as input
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Summary
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Training Deep Neural Networks
• Details of the non-linear activation functions

• Sigmoid, Tanh, ReLU, LeakyRELU, ELU, SELU
• Data normalization

• Zero-centering, decorrelation, image normalization
• Weight Initialization

• Constant init, random init, Xavier Init, Kaiming Init



Next time:

121

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble


