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Abstract

The construction of high-per formancedatabuse systems that combine

the best aspects of the relational and object-oriented approaches

requires the design of client-server architectures that can fully

exploit client and ~erver resources in a jlexible manner The two

predominant paradigms for c[ient-server query execution are data-

shipping and query -shqrpirrg We jirs~ dejine these pohcies m

wrms of the restrictions thev place on operator site se[ection during

query optimization. We then investigate the performance tradeoffs

between them for bulk query processing. While each strategy has

advantages, nei!her one on its own is eflicient across a wide range of

circumstances. We describe andevaluate a more~exible policy called

hybrid-shipping, which can execute queries at clients, servers, or any

combination of the two. Hybrid-shipping is shown to at least match

the best of the two “pure” policies, and in some situations, to perform

better than both. The implementation of hybrid-shipping raises a

number of dlficuh problems for query optimization. We describe

an initial investigation into the use of a .2-step query optimization

strategy as a way of addressing these issues.

1 Introduction

The needs of many classes of applications are not adequately

met by the current generation of relational and object-oriented

database systems. Relational database systems excel at

providing high-level associative (i.e., query-based) access to

large sets of flat records. In contrast, object-oriented database

systems provide more powerful data modeling capabilities

and are designed to support efficient navigation-based access

to data. Because of these different, and in some ways

complimentary strengths, it has become apparent that database

systems combining the best aspects of the relational and object-

oriented approaches are likely to gain acceptance across a

larger range of applications (e.g., [S+90]).

1.1 Merging RDBMS and ODBMS Functionality

Database system builders have been approaching this per-

ceived need in several ways. Relational vendors are moving
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towards integrating object-oriented features into their systems

(e.g., the emerging SQL3 standard [Ku194]) while vendors of

object-oriented systems are adding more powerful query fa-

cilities [Cat94]. Furthermore, a new class of hybrid “Object-

Relational” systems has recently started to appear (e.g., Ill us-

tra and UniSQL). These efforts have resulted in significant

progress towards integrating object and relational concepts,

but this progress has been primarily at the language and data

model levels. In contrast, relatively little attention has been

paid to the development of underlying system architectures

that can efficiently support these hybrid models—particularly

in a distributed environment.

While most modern database systems are designed to

execute in a client-server environment, relational and object-

oriented systems tend to exploit the resources of such

environments in significantly different ways. Relational

systems and their descendants are typically based on query

shipping, in which the majority of query processing is

performed at servers. The benefits of query shipping include:

the reduction of communication costs for high selectivity

queries, the ability to exploit server resources when they are

plentiful, and the ability to tolerate resource-poor (i.e., low

cost) client machines. Object-oriented database systems, on

the other hand, are typical] y based on data shipping, in which

required data is faulted in to the client to be processed, and

possibly cached, there. Data-shipping has the advantages

of exploiting the resources (CPU, memory, and disk) of

powerful client machines and reducing communication in the

presence of locality or large query results. Both of these

factors allow data-shipping to scale as users (and hence, their

desktop resources) are added to the system. Data-shipping

also allows for light-weight interaction between applications

and the database system, as is needed to support navigational

data access.

1.2 Architectural Implications

In order to build database systems that combine the best aspects

of relational and object-oriented systems, it is essential that the

dichotomy between these approaches be resolved not only at

the logical levels of the system, but at the lower, architectural

levels as well. As part of the DIMSUM projectl we have been

investigating the integration of the data-shipping and query-

shipping models. In this paper we focus on the tradeoffs that

arise between these approaches for processing bulk queries.

‘ Distributed Information Management Systems at the University of

Maryland (http: / /www. cs .umd. edu/PrOjeCtSldimSUm).
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The primary distinction between data-shipping and query-

shipping with regard to query processing relates to the use of

client resources. Data-shipping exploits client resources in

two ways. First, query operators (e.g., selects, projects, joins,

etc. ) are executed at a client. This use of client resources

is beneficial when the resources available at the client are

significant relative to those at the servers. This situation can

arise for example, if servers are heavily loaded. The second

way that client resources are used arises only if client data

caching is supported. In this case, scans of base data can

also be performed at the clients. Performing scans at clients

can save communication and offload server disk resources. A

query-shipping policy does not exploit either of these uses,

and thus may be detr~mental to performance under certain

conditions. Data-shipping IS not a performance panacea,

however. In fact, when server resources are plentiful. or if

locality of data access at clients is poor, then a query-shipping

approach can have significant performance advantages.

It should be obvious from the above considerations that

neither data-shipping nor query-shipping is the best policy for

query processing in all situations. As a result, a system that

supports only one of these policies is likely to have sub-optimal

performance under certain workload and/or system conditions.

A potential solution to this problem is to build a system that is

capable of executing queries using either approach and to allow

the query optimizer to choose between the two. While such a

solution goes a long way towards solving the problem, there

are cases where neither the pure data-shipping nor the pure

query-shipping approach can provide the best performance.

In particular, for complex queries, a hybrid approach can in

some cases outperform both pure policies.

1.3 Overview

In this study, we compare the performance of pure data-

shipping, pure query-shipping, and a hybrid-shipping ap-

proach that has the flexibility to place individual query op-

erators and scans at servers or at clients on a case-by-base

basis. The flexibility of a hybrid approach allows it to poten-

tially meet or beat the performance of both pure policies. This

flexibility, however, comes at a cost of increased complex-

ity in query optimization. The search space for hybrid plans

is significant y larger than for the two restricted approaches.

Furthermore, the quality of a hybrid plan is sensitive to the ac-

curacy of the optimizer’s cost model and changes to the state

of the distributed query environment (e.g., in terms of load,

client cache contents, data placement, etc.).
We have constructed a randomized query optimizer and a

detailed simulation environment that allow us to compare the

performance of query execution plans under varying workload

and system conditions. We use these tools to compare the three

approaches, using the hybrid approach as an “ideal” case that

serves to gauge the performance of the two pure approaches.

We then describe an initial investigation of a 2-step query

optimization strategy as a step towards developing a robust

hybrid-shipping approach,

The remainder of this paper is organized as follows:

Section 2 describes the options for client-server query

processing and defines the three execution policies covered in

this study. Section 3 describes the experimental environment.

Section 4 presents a set of experiments that investigate the

tradeoffs among the three execution policies. Section 5

discusses query optimization issues for flexible client-server

systems. Section 6 discusses related work. Section 7 contains

conclusions and proposes future work.

2 Query Execution Policies

2.1 Execution P1ans

In this section, we describe the three query execution policies

covered in this study: data-shipping, query-shipping and

hybrid-shipping. The study focuses on select-project-join

queries. 2 Execution plans for such queries can be represented

as binary trees in which the nodes are query operators and the

edges represent producer-consumer relationships between the

operators. A query plan specifies the ordering of operators,

the placement of operators at sites, and the methods to be

employed for executing each operator (e.g., the join method),

The three execution polices that are covered in this study

differ primarily in the placement of operators at sites — this

is referred to as site selection,

Site selection for operators is specified by annotating each

operator with the location at which the operator is to run. These

annotations refer to logical sites, such as “client”, “primary

copy”, “consumer”, “producer”, etc., and are not bound to

physical machines until query execution time. The query

operators and their possible annotations are as follows:

Display - The root of a query plan is always a display

operator. This operator presents the results of the query

to the user or an application program, and thus, it is

always given the annotation client, indicating that it must

be executed at the site where the query is submitted.

Join3 - A join combines the input from two producers and

generates a single output stream. A join can be given

one of three annotations: consumer, inner relation. or

outer relation. A consumer annotation states that the

operator should be executed at the same site as the operator

that consumes its output. An inner relation annotation

indicates that the operator should be executed at the same

site as the operator that produces its left-hand input, and an

outer relation annotation indicates that the operator should

execute at the site where its right-hand input is produced.

Select4 - The select operator applies a predicate to a relation

and returns those tuples that satisfy the predicate, A

select operator can be given either a consumer or producer

2For simplicity we use relational terminology when descnbmg query
operators. Analogous operations arise in object-oriented database languages

that support associative queries such as OQL [Cat94]

3Other binary operators (such as set operations) can be annotated slmdarly

to JoIns.

~c)ther “nw operators (such as aggregations and projections) can be

annotated similarly to selections,
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annotation, indicating that it should be executed at the site

of its parent or child operator respectively.

. Scan - The scan operator simply produces all of the tuples

in a relation. A scan can be annotated in one of two

ways: primary copy or client. A prima~ copy annotation

indicates that the scan should be executed at the server

where the relation resides. A client annotation indicates

that the scan should be run at the site where the query is

submitted, accessing data from the local cache if present;

any missing data are faulted in from the server where the

relation resides.5

At runtime, the logical annotations are bound to actual

sites in the network. First the locations of the disp[ay and

scan operators are resolved; then, the locations of the other

operators are resolved given their annotations. Of course,

it is possible for this binding process to result in operators

with differing logical annotations being executed at the same

physical site. It is, however, necessary to retain the distinct

logical annotations in a query plan, as queries can be submitted

at different sites, and relations can migrate to different servers

over time. The implications of reusing annotated plans are

discussed in Section 5.

2.2 Policy Definitions

The data-shipping, query-shipping, and hybrid-shipping

policies can be defined by the limitations they place on

assigning site annotations to the operator nodes of a query

plan. This view of the three policies is shown in Table 1.

For every operator used in this study, the annotations that

are allowed by each policy are listed. The three policies are

discussed briefly in the following subsections,

I data shipping I query shipping hybrid shipping 1

I distiav I client client client 1

consumer inner or
join

consumer, inner

(i.e., client) outer relation or outer relation

consumer
select producer

consumer

(i.e., client) or producer

scan
client or

client primary copy
primary copy

Table 1: Site Selection for Operators used in this Study

2.2.1 Data Shipping

Data-shipping (DS) specifies that all operators of a query

should be executed at the client machine at which the query

was submitted. In DS execution plans, therefore, the site

annotation of every scan and of the display operator is client,

and the annotation of all other operators is consumer (given

that the display operator at the root of the tree is carried out

at the client, these operators are carried out at the client as

5[f h~nz~ntal panitloning isused, a scan operator must be defined for every

fragment of the relation. Partitioning, however, is not taken into account in

this study, so the unit of a scan M an entire relation. Furthermore, it is assumed

that relations are not rephcated at multiple servers.

well). An example data-shipping plan is shown in Figure 1(a).

The annotation of every operator is shown in italics. and the

shading of the nodes indicates that every operator is executed

at the client.

2.2.2 Query Shipping

The term query-shipping has widely been used in the context

of a client-server architecture with one server machine, and in

which queries are completely evaluated at the server. There

is, however, no recognized definition of query-shipping for

systems with multiple servers. For this work, we define query-

shipping (QS) as the policy that places scan operators on the

servers at which the primary copies of relations reside, and

all the other operators (except display) at the site of one of

their producers, For example, a join operator can be carried

out either at the producer of the inner relation or the producer

of the outer relation. As a consequence. execution plans that

support query-shipping never have consumer annotations or

scans that are carried out at a client machine. An example

query-shipping plan is shown in Figure l(b).

2.2.3 Hybrid Shipping

A hybrid-shipping (HY) approach allows each operator to be

annotated in any way allowed by data-shipping or by query-

shipping. Of the three policies therefore, hybrid-shipping has

the most flexibility in producing plans. To guarantee that a

binding of operators to sites can be determined at runtime,

the optimizer must take precautions to generate only well-

formed plans, A well-formed plan has no cycles, and as a

consequence, there is a path (via annotations) from every node

of the plan to a leaf (i.e., scan) or to the root (i.e., display). A

cycle can be observed for example, if an operator A produces

the input of an operator B, and the site annotation of A is

consumer and of B is producer. Such a case could not be

resolved by the simple scheme for binding operators to sites

described above. Fortunately, because the query plans are

trees, only cycles with two nodes can occur, and therefore,

it is very easy to “sort out” ill-formed plans during query

optimization. Figure l(c) shows an example (well-formed)

hybrid-shipping plan. It is interesting to note that, as shown in

Figure 1(c), hybrid-shipping does not preclude a relation from

being shipped from the client to a server (this is precluded in

both data and query-shipping).

3 Experimental Environment

In order to investigate the relative performance of the data,

query, and hybrid-shipping execution strategies, we developed

a test environment consisting of a randomized query optimizer

and a detailed simulation environment. The simulation model

captures the resources (CPU, memory, disk, and network)

of a group of interconnected client and server machines.
The query optimizer is based on randomized two-phase

query optimization, which combines simulated annealing

and iterative improvement, as proposed by Ioannidis and

Kang [IK90]. Optimization can be aimed at minimizing either
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Figure 1: Example Annotated Query Plans

the cost or the response-time predictions for a query plan.

The search space explored by the optimizer includes the full

range of’ shipping strategies; it can, however. be constrained

to produce only data-shipping or query-shipping plans.

In the following, we describe the query optimizer and its

cost model, the simulation environment, and a set of simple

benchmark queries that are used to evaluate the tradeoffs

among the different shipping policies. The results of the

performance study are then presented in Sections 4 and 5.

3.1 Query Optimization

3.1.1 Implementation of the Optimizer

The query plans that are evaluated in this study are

obtained using randomized two-phase query optimization

(2PO) [IK90]. Randomized query optimization was chosen

for the following reasons. First, randomized approaches

have been shown to be successful at finding very good join

orderings [IK90] and generating efficient plans even with very

large search spaces [LVZ93]. Second, the simplicity of the

approach allowed the optimizer to be constructed quickly,

and to be easily configured to generate plans for the three

different execution strategies. Third, the randomized approach

optimizes very complex queries in a reasonable amount of

time. It takes, for example, approximately 40 seconds on a

SUN Sparcstation 5 to perform join ordering and site selection

for a 10-way join with 10 servers. Finally, for the purposes

of this study (and in practice as well), it is necessary only that

the generated plans be “reasonable” rather than truly optimal.

To minimize the impact of randomness on the results, all of

the experiments reported here were executed repeatedly and
confidence intervals for every data point were computed.

The optimizer first chooses a random plan from the desired

search space (i.e., data, query, or hybrid-shipping) and then

tries to improve the plan by iterative improvement (II) and

simulated annealing (SA).6 On each step, the optimizer

performs one transformation of the plan. The possible moves

are the following (where A, 1?, and C denote either temporary

or base relations):

6This study uses the same parameter settings to control the H and SA

phases as used in [IK90].

no Client

o Server 1

Server 2

1.

2.

3.

4.

5.

6.

7.

(A MB)KIC -A D4(BC4C)

(A WB)NCABM(A MC)

AW(BMC)+(AMB)XIC

AM(BDu C)+(AMC)C4B

Change the site annotation of a join to consumer, outer

relation, or inner relation.

Change the site annotation of a select from consumer to

producer or vice versa,

Change the site annotation of a scan from client to prima~

copy or vice versa.

The optimizer can be configured to generate plans from

one of the three policies by enabling, disabling, or restricting

some of the possible moves. For hybrid shipping all moves are

enabled. To generate data-shipping plans, only thejoin-order

moves (1 to 4) are enabled and all operators are placed at the

client machine. To generate query-shipping plans, the 6th and

7th moves are disabled since all scans are carried out using the

primary copy of a relation, and all the selects are placed at the

same site as the corresponding scan. In addition, the 5th move

is restricted: ajoirz is never moved to the site of its consumer.

3.1.2 Cost Model

In order to effectively optimize queries in a distributed

environment it is necessary to have a reasonably accurate cost

model. The cost model that we used is capable of estimating

both the total cost and the response time of a query plan for a
given system configuration. The total-costestimates are based

on the model of Mackert and Lehman [ML86]. The response-

time estimates are generated using the model of [GHK92]. The

response time of a query is defined to be the elapsed time from

the initiation of query execution until the time that the last

tuple of the query result is displayed at the client. If all of the

operators of a plan are executed sequential y, then the response

time of a query is identical to its cost. However, if parallelism

is exploited, then the response time of a query can be lower

than the total cost. Independent parallelism can arise between
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operators of different sub-trees of a plan; e.g., scan operators

cm different base relations can ‘be executed in parallel. In

contrast, pipelirzed parallelism arises between producer and

consumer operators. Using pipelined execution, an operator

can begin executing as soon aseachof itsproducer operators

has produced at least onetuple. Inthisway, a consumer can

run in paral le! with its producer operators.

3.2 Simulation Model

3.2.1 Execution Model

AI] experiments were carried out using a detailed simulation

model. The simulator is written in C++ using the CSIM

simulation toolkit. The simulator models a heterogeneous,

peer-to-peer database system such as SHORE [C+94] and

provides a detailed model of query processing costs in such

a system. At present, it does not model concurrency control

and transaction management functions that would be required

to support non-query workloads. For this study, the simulator

was configured to model a client-server system consisting of a

single client and one or more servers. The impact of multiple

clients in the system is modeled by placing additional load on

the server resources and/or restricting the memory available

for join processing. Clients and servers are similar in that they

both have memory, CPU, disk resources, a buffer manager,

and a query execution engine, but they differ in the following

ways:

Queries are submitted by an application at the client (even

though some operators may execute at the server). The

results of all queries are displayed at the client.

The client’s disk is used as a cache (i.e., to temporarily

store copies of relations or relation parts that are brought

in from the server), and for temporary storage for join

processing. No primary copies of relations are stored at

the client,

The servers are responsible for managing primary copies

of relations. These are stored on disk at the server. The

primary copy of each relation resides on a single server

(i.e., there is no declustering). Server disks are also used

as temporary storage for join operators. In this study,

there is no inter-query caching at servers. That is, when a

server obtains data from another site, it uses it only for the

duration of the current query.

Query execution is based on an iterator model, similar

to that of Volcano [Gra93]. Each query operator has an

open-next-close interface; open prepares the operator (e.g.,

allocation of main memory and structures, initialization of

scans, etc.), next is called repeatedly to yield tuples, and close

terminates the operator and does some final housekeeping

(e.g., freeing memory). Each operator obtains data by calling
the next functions of its children operators. For this reason,

data flow is demand driven. When two connected operators

are located on different sites, a pair of specialized network

operators is inserted between them. These operators hide the

details of shipping data across the network. Tuples are shipped

across the network a page-at-a-time. In this case, pipelined

parallelism can occur, because each producer has a process that

tries to stay one page ahead of its consumer so that requests

can be satisfied immediately.

As stated previously, clients support disk caching. If a disk

is to be used both as a cache and for temporary storage, separate

regions of the disk are allocated for each of these purposes.

The disk cache is managed in large segments so that scans of

cached relations can be done efficiently.

3.2.2 Resources and Model Parameters

Table 2 shows the main parameters that can be used to

configure the simulator: the parameter settings used in this

paper are described in Section 4.1. Every site has a CPU whose

speed is specified by the Mips parameter, NumDisks disks, and

a main-memory buffer pool. The CPU is modeled as a FIFO

queue. Disks are modeled using a detailed characterization

that was adapted from the Z.etaSim model [Bro92]. The disk

model includes an elevator disk scheduling policy, a controller

cache, and read-ahead prefetching. There are many parameters

to the disk model (not shown), including: rotational speed,

seek factor, settle time, track and cylinder sizes, controller

cache size, etc. For the purposes of this study, the important

aspect of the disk model is that it captures the cost differences

between sequential and random I/Os. In addition to the time

spent waiting for and accessing the disk, a CPU overhead of

DiskInst instructions is charged for every disk I/O request.

Parameter Value Description

h4ips 50 CPU speed (106 instrlsec)

iVumDisks 1 number of disks on a site

DiskInst 5000 instr. to read a page from disk

PageSize 4096 size of one data page (bytes)

NetBw 100 network bandwidth {Mbit/see)

MsgInst 20000 instr. to sendfreceive a message

PerSizeMI 12000 instr. to sendlreceive 4096 bytes

Display o instr. to display a tuple

Compare 2 instr. to apply a predicate

HashInst 9 instr. to hash a tuple

MoveInst 1 instr. to copy 4 bytes

BufAlloc minor max buffer allocated to a join

Table 2: Simulator Parameters and Default Settings

The base relations, cached relation copies, and temporary

results are organized in pages of PageSize bytes. Pages are

the unit of disk I/O and data transfer between sites. The

network is modeled simply as a FIFO queue with a specified

bandwidth (NetBw); the details of a particular technology (i.e.,

Ethernet, ATM, etc.) are not modeled, The cost of a message

involves the time-on-the-wire which is based on the size of the

message, and both fixed and size-dependent CPU costs to send
and receive which are computed from MsgInst and PerSizeMI.

In addition to the costs for system functions such as

messages and I/Os, the costs associated with the query

operators are also modeled; i.e., the CPU cost of displaying,
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comparing, hashing, and moving ttq$es in memory. All joins

are processed using hybrid hashing [Sha86]. The amount of

memory allocated to joins on a site is specified by BufAUoc7.

3.3 Workload Specification

In order to examine the different execution strategies under

a range of system configurations and settings, we use a

benchmark consisting of 2-way and 10-way joins. The

simple 2-way join query is used to explore fundamental

tradeoffs ‘between data-shipping and query-shipping. The

more complex query is used to examine further effects of the

basic policies and to provide sufficient latitude for the hybrid-

shipping policy to generate plans that differ significantly from

those generated by the pure policies.

Each relation used in the study has 10,000 tuples of 100

bytes each. In all queries, the result of a join is projected

so that the size of the tuples in all temporary relations and

in the query result is also 100 bytes. All joins are equi-

joins. We have experimented with a variety of join graphs and

join selectivities. For simplicity however, in this paper we

focus on results for one particular type of query, as the effects

described in Section 4 were seen in varying degrees, for all

query types we investigated. Additional experiments can be

found in [KF95].

The benchmark queries are chain joins with moderate

selectivity. These queries can be thought of as “functional”

joins, as would be used to reconstruct normalized data. In a

chain join graph, the relations are arranged in a linear chain

and each relation except the first and the last relation is joined

with exactly two other relations; inter-operator parallelism

can be exploited well in such queries. By moderate selectivity

we mean that a join of two equal-sized base relations returns

a result that is the size and cardinality of one base relation.

This selectivity, besides being realistic for many queries,

simplifies the analysis of the experimental results. Selectivity,

however, plays a large role in the tradeoffs between the various

approaches. In the experiments that follow results that would

change significantly with different selectivities are noted.

4 Experiments and Results

In this section we present experiments that analyze the

tradeoffs bet ween data-shipping, query-shipping and hybrid-

shipping. Many factors are varied in these experiments,

including the complexity of the query, the server load, the

number of servers, the amount of client caching, and the
amount of memory allocated to joins. Before presenting the

experiments and results, we first briefly describe the metrics

used, as well as the simulation parameter settings and their

implications.

4.1 Settings and Environment Details

The default simulation parameter settings used in this study

are shown in Table 2. The settings are largely based

on those used in previous studies; e.g., [Fra96, PCV94].

TThe~llocationof memory in our experiments is described m section 4.1.

Several details deserve additional explanation. First. the

total amount of memory allocated to a query at each

site is equal to the allocation of memory for joins, plus

some small overhead (e.g.. for inter-operator communication

buffers). The amount of memory allocated for joins depends

on whether the joins of the query are to be executed

with minimum or maximum allocation (i.e., the BufAlloc

parameter). Minimum and maximum allocations are defined

according to Shapiro [Sha86]. Maximum allocation allows

the hash table for the inner relation to be built entirely in

main memory. Minimum allocation reserves <~ buffer

frames for a join (F = 1.2 is a fudge factor, M is the size of

the inner relation) and requires the inner and outer relations

be split into partitions. All of these partitions (except for one)

must be written and read to/from temporary storage.

In the experiments that follow it is assumed that all main-

memory buffers are empty at the beginning of a query

execution. Even when the memory of a site is large enough to

provide the maximum allocation for joins, no data is cached

in that site’s main memory across queries. Data that is cached

at the client is assumed to be initially resident on the client’s

local disk. As a result, disk I/O is always required to read the

base relations from either a client or a server disk.

As stated in Section 3.2, the simulator contains a detailed

disk model. In this study, we use the settings from [PCV94],

which were intended to model a Fujitsu M2266 disk drive. The

average performance of the disk model with these settings is

roughly 3.5 msec per page for sequential 1/0, and 11.8 msec per

page for random I/O; these values were obtained by separate
simulation runs to calibrate the cost model of the optimizer. To

simulate additional server load and multiple clients, an extra

process issuing random disk read requests is run at servers in

some experiments. The request rate of this process can be

varied to achieve different disk utilizations.

Two metrics are used when describing the results of the

experiments: communication cost and response time. The

first metric, expressed as the number pages sent, measures

the average amount of data sent over the network during the

execution of a query, This metric is useful for comparing

the performance of the algorithms in a communication-bound

environment such as the Internet. The second metric, response

time, is used to measure the performance of the policies in a

local-area, high-speed network (100 Mbit/see). Response time

is defined as the average time in seconds from the time that a

query is initiated until the time its last result tuple is displayed

at the client. For all experiments the query optimizer was
configured to generate plans that minimized the metric being

studied. Furthermore, as stated previously, the experiments

were executed repeated] y so that the 9070 confidence intervals

for all results presented were within *5%.

4.2 2-Way Joins, Single Server

In the first set of experiments we focus on 2-way joins executed

with a single client and a single server. This set of experiments

establishes the main intuitions behind the tradeoffs of the

different shipping policies. The tradeoffs are similar, but
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somewhat more complicated for the 1O-way join queries,

which are discussed in Section 4.3.

4.2.1 Communication Cost

Figure 2 shows how the volume of data sent across the network

varies for each of the three policies as the percentage of the

relations cached at the client is increased.s The volume of data

sent by query-shipping (QS), which performs all operations

except for display at the server, is independent of the caching at

the client. Therefore, in this experiment QS always processes

the join at the server and sends the result (250 pages) to the

client. In contrast, data-shipping (DS) and hybrid-shipping

(HY) are both sensitive to the caching at the client. When no

data is cached, DS must fault in both base relations from

the server for join processing at the client, resulting in a

communication volume of 500 pages, or twice as much as

QS, The volume of data sent by DS decreases linearly as the

amount of data cached at the client is increased, however. DS

performs all scans at the client, faulting in only that data which

is not cached locally. In this experiment, since the size of the

join result is equal to the size of a base relation, the cross-over

point between DS and QS is when half of each of the two base

relations is cached at the client. The hybrid approach produces

the same plans as QS before this point and as DS after, so it

matches the best of the two pure policies in all cases here.

It should be emphasized that the specific cross-over point

shown in Figure 2 results from the use of functional joins

whose results are the same size as a base relation. This

cross-over point would move to the right if the join result

size was smaller than a base relation, and would move to the

left if it was larger than a base relation. In any case, a hybrid

approach would still be able to minimize its communication

requirements to equal the lower of the two pure policies.

4.2.2 Response Time, Minimum Allocation

While the results for communication volume are fairly

straightforward, the performance of the policies when

communication is not a bottleneck is quite different. Figure 3

‘In this experiment, contiguous regions of relations are cached. For

example, with a caching percentage of 25%, the first 25% of each relation is

cached on the client’s disk.
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shows the response time for the two-way join query when

the join is given the minimum memory allocation. Recall that

when the join has only minimum memory allocation, it uses the

disk to store partitions of the relations, thus placing additional,

random load on the disk where the join is processed.

In this experiment, QS shows the worst performance

because it always executes the scan and the joins at the server,

and therefore, incurs high disk contention. Furthermore,

the 1/0s for join processing interfere with the sequential 1/0

patterns of the scan, resulting in a substantial degradation

in 1/0 performance. In fact, the best plan in this situation

is to perform the 1/0s for the base relations at the server

and to execute the join at the client, thereby exploiting disk

parallelism and avoiding contention. When no data is cached

at the client, DS, does exactly this. It executes the scan

operators at the client, but since no data is cached, the 1/0 for

the scans is performed at the servers. As caching is increased,

however, DS reads more base data from the client’s disk, and

incurs more disk contention, As a result, the performance of

DS steadily worsens until at 100% cached data, it performs

only slightly better than QS (its slight advantage is because it

does not need to send the result over the network to the client).

Unlike DS, the HY approach is not forced to use cached data

whenever it exists. As a result, HY finds the best plan in all

cases here, regardless of the contents of the cache at the client;

neither DS nor QS is able to do this.

The results of the previous experiment suggest that data

caching on client disks is harmful when a pure DS policy is

used. Clearly, this is not always the case. Figure 4 shows the

performance of data-shipping plans when different loads are

placed on the server’s disk. These loads model the impact of

contention for the server disk by multiple clients. The lowest

line in Figure 4 is identical to the DS line in the previous figure

— there is no external load placed on the server disk. When

an external load of 40 requests/see is placed on the server

disk (i.e., 50% utilization), the performance of DS is similar

to that when the server’s disk is unloaded. When the load

is increased further, however. the benefits of off-loading the

server disk outweigh the disadvantages of the added contention

on the client’s disk, so the performance of DS can improve

with the increase in client caching. In this case, with a server
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disk load of 60 requests/see (76~0 utilization) DS performs

slightly better with caching and when the load is increased
to 70 requests/see (90% utilization), the performance of IX

improves significantly with increased caching. Although not

shown in the figure, HY performs as before under light Ioads

(it is better than both DS and QS) and tends towards the

performance of IX under higher server loads. That is. as

the load on the server is increased, HY moves more work to

the client. QS. of course. does not have this flexibility. so

its performance suffers dramatically as the server disk load is

increased (i.e.. the response time of QS is 19 seconds for 40

requestsisec and 36 seconds for 60 requestslsec).

4.2.3 Response Time, Maximum Allocation

The previous results showed the impact of exploiting c~ient

resources for joins andlor scans when only the minimum

amount of memory is provided to the join. In this experiment,

we examine the performance of the policies when joins are

provided the maximum allocation, that is, when the hash table

for the inner relation fits entirely in memory. In this case no

disk resources are required for intermediate processing of joins

so the placement of joins and scans on the same site does not

result in contention or interference at the disk.

Figure 5 shows the response times of the three polices as

client (disk) caching is increased, when the join is provided the

maximum memory allocation. Similar to the communication

costs described previously, QS performs better than DS when

no data is cached, but its performance remains constant as the

amount of cached data is increased, while the performance of

DS improves linearly. One difference between this case and

the communication-only case is that here, the cross-over point

is slightly beyond 509?0cached data. Even though QS and DS

send the same volume of data over the network at this point,

DS pays additional overhead because in our model, DS faults

in base data a page at a time, while QS is able to overlap

some communication and join processing. Constructing a DS

approach to allow similar overlap is possible, but requires

some sophisticated buffering techniques.

In this experiment, the optimizer generates a relatively poor
plan for HY when 75~0 of the data is cached. This is because

the cost model is not able to accurately predict the overlapping

of communication and join processing. In this case it assumes

that these costs can be fully overlapped, while in the simulator,

such complete overlap is rarely attained.

The results are similar when the server disk is loaded (not

shown), but the cross-over point for DS and QS is further to
the left. For example, with an external server disk load of

60 requestsisec, the cross-over occurs when between 20% and

25% of the base relation data is cached at the client disk. With

the maximum allocation, join processing and scan processing

do not interfere at the disk, so DS and HY benefit from off-

loading scan 1/0 from the server disk.

4.3 10-Way Joins, Multiple Servers

In this section we investigate the performance of the three

execution policies when the complex, 10-way join queries are
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processed in a system with multiple servers. Compared to the

previous experiments, two new effects can be observed with

the addition of servers and multiple join operators: 1) in some

situations, costs for server-server communication are incurred;

and 2) independent parallelism among operators in addition

to pipelined parallelism can be exploited. In the following

experiments, the ten base relations used in a query are placed

randomly among the servers (ensuring that each server has

at least one base relation). The data points presented below

represent the average of many such random placements.

4.3.1 Communication Cost

As with the previous experiments, we begin by examining the

communication costs of the three policies when the optimizer

is configured to minimize such costs. Figure 6 shows the

volume of data sent (in pages) by each of the policies as

the number of servers is increased, with no client caching.

DS always brings all ten base relations to the client for

processing regardless of the number of servers, so its message

volume remains constant at 2500 pages here. in contrast,

the communication costs of QS are highly dependent on the

number of servers. With only a single server, QS processes

all of the joins using no communication, sending only the

result (250 pages) over the network to the client. As the base

relations are spread over more servers, however, QS must

send those relations between servers in order to process joins.

Thus, as servers are added, the communication costs of QS

increase until with ten servers, its communication costs equal

that of DS. As was seen in the previous experiments, HY

has communication costs equal to the lesser of the two pure

policies. In this case, it is the same as QS until ten servers are

present, at which all three policies are equal.

The non-linearity in the increase of communication costs

for QS and HY arises due to the fact that the placement of

relations on servers is done independently of the ordering of

joins dictated by the query. If two relations are co-located

at a server but do not share a common join attribute, the

optimizer will not join them locally as the result would be

a Cartesian product (5 million pages). Thus, for examp~e,

in the case where the relations are spread across two servers.

several entire base relations (or join results) must typically be
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sent between the servers, resulting in a more than doubling of

the communication cost incurred with a single server.

Turning to the effects of client caching, Figure 7 shows

the communication costs when five of the ten relations are

cached. In this case, the communication costs of DS are

halved — it only needs to bring the remaining five relations

across the network. In contrast, QS, which does not exploit

the client cache, has the same costs as in the no-caching case.

Therefore, beyond three servers, QS sends more data than

DS here. Interestingly, in this case HY is actually able to

send less data than either of the pure polices for many of the

server populations. HY is able to save communication due

to its flexibility to choose between base relations at servers

or cached copies at the client. HY exploits this flexibility

by placing joins at sites where they can be executed without

communication. That is, if two relations that share a common

join attribute are co-located on either a server or the client,

HY can execute the join at that site, thus saving the cost of

sending one of the relations to the other. This effect was not

seen in any of the previous experiments due to the placement

of all relations on a single server.

4.3.2 Response Time Experiments

Figure 8 shows the response time results for 10-way joins

when joins are given minimum memory allocation, as the

number of servers is increased. There is no data cached at the

client in this experiment. With minimum allocation, the cost

of executing the hybrid-hash joins is the largest contributing

factor to the response time. In this case, DS performs all

join processing using the (single) client disk and all scan 1/0

using the disk(s) at the server(s). When there is only a single

server, DS performs somewhat better than QS because (as

seen in previous experiments) QS performs all join and scan

1/0 on a single disk, resulting in increased contention and

interference. As additional servers are added to the system.

however, the performance of QS improves greatly, because

it is able to exploit parallelism among the server disks. In

contrast, the performance of DS is largely independent of the

number of servers, because the benefits of any parallelism

associated with scanning at the servers is hidden by the cost

of performing all joins at the client.

As can be seen in Figure 8, with small numbers of servers

present in the system, HY performs better than both of the

two pure policies because HY uses the client and the servers

for query processing. In a system with one client and two

servers, for example, HY executes 3 of the 9 joins of a query

on each machine; DS, on the other hand, executes all 9 joins

on the client, and QS executes 5 joins on one server and 4

joins on the other server. Of course, the benefit of using

the client resources diminishes as more and more servers are

added to the system. In this experiment, HY’s advantage

to QS is largely dissipated when there are more than three

servers. It is important to note however, that these results are

obtained assuming that the resources that each server machine

has available to dedicate to processing this query is equal to the

resources of the client. If the servers were more heavily loaded,

the performance advantages of the hybrid approach would be

greater and would extend over larger server populations.

The response times of the policies in the presence of client

disk caching are not shown in this section because the effects

have already been discussed in Section 4.2. That is, the

performance of DS degrades the more data are cached because

of increased contention on the client’s disk: QS shows the

same performance as in Figure 8 because it does not exploit

client caching; and HY does not exploit client disk caching

either because server resources are plentiful. Furthermore,

the results when joins receive the maximum allocation are

not shown. Because joins do not use disks in this case, the

response time of a query is dominated by the file scans. If no

data are cached at the client, therefore, DS is able to obtain the

advantages of added servers (i.e., parallel execution of scans),

and all three policies show roughly the same performance.

5 Optimization Issues for Flexible Systems

The previous sections have shown that a system should support

a flexible query execution policy in order to fully exploit

the benefits of client and server resources across a range of
workloads and system configurations. As stated previously,

increased flexibility increases the search space and, thus, the

cost of query optimization. It is, therefore, desirable to pre-

compiled a query and avoid excessive computation prior to
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every execution of the query. Pre-compilation. however, can

produce sub-optimal plans because optimization are carried

out at compile time with imperfect knowledge of the runtime

state of the system (caching, loads, etc.).

In this section, we study two types of optimization that pre-

compiled queries: static and 2-step. A static query optimizer

generates a query plan based on the state of the system at

compile time or based on general assumptions about the

system state. 2-Step optimization which has been proposed

for distributed systems in [CL86, S+ 94] performs only some

optimization decisions at compile time and then adjusts the

partially optimized plan prior to query execution. We propose

a 2-step optimizer that works as follows:

1.

2.

At compile time, generate an incomplete query plan

including join orderings but no site annotations (e.g.,

using a randomized [IK90] or System-R-style [S+79]

optimizer).

At execution time, carry out site selection and determine

where to execute every operator of the plan (e.g., using

simulated annealing [MLR90]).

2-Step optimization, therefore, takes into account that the

system state can change rapidly; e.g., due to caching and

varying loads. Like static optimization, however, it can

produce a sub-optimal plan for a query because it carries out

some optimization (e.g., join ordering) based on imperfect

knowledge of the runtime system state. In the following,

we investigate the resulting performance when the runtime

data location (e.g., caching, dynamic data migration and

replication) cannot be predicted at query compilation time.

Our focus here is on the quality of the plans so the overhead of
dynamic site selection for 2-step optimization is not included

in the performance results. Clearly, this overhead will

ultimately play a large role for the overall performance of

2-step optimization, but it is highly dependent on the specific

site selection algorithm used.

5.1 Communication Cost

We first examine the effects of data migration and caching

on the communication costs of static and 2-step plans, The

join ordering specifies the data flow during the evaluation

of a query, and therefore, pre-compiling the join order with

imperfect knowledge of data location can result in excessive

communication costs. This limitation is illustrated by the

example in Figure 9. The static plan shown in part (a) is a

plan that minimizes communication under the assumption that

relations A and B are co-located at Server 1 and that relations

C and D are co-located at Server 2. In this case, the required

communication is the sending of two join results to the client

(to be joined there). If, however, the data were to migrate so

that at runtime, relations B and C’ were co-located and relations

A and D were co-located, then as shown in Figure 9(b), the

statically generated plan would incur the additional cost of

sending two relations to be joined. Assuming that all relations

are joinable and that join results and base relations are the same

size, the static plan performs twice as much communication at

runtime than an optimal plan that performs B N C at Server 1

and A M D at Server 2; this optimal plan incurs only the cost

of sending two temporary join results to the client.

The 2-step plan, shown in part (c), would use the same

join ordering as the static plan, but it can be more flexible

about where it places the join operators. In this example,

this flexibility results in a reduction of the communication

penalty. Nevertheless, by being constrained to use the pre-

compiled join ordering, the 2-step plan still performs 50~0

more communication than an optimal plan.

The above example demonstrates that 2-step optimization

has the potential to generate plans with excess communication

in the presence of data migration among servers. It should be

noted, however, that 2-step optimization can be effective in

reducing communication for one important aspect of flexible

client-server database systems; namely if at runtime copies

of data are cached at the client that submits a query, 2-steP

optimization has the flexibility to exploit the cached data to

reduce communication. This aspect of 2-step optimization is

promising, because data caching is likely to be much more

dynamic than data migration.

5.2 Response Time Experiments

The previous section addressed the communication costs of

static and 2-step optimization. In this section, we examine

the response time of compiled plans when the number of
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servers storing base relations is unknown at compile time.

As shown in Section 4,3, large benefits can be gained by

exploiting multiple servers. The effective use of multiple

servers, however, strongly depends on the shape of the join

graph. A bushy plan can exploit multiple servers by allowing

joins to run in parallel, but it does so at the potential cost of

increasing the sizes of intermediate relations. In contrast, a

left-deep plan minimizes the intermediate relations but cannot

exploit parallel resources.

Figure 10 shows the response times (relative to an ideal

plan) of left-deep and bushy plans for the 10-way join query

when the minimum memory allocation is given to each join. To

obtain static and 2-step left-deep plans, the optimizer was told

at compile time that the database was centralized on a single

site. The bushy plans were obtained by telling the optimizer

that the database was fully-distributed— i.e., that each relation

was stored on a separate server. In this experiment the

static left-deep plans pay a huge penalty because due to the

centralized assumption, all joins are executed on a single

site. When 2-step optimization is applied to these plans, this

penalty can be mitigated because the runtime site selection

can redistribute the joins. However, the deep 2-step plans

still perform worse than the bushy plans with multiple servers,

because they cannot exploit independent parallelism among

the joins. A static bushy plan suffers when few servers are

present, because it fails to exploit client resources, and also

with more servers because it does not evenly distribute the

load across the available servers. In contrast, the 2-step bushy

plan is able to perform nearly as well as an ideal plan for all

server populations here.

As stated in Sections 3.3 and 4.2, the join selectivity can

have a substantial impact on the performance of a query

processing strategy. The weakness of bushy plans become

apparent if the join selectivity is high. As can be seen in

Figure 11, with small number of servers, the bushy plans

perform poorly for a HiSel 10-way join in which only 20%

of the tuples of every input relation paritcipate in the output
of a join. As servers are added, however, a bushy 2-step plan

performs well for this query, too, because the extra work that it

does is split across many servers and is largely done in parallel.
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6 Related Work

As stated in the introduction, both data-shipping and query-

shipping are commonly used in distributed database systems.

Data-shipping is used in most object database systems, and it

has been investigated, e.g., in [D+90, Fra96]. Query-shipping,

on the other hand, is used in most traditional relational

systems. ADMS [R+95] is an example of a system that uses

an extended query-shipping architecture: query results are

cached at clients, and a query can be answered at the client if

it matches the cached results of a previous query; if it does not

match, the query is executed at the servers.

Current trends towards very large systems with many sites

have motivated the design of new flexible architectures that,

like hybrid-shipping, allow query processing on clients and

servers; examples are Orion [J+90] and Mariposa [S+94].

Furthermore, SHORE [C+94] provides a mechanism to allow

the inclusion of a flexible query execution policy.

There have been several closely related studies of query

processing in local-area and client-server database systems.

Carey and Lu studied join algorithms in local networks [LC85]

and devised methods to load balance a system if data is

replicated at several sites [CL86]. Among the first to study

query processing specifically in a client-server environment

were Hagmann and Ferrari [HF86]. They investigated

different ways to split the functionality of a DBMS (e.g.,

query parsing, optimization, and execution) between client

and server machines.

Related work on multi-node query processing includes

techniques devised for parallel databases. In particular, cost

models and efficient query optimization techniques devised
for parallel database systems (e.g., [SE93, GW93]) can be

adapted to distributed database systems.

7 Conclusion

In order to build high-performance database systems that

combine the best aspects of the relational and object-oriented
approaches, it is necessary to design flexible client-server

architectures that can fully exploit the client and server

resources available in the system. As an initial step towards

this goal, we have investigated the tradeoffs between three
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paradigms for query execution in client-server database

systems: data-shipping which is commonly used in ODBMS;

query-shipping which is used in traditional RDBMS; and

hybrid-shipping which combines the features of data and query

shipping. We first showed that these three policies can be

characterized by the way they restrict the assignment of site

annotations to query operators during query optimization. We

then evaluated the performance of the three policies in a series

of experiments using a randomized query optimizer and a

detailed simulation model.

A fundamental difference between data, query, and hybrid-

shipping is the degree to which they exploit client resotrrces,

Client resources can be used in two ways: 1) query operators

can be executed at clients, and 2) data can be cached at clients

(in memory and on disk). Data-shipping makes the most

possible use of client resources; it executes all operators at

clients and uses client-cached data whenever it is present.

Query-shipping, on the other hand, neglects client resources;

it performs all work at servers. Hybrid-shipping allows the

flexible use of client resources by executing query operators

on clients and/or on servers; it at least matches the best

performance of data and query shipping and outperforms both

in many situations.

The performance experiments showed that the advantages

of hybrid-shipping were due to its flexible use of client

resources in both ways, name] y for executing query operators

and using cached data. Hybrid-shipping executes query

operators at clients if client resources are at least at parity

with server resources, but it can execute operators on servers

when parallel and/or plentiful server resources are available.

Hybrid-shipping was also shown to exploit caching to reduce

communication costs in some cases, but it does not use cached

copies of data if the relations used in a query are co-located

at a server. Likewise, hybrid-shipping can exploit caching to

reduce interaction with heavily loaded servers, but it ignores

cached copies of data if server resources are plentiful and the

use of cached data at the client would increase the response

time of a query by causing contention on the client’s disk.

While the performance experiments showed the potential

advantages of a hybrid-shipping policy, the implementation of

such a policy raises a number of difficult issues. In particular,

hybrid-shipping results in more complex query optimization,

and pre-compiled query plans can be sensitive to changes

in the system state and data location. To address these

issues, we investigated the use of 2-step query optimization.

Our initial experiments indicate that a 2-step optimization
approach is promising. Dynamic site selection enables a 2-

step optimizer to make use of client-side caching and client

resources whenever this is beneficial. We found significant

inefficiencies only for network-bound query processing; in

these situations, however, it might well be affordable to

carry out more complex on-the-fly optimizations since these

optimizations only require additional client CPU cycles.

As an initial study in the area of merging relational and

object-oriented database techniques at the architectural level,

this paper focused on a simple workload consisting only of

bulk queries. In future work, we intend to analyze the effects

of navigation-based access and updates. In addition, we plan

to study the impact of caching and the use of the aggregate

main memory of the system in multi-query workloads. We are

currently constructing a prototype query execution engine on

top of the SHORE storage system to investigate these issues.
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