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Most common database management systems represent information in a simple 
record-based format. Semantic modeling provides richer data structuring capabilities for 
database applications. In particular, research in this area has articulated a number of 
constructs that provide mechanisms for representing structurally complex interrelations 
among data typically arising in commercial applications. In general terms, semantic 
modeling complements work on knowledge representation (in artificial intelligence) and 
on the new generation of database models based on the object-oriented paradigm of 
programming languages. 

This paper presents an in-depth discussion of semantic data modeling. It reviews the 
philosophical motivations of semantic models, including the need for high-level modeling 
abstractions and the reduction of semantic overloading of data type constructors. It then 
provides a tutorial introduction to the primary components of semantic models, which are 
the explicit representation of objects, attributes of and relationships among objects, type 
constructors for building complex types, ISA relationships, and derived schema 
components. Next, a survey of the prominent semantic models in the literature is 
presented. Further, since a broad area of research has developed around semantic 
modeling, a number of related topics based on these models are discussed, including data 
languages, graphical interfaces, theoretical investigations, and physical implementation 
strategies. 

Categories and Subject Descriptors: H.0 [Information Systems] General, H.2.1 
[Database Management] Logical Design-data models; H.2.2 [Database 
Management] Physical Design--access methods; H.2.3 [Database Management] 
Languages-data description lunguuges (DDL); data mnnipuhtion lunguuges (DML); query 

hwew 

General Terms: Design, Languages 

Additional Key Words and Phrases: Conceptual database design, entity-relationship 
model, functional data model, knowledge representation, semantic database model 

INTRODUCTION directions in databases were ini- 
tiated in the early 197Os, namely, the 

Commercial database management systems introduction of the relational model and 
have been available for two decades, origi- the development of semantic database 
nally in the form of the hierarchical and models. The relational model revolution- 
network models. Two opposing research ized the field by separating logical data 
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representation from physical implementa- 
tion. Significantly, the inherent simplicity 
in the model permitted the development of 
powerful, nonprocedural query languages 
and a variety of useful theoretical results. 

The history of semantic modeling re- 
search is quite different. Semantic models 
were introduced primarily as schema design 
tools: A schema could first be designed in a 
high-level semantic model and then trans- 
lated into one of the traditional models for 
ultimate implementation. The emphasis of 
the initial semantic models was to accu- 
rately model data relationships that arise 
frequently in typical database applications. 
Consequently, semantic models are more 
complex than the relational model and en- 
courage a more navigational view of data 
relationships. The field of semantic models 
is continuing to evolve. There has been 
increasing interest in using these models as 
the bases for full-fledged database manage- 

ment systems or at least as complete front 
ends to existing systems. 

The first published semantic model ap- 
peared in 1974 [Abriel 19741. The area ma- 
tured during the subsequent decade, with 
the development of several prominent 
models and a large body of related research 
efforts. The central result of semantic mod- 
eling research has been the development of 
powerful mechanisms for representing the 
structural aspects of business data. In re- 
cent years, database researchers have 
turned their attention toward incorporat- 
ing the behavioral (or dynamic) aspects of 
data into modeling formalisms; this work 
is being heavily influenced by the object- 
oriented paradigm from programming lan- 
guages. 

This paper provides both a survey and a 
tutorial on semantic modeling and related 
research. In keeping with the historical em- 
phasis of the field, the primary focus is on 
the structural aspects of semantic models; 
a secondary emphasis is given to their be- 
havioral aspects. We begin by giving a 
broad overview of the fundamental com- 
ponents and the philosophical roots of 
semantic modeling (Section 1). We also 
discuss the relationship of semantic mod- 
eling to other research areas of computer 
science. In particular, we discuss important 
differences between the constructs found in 
semantic models and in object-oriented 
programming languages. In Section 2 we 
use a Generic Semantic Model to provide 
a detailed, comprehensive tutorial that 
describes, compares, and contrasts the var- 
ious semantic constructs found in the lit- 
erature. In Section 3, we survey a number 
of published models. We conclude with an 
overview of ongoing research directions 
that have grown out of semantic modeling 
(Section 4); these include database systems 
and graphical interfaces based on semantic 
models and theoretical investigations of se- 
mantic modeling. 

Semantic data models and related issues 
are described in the earlier survey article 
by Kerschberg et al. [1976] by Tsichritzis 
and Lochovsky [1982], and the collection 
of articles that comprise Brodie et al. 
[1984]. Also, Afsarmanesh and McLeod 
[ 19841, King and McLeod [ 1985b], and 
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of data in computers, ultimately viewing 
data as collections of records with printable 
or pointer field values. Indeed, these models 
are often referred to as being record based. 
Semantic models were developed to provide 
a higher level of abstraction for modeling 
data, allowing database designers to think 
of data in ways that correlate more directly 
to how data arise in the world. Unlike the 
traditional models, the constructs of most 
semantic models naturally support a top- 
down, modular view of the schema, thus 
simplifying both schema design and data- 
base usage. Indeed, although the semantic 
models were first introduced as design 
tools, there is increasing interest and re- 
search directed toward developing them 
into full-fledged database management sys- 
tems. 

To present the philosophy and advan- 
tages of semantic database models in more 
detail, we begin by introducing a simple 
example using a generic semantic data 
model, along with a corresponding third 
normal form (3NF) relational schema. The 
example is used for several purposes. First, 
we present the fundamental differences 
between semantic models and the object- 
oriented paradigm from programming lan- 
guages. Next, we illustrate the primary 
advantages often cited in the literature of 
semantic data models over the record- 
oriented models. We then show how these 
advantages relate to the process of schema 
design. We conclude by comparing seman- 
tic models with the related field of knowl- 
edge representation in AI. 

Maryanski and Peckham [1986] present 
taxonomies of the more prominent models, 
and Urban and Delcambre [1986] survey 
several semantic models, with an emphasis 
on features in support of temporal infor- 
mation. The dynamic aspects of semantic 
modeling are emphasized in Borgida 
[1985]. The overall focus of the present 
paper is somewhat different from these 
other surveys in that here we discuss both 
the prominent semantic models and the 
research directions they have spawned. 

1. PHILOSOPHICAL CONSIDERATIONS 

There is an analogy between the motiva- 
tions behind semantic models and those 
behind high-level programming languages. 
The ALGOL-like languages were developed 
in an attempt to provide richer, more con- 
venient programming abstractions; they 
buffer the user from low-level machine con- 
siderations. Similarly, semantic models 
attempt to provide more powerful abstrac- 
tions for the specification of database 
schemas than are supported by the rela- 
tional, hierarchical, and network models. 
Of course, more complex abstraction mech- 
anisms introduce implementation issues. 
The construction of efficient semantic 
databases is an interesting problem-and 
largely an open research area. 

In this section we focus on the major 
motivations and advantages of semantic 
database modeling as described in the lit- 
erature. These were originally proposed in, 
for example, Hammer and McLeod [1981], 
Kent [ 19781, Kent [1979], and Smith and 
Smith [1977] and have since been echoed 
and extended in works such as Abiteboul 
and Hull [1987], Brodie [1984], King and 
McLeod [1985b], and Tsichritzis and 
Lochovsky [ 19821. 

Historically, semantic database models 
were first developed to facilitate the design 
of database schemas [Chen 1976; Hammer 
and McLeod 1981; Smith and Smith 
19771. In the 197Os, the traditional models 
(relational, hierarchical, and network) were 
gaining wide acceptance as efficient data 
management tools. The data structures 
used in these models are relatively close to 
those used for the physical representation 

1.1 An Example 

The sample schema shown in Figure 1 is 
used to provide an informal introduction to 
many of the fundamental components of 
semantic data models. This schema is based 
on a generic model, called the Generic Se- 
mantic Model (GSM), which was developed 
for this survey and is presented in detail in 
Section 2. 

The primary components of semantic 
models are the explicit representation of 
objects, attributes of and relationships 
among objects, type constructors for build- 
ing complex types, ISA relationships, and 
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The sample schema illustrates two fun- 
damental uses of subtyping in semantic 
models, these being to form user-specified 
and derived subtypes. For example, the 
subtypes TOURIST and BUSINESS- 
TRAVELER are viewed here as being user 
specified because a person will take on 
either (or both) of these roles only if this is 
specified by a database operation. In con- 
trast, we assume here (again simplistically) 
that a person is a LINGUIST if that person 
can speak at least two languages. (The 
attribute SPEAKS that is defined on 
PERSON is discussed shortly.) Thus, 
the contents of the subtype LINGUIST 
can be derived from data stored elsewhere 
in the schema, along with the defining 
predicate (in pseudo-English) “LIN- 
GUIST := PERSONS who SPEAK at least 
two LANGUAGES”. This example illus- 
trates one type of derived schema compo- 
nent typical of semantic models. 

The sample schema also illustrates how 
constructed types can be built from atomic 
types in a semantic data model. One ex- 
ample of a constructed type is ADDRESS, 
which is an aggregation (i.e., Cartesian 
product) of three printable types STREET, 
CITY, and ZIP. This is depicted in the 
schema with an %-node that has three chil- 
dren corresponding to the three coordinates 
of the aggregation. Aggregation is one form 
of abstraction offered by most semantic 
data models. For example, here it allows 
users to focus on the abstract notion of 
ADDRESS while ignoring its component 
parts. As we shall see, this aggregate object 
will be referenced by two different parts of 
the schema. A second prominent type con- 
structor in many semantic models is called 
grouping, or association (i.e., tinitary pow- 
erset) and is used to build sets of elements 
of an existing type. In the schema, grouping 
is depicted by a *-node and is used to form, 
for example, sets of LANGUAGES and 
DESTINATIONS. 

As illustrated above, object types can be 
modeled in a semantic schema as being 
abstract, printable, or constructed and can 
be defined using an ISA relationship. 
Through this flexibility the schema de- 
signer may choose a construct appropriate 
to the significance of the object type in the 

derived schema components. The example 
schema provides a brief introduction to 
each of these. The schema corresponds to 
a mythical database, called the World 
Traveler Database, which contains infor- 
mation about both business and pleasure 
travelers. It is necessarily simplistic but 
highlights the primary features common to 
the prominent semantic database models. 

The World Traveler schema represents 
two fundamental object or entity types, cor- 
responding to the types PERSON and 
BUSINESS. These are depicted using tri- 
angle nodes, indicating that they corre- 
spond to abstract data types in the world. 
Speaking conceptually, in an instance of 
this schema, a set of objects of type PER- 
SON is associated with the PERSON node. 
In typical implementations of semantic 
data models [Atkinson and Kulkarni 1983; 
King 1984; Smith et al. 19811 (see Section 
4.1), these abstract objects are referenced 
using internal identifiers that are not visi- 
ble to the user. A primary reason for this is 
that objects in a semantic data model may 
not be uniquely identifiable using printable 
attributes that are directly associated with 
them. In contrast with abstract types, 
printable types such as PNAME (person- 
name) are depicted using ovals. (In the 
work by Verheijen and Bekkum [1982], 
which considers the design of information 
systems, printable types are called lexical 
object types (LOT) and abstract types are 
called nonlexical object types (NOLOT). 

The schema also represents three sub- 
types of the type PERSON, namely, 
TOURIST, BUSINESS-TRAVELER, and 
LINGUIST. Such subtype/supertype rela- 
tionships are also called ISA relationships; 
for example, each tourist “is-a” person. In 
the schema, the three subtypes are depicted 
using circular nodes (indicating that their 
underlying type is given elsewhere in the 
schema), along with double-shafted ISA ar- 
rows indicating the ISA relationships. In 
an instance of this schema, subsets of the 
set of persons (i.e., the set of internal iden- 
tifiers associated with PERSON node) 
would be associated with each of the three 
subtype nodes. Note that in the absence of 
any restrictions, the sets corresponding to 
these subtypes may overlap. 
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particular application environment. For ex- 
ample, in a situation in which cities play a 
more prominent role (e.g., if CITY had 
associated attributes such as language or 
climate information), the type of city could 
be modeled as an abstract type instead of 
as a printable. As discussed below, different 
combinations of other semantic modeling 
constructs provide further flexibility. 

So far, we have focused on how object 
types and subtypes can be represented in 
semantic data models. Another fundamen- 
tal component of most semantic models 
consists of mechanisms for representing 
attributes (i.e., functions) associated with 
these types and subtypes. It should be noted 
that unlike the functions typically found in 
programming languages, many attributes 
arising in semantic database schemas are 
not computed but instead are specified ex- 
plicitly by the user to correspond to facts 
in the world. In the World Traveler Data- 
base, attributes are represented using 
(single-shafted) arrows originating at the 
domain of the attribute and terminating at 
its range. For example, the type PERSON 
has four attributes: HAS-NAME, which 
maps to the printable type PNAME; 
LIVES-AT, which maps to objects of type 
ADDRESS; SPEAKS, which maps each 
person to the set of languages that person 
speaks; and GOES-TO, which maps each 
person to the set of destinations that person 
frequents. In the schema the HAS-NAME 
attribute is constrained to be a 1: 1, total 
function. The attribute SPEAKS is set val- 
ued in the sense that the attribute associ- 
ates a set of languages (indicated by the 
:-node) to each person. RESIDENT-OF is 
similar in that it associates a set of people 
with an address; however, this property is 
represented with a multivalued attribute. 
ENJOYS of TOURIST is also multivalued. 
The distinction between set valued and 
multivalued attributes is discussed in Sec- 
tion 2. In several models it is typical to 
depict both an attribute and its inverse. For 
example, in the sample schema, the inverse 
of the LIVES-AT attribute from PERSON 
to ADDRESS is a set-valued attribute 
RESIDENT-OF. 

As shown in the schema, the subtype 
BUSINESS-TRAVELER has two attri- 

butes: WORKS-FOR and WORKS-AS. 
Because business travelers are people, the 
members of this subtype also inherit the 
four attributes of the type PERSON. Sim- 
ilarly, the other two subtypes of PERSON 
inherit these attributes of type PERSON. 

The schema also illustrates how attri- 
butes can serve as derived schema compo- 
nents. One example is the attribute 
RESIDENT-OF; another is the attribute 
LANG-COUNT of the (derived) subtype 
LINGUIST, which is specified com- 
pletely by the predicate “LANG-COUNT 
is cardinality of SPEAKS” and other parts 
of the schema. 

To conclude this section, Figure 2 shows 
a 3NF [Ullman 19821 relational schema 
corresponding to the World Traveler 
schema. In order to capture most of the 
semantics of the original schema, key and 
inclusion dependencies are included in the 
relational schema. (Briefly, a key depen- 
dency states that the value of one (or sev- 
eral) field(s) of a tuple determines the 
remaining field values of that tuple; an 
inclusion dependency states that all of the 
values occurring in one (or more) column(s) 
of one relation also occur in some column(s) 
of another relation.) For example, PNAME 
is the key of PERSON, indicating that each 
person has only one address; and the 
PNAME column of TOURIST is contained 
in the PNAME column of PERSON, indi- 
cating that each tourist is a person. In this 
schema one or more relations is used for 
each of the object types in the semantic 
schema. For example, even ignoring the 
subtypes of the type PERSON, informs- 
tion about persons is stored in the three 
relations PERSON, PERSPEAKS, and 
PERGOES. (In principle, a single relation 
could be used for this information, but in 
the presence of set-valued attributes such 
as SPEAKS and GOES-TO, such relations 
will not be in 3NF.) 

1.2 Semantic Models versus Object-Oriented 
Programming Languages 

Now that we have briefly introduced the 
essentials of semantic modeling, we are in 
a position to describe the fundamental dis- 
tinctions between semantic models and 
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Figure 2. 3NF relational schema corresponding to the World Traveler schema. (a) Relations. (b) Inclusion dependencies. 
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object-oriented programming [Bobrow et 
al. 1986; Goldberg and Robson 1983; Moon 
19861. This is crucial in light of current 
database research thrusts. 

Essentially, semantic models encapsu- 
late structural aspects of objects, whereas 
object-oriented languages encapsulate 
behavioral aspects of objects. Historically, 
object-oriented languages stem from re- 
search on abstract data types [Guttag 1977; 
Liskov et al. 19771. There are three princi- 
ple features of object-oriented languages. 
The first is the explicit representation of 
object classes (or types). Objects are iden- 
tified by surrogates rather than by their 
values. The second feature is the encapsu- 
lation of “methods” or operations within 
objects. For example, the object type 
GEOMETRIC-OBJECT may have the 
method “display-self”. Users are free to 
ignore the implementation details of meth- 
ods. The final feature of object-oriented 
languages is the inheritance of methods 
from one class to another. 

There are two central distinctions be- 
tween this approach and that of semantic 
models. First, object-oriented models do 
not typically embody the rich type con- 
structors of semantic models. From the 
structural point of view, object-oriented 
models support only the ability to define 
single- and multivalued attributes. Second, 
the inheritance of methods is strictly dif- 
ferent from the inheritance of attributes 
(as in semantic models). In a semantic 
model, the inheritance of attributes is only 
between types where one is a subset of the 
other. The inheritance of a method, since 
it is a behavioral-and not a structural- 
property, can be between seemingly unlike 
types. Thus, the object type TEXT might 
be able to inherit the “display-self” 
method of GEOMETRIC-OBJECT. 

1.3 Advantages of Semantic Data Models 

In this section we summarize the motiva- 
tions often cited in the literature in support 
of semantic data models over the tradi- 
tional data models. We noted above that 
semantic data models were first introduced 
primarily as schema design tools and 
embody the fundamental kinds of relation- 
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ships arising in typical database appli- 
cations. As a result of this philosphical 
foundation, semantically based data models 
and systems provide the following advan- 
tages over traditional, record-oriented 
systems: 

(1) 

(2) 

(3) 

increased separation of conceptual and 
physical components, 
decreased semantic overloading of re- 
lationship types, 
availability of convenient abstraction 
mechanisms. 

Abstraction mechanisms are the means by 
which the first two advantages of semantic 
models are obtained. We discuss abstrac- 
tion separately because of the significant 
effort researchers have put into developing 
these mechanisms. Each of the three ad- 
vantages is discussed below. 

1.3.1 Increased Separation of Logical 
and Physical Components 

In record-oriented models the access paths 
available to end users tend to mimic the 
logical structure of the database schema 
directly [Chen 1976; Hammer and McLeod 
1981; Kent 1979; Kerschberg and Pacheco 
1979; Shipman 1981; Smith and Smith 
19771. This phenomenom exhibits itself in 
different ways in the relational and the 
hierarchical/network models. In the rela- 
tional model a user must simulate pointers 
by comparing identifiers in order to tra- 
verse from one relation to another (typi- 
cally using the join operator). In contrast, 
the attributes of semantic models may be 
used as direct conceptual pointers. Thus, 
users must consciously traverse through an 
extra level of indirection imposed by the 
relational model, making it more difficult 
to form complex objects out of simpler ones. 
For this reason, the relational model has 
been referred to as being value oriented 
[Khoshafian and Copeland 1986; Ullman 
19871 as opposed to object oriented. 

In the hierarchical and network models 
a similar situation occurs. Users must nav- 
igate through the database, constructing 
larger objects out of flat record structures 
by associating records of different types. In 
contrast, semantic models allow users to 



focus their attention directly on abstract 
objects. Thus, in a hierarchical/network 
model, the access paths correspond directly 
to the low-level physical links between rec- 
ords and not to the conceptual relation- 
ships modeled in a semantic schema. 

To illustrate this point using the rela- 
tional model, suppose that in the World 
Traveler database Mary is a business trav- 
eler. Using attributes, the city of Mary’s 
employer can be obtained with the simple 
query: 

print LOCATED-AT (WORKS- 
FOR(‘Mary’)).CITY 

This query operates as follows: Mary’s 
employer is obtained by WORKS- 
FOR(‘Mary’); applying LOCATED-AT 
yields the address of that employer, and the 
‘.CITY’ construct isolates the second coor- 
dinate of the address. (We assume as syn- 
tactic sugar that because HAS-NAME is 
1: 1, the string ‘Mary’ can be used to denote 
the person Mary; if not, in the above query, 
‘Mary’ would have to be replaced by HAS- 
NAME-l(‘Mary’).) Thus, the semantic 
model permits users to refer to an object 
(in this case using a printable surrogate 
identifier) and to “navigate” through the 
schema by applying attributes directly to 
that object. In the relational model, on the 
other hand, users must navigate through 
the schema within the provided record 
structure using joins. In the SEQUEL lan- 
guage, for example, the analogous query 
directed at the schema of Figure 2 would be 

select CITY 
from BUSINESS 
where BNAME in 

select EMPLOYER 
from BUSTRAV 
where PNAME = ‘Mary’ 

In essence, the user first obtains the 
name of Mary’s employer by selecting 
the record about Mary in the relation 
BUSTRAV and retrieving the EM- 
PLOYER attribute, then finds the record 
in the relation BUSINESS that has that 
value in its BNAME field, and finally reads 
the CITY attribute of that record. Thus, 
the linkage between the BUSTRAV and 
BUSINESS relations is obtained by explic- 
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itly comparing business identifiers (the 
EMPLOYER coordinate of BUSTRAV 
and the BNAME coordinate of BUSI- 
NESS). 

1.3.2 Semantic Overloading 

The second fundamental advantage cited 
for the semantic models focuses on the fact 
that the record-oriented models provide 
only two or three constructs for represent- 
ing data interrelationships, whereas se- 
mantic models typically provide several 
such constructs. As a result, constructs in 
record-oriented models are semantically 
overloaded in the sense that several differ- 
ent types of relationships must be repre- 
sented using the same constructs [Hammer 
and McLeod 1981; Kent 1978,1979; Smith 
and Smith 1977; Su 19831. In the relational 
model, for example, there are only two ways 
of representing relationships between ob- 
jects: (1) within a relation and (2) by using 
the same values in two or more relations. 

To illustrate this point, we briefly com- 
pare the relational and semantic schemas 
of the World Traveler database. In the re- 
lational schema, at least three different 
types of relationships are represented 
structurally within individual relations: 

(1) the functional relationship between 
PNAME and STREET; 

(2) the many-many association between 
PNAMEs and LANGUAGES; 

(3) the clustering of STREET, CITY, and 
ZIP values as addresses. 

At least three other types of relationships 
are 

(4 

(b) 

(cl 

represented by pairs of relations: 

the type/subtype relationship between 
PERSON and TOURIST; 
the fact that PERSON, PERSPEAKS, 
and PERGOES all describe the same 
set of objects; 
the fact that the employers of BUS- 
TRAVs are described in the BUSI- 
NESS relation. 

In contrast, each of these types of relation- 
ship has a different representation in the 
semantic schema. 

As indicated above, in the absence of 
integrity constraints the data structuring 
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primitives of the relational model (and 
the other record-oriented models) are not 
sufficient to model the different types of 
commonly arising data relationships accu- 
rately. This is one reason that integrity 
constraints such as key and inclusion de- 
pendencies are commonly used in conjunc- 
tion with the relational model. Although 
these do provide a more accurate represen- 
tation of the data, they are typically ex- 
pressed in a text-based language; it is 
therefore difficult to comprehend their 
combined significance. A primary objective 
of many semantic models has been to pro- 
vide a coherent family of constructs for 
representing in a structural manner the 
kinds of information that the relational 
model can represent only through con- 
straints. Indeed, semantic modeling can be 
viewed as having shifted a substantial 
amount of schema information from the 
constraint side to the structure side. 

1.3.3 Abstraction Mechanisms 

Semantic models provide a variety of con- 
venient mechanisms for viewing and ac- 
cessing the schema at different levels of 
abstraction [Hammer and McLeod 1981; 
King and McLeod 1985a; Smith and Smith 
1977; Su 1983; Tsichritzis and Lochovsky 
19821. One dimension of abstraction pro- 
vided by these models concerns the level of 
detail at which portions of a schema can be 
viewed. On the most abstract level, only 
object types and ISA relationships are 
considered. At this level the structure of 
objects is ignored, for example, the x-node 
ADDRESS would be shown without its 
children. A more detailed view includes the 
structure of complex objects; the further 
detail includes attributes and the rules gov- 
erning derived schema components. 

A second dimension of the abstraction 
provided by semantic models is the degree 
of modularity they provide. It is easy to 
isolate information about a given type, its 
subtypes, and its attributes. Furthermore, 
it is easy to follow semantic connections 
(e.g., attribute and ISA relationships) to 
find closely associated object types. Both of 
the above dimensions of abstraction are 
very useful in schema design and for 

schema browsing, that is, the ad hoc perusal 
of a schema to determine what and how 
things are modeled. Interactive graphics- 
based systems that use these properties 
of semantic models have been developed 
(see Section 4.3); comparable systems for 
the record-oriented models have not been 
developed. 

An interesting question is why the cen- 
tral components of semantic models- 
objects, attributes, ISA relationships-are 
necessarily the best mechanisms to use to 
enrich a data model. Although, of course, 
there can be no clearcut choice of modeling 
constructs, there are two reasons to support 
the selection of these particular primitives. 
First, practice has shown that schemas con- 
structed with traditional record-oriented 
models tend to simulate objects and attri- 
butes by interrelating records of different 
types with logical and physical pointers. 
The second point is that computer science 
researchers in AI and programming lan- 
guages have selected similar constructs to 
enhance the usability of other software 
tools. It is thus interesting that researchers 
with somewhat different goals have found 
semantic model-like mechanisms useful. 
This latter point is discussed in more detail 
later in this section. 

A third dimension of abstraction is pro- 
vided by derived schema components that 
are supported by a few semantic models 
[Hammer and McLeod 1981; King and 
McLeod 1985a; Shipman 19811 and also by 
some relational implementations [Stone- 
braker et al. 19761. These schema compo- 
nents allow users to define new portions of 
a schema in terms of existing portions of a 
schema. Derived schema components per- 
mit the user to identify a specific subset of 
the data, possibly perform computations on 
it, and then structure it in a new format. 
The “new” data are then given a name and 
can subsequently be used while ignoring 
the details of the computation and refor- 
matting. In the relational model, derived 
schema components must be either new 
relations or new columns in existing rela- 
tions. Semantic models provide a much 
richer framework for defining derived 
schema components. For example, a de- 
rived subtype specifies both a new type and 
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an ISA relationship; similarly, a derived 
single-valued attribute specifies both a 
piece of data and a constraint on it. There- 
fore, semantic models give the user consid- 
erably more power for abstracting data in 
this way. 

Derived data are closely related to the 
notion of a user view (or external schema) 
[Chamberlain et al. 1975; Tsichritzis and 
Klug 19771, except that derived data are 
incorporated directly into the original 
schema rather than used to form a separate 
new schema. Another difference is that a 
view may contain raw or underived com- 
ponents, as well as derived information. 

1.4 Database Design with a Semantic Model 

In general, the advantages of semantic 
models, as described in the literature, are 
oriented toward the support of database 
design and evolution [Brodie and Ridja- 
novic 1984; Chen 1976; King and McLeod 
1985a; Smith and Smith 19771. At the pres- 
ent time the practical use of semantic 
models has been generally limited to the 
design of record-oriented schemas. Design- 
ers often find it easier to express the high- 
level structure of an application in a 
semantic model and then map the seman- 
tic schema into a lower level model. One 
prominent semantic model, the Entity- 
Relationship Model, has been used to de- 
sign relational and network schemas for 
over a decade [Teorey et al. 19861. Inter- 
estingly, relational schemas designed using 
the ER Model are typically in 3NF, an 
indication of the naturalness of using a 
semantic model as a design tool for tradi- 
tional DBMSs. 

develop structured design methodologies. A 
detailed and fairly comprehensive design 
methodology appears in Rosussopoulos and 
Yeh [1984]. After requirements analysis is 
performed, the authors advise the use of a 
semantic model as a means of integrating 
and formalizing the requirements. A se- 
mantic model serves nicely as a buffer be- 
tween the form of requirements collected 
from noncomputer specialists and the low- 
level computer-oriented form of record- 
oriented models. Several methodologies 
have also addressed the issue of integra- 
ting schema and transaction design in order 
to simplify the collection and formalization 
of database dynamic requirements; see 
Brodie and Ridjanovic [ 19841 and King and 
McLeod [1985a] for examples. 

Semantic models are a convenient mech- 
anism for allowing database specifications 
to evolve incrementally in a natural, con- 
trolled fashion [Brodie and Ridjanovic 
1984; Chen 1976; King and McLeod 1985a; 
Teorey 19861. This is because semantic 
models provide a framework for top-down 
schema design, beginning with the specifi- 
cation of the major object types arising in 
the application environment, then specify- 
ing subsidiary object types. Referring to 
the World Traveler schema, the design 
might begin with the specification of the 
PERSON and BUSINESS nodes; the 
LINGUIST, TOURIST, and BUSINESS- 
TRAVELER nodes would follow; and fi- 
nally the various attributes would be 
defined. The constructed type ADDRESS 
might be introduced when it is realized that 
both PERSON and BUSINESS share the 
identical attributes STREET, CITY, and 
ZIP. 

A number of features of semantic models In conclusion, significant research has 
contribute to their use in both the design been directed at applying specific semantic 
and the eventual evolution of database models to the design of either semantic or 
schemas. They provide constructs that traditional database schemas. However, 
closely parallel the kinds of relationships little work has been directed at pro- 
typically arising in database application viding methodological support for selecting 
areas; this makes the design process easier an appropriate semantic model or for 
and lessens the likelihood of design errors. integrating the various modeling capabili- 
This is in contrast to record-oriented ties found in semantic models. Rather, 
models, which force the designer to concen- methodological approaches are typically 
trate on many low-level details. Semantic tied to one model and to one prescrip- 
models also provide a variety of abstraction tive approach to producing a semantic 
mechanisms that researchers have used to schema. 

Semantic Database Modeling l 211 

ACM Computing Surveys, Vol. 19, No. 3, September 1987 



212 l R. Hull and R. King 

1.5 Related Work in Artificial Intelligence 

We now consider the relationship between 
semantic data modeling and research on 
knowledge representation in artificial in- 
telligence. Although they have different 
goals, these two areas have developed sim- 
ilar conceptual tools. 

Early research on knowledge represen- 
tation focused on semantic network [Fin- 
dler 1979; Israel and Brachman 1984; 
Mylopoulos 19801 and frames [Brachman 
and Schmolze 1985; Fikes and Kehler 1985; 
Minsky 19841. In a semantic network, real- 
world knowledge is represented as a graph 
formed of data items connected by edges. 
The graph edges can be used to construct 
complex items recursively and to place 
items in categories according to similar 
properties. The important relationship 
types of ISA, is-instance-of, and is-part-of 
(which is closely related to aggregation) are 
naturally modeled in this context. Unlike 
semantic data models, semantic networks 
mix schema and data in the sense that they 
do not typically provide convenient ways of 
abstracting the structure of data from the 
data itself. As a consequence, each object 
modeled in a semantic network is repre- 
sented using a node of the semantic net- 
work; these networks can be quite large if 
many objects are modeled. One of the ear- 
liest semantic database models, the Seman- 
tic Binary Data Model [Abrial 19741, is 
closely related to semantic networks; sche- 
mas from this model are essentially seman- 
tic networks that focus exclusively on 
object classes. 

Frame-based approaches provide a much 
more structured representation for object 
classes and relationships between them. 
Indeed, there are several rough parallels 
between the frame-based approach and 
semantic data models. The frame-based 
analog of the abstract object types is called 
a frame. A frame generally consists of a list 
of properties of objects in the type (e.g., 
elephants have four legs) and a tuple of 
slots, which are essentially equivalent to the 
attributes of semantic data models. Frames 
are typically organized using ISA relation- 
ships, and slots are inherited along ISA 
paths in a manner similar to the semantic 

data models. In general, properties of a type 
are inherited by a subtype, but exceptions 
to this inheritance can also be expressed 
within the framework (e.g., three-legged el- 
ephants are elephants, but have only three 
legs). Exception-handling mechanisms may 
also be provided for the inheritance of slot 
values. For example, referring to the World 
Traveler Database, in a frame-based ap- 
proach the HAS-NAME attribute of a 
given person might be different in the role 
of PERSON and the role of TOURIST 
(e.g., a nick-name). (Although the termi- 
nology used by the KL-ONE model [Brach- 
man and Schmolze 19851 differs from that 
just given, essentially the same concepts 
are incorporated there.) 

In general, frame-based approaches do 
not permit explicit mechanisms, such as 
aggregation and grouping for object con- 
struction. In recent research and commer- 
cial systems [Aikens 1985; Kehler and 
Clemenson 1983; Stefik et al. 19831, frames 
have been extended so that slots can hold 
methods in the sense of object-oriented 
programming languages; this develop- 
ment parallels current research in object- 
oriented databases, which is briefly 
discussed in Section 5. 

Because frame-based systems are gener- 
ally in-memory tools, the sorts of research 
efforts that have been directed at imple- 
menting semantic databases have not been 
applied to them. For example, considerable 
research effort has focused on the efficient 
implementation of semantic schemas and 
derived schema components [Chan et al. 
1982; Farmer et al. 1985; Hudson and King 
1986, 1987; Smith et al. 19811. 

2. TUTORIAL 

This section provides an in-depth discus- 
sion of the fundamental features and 
components common to most semantic 
database models. The various building 
blocks used in semantic models are de- 
scribed and illustrated, and subtle and 
not-so-subtle differences between similar 
components are highlighted. Philosoph- 
ical implications of the overall approaches 
to modeling taken by different models are 
also considered. 
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To provide a basis for our discussion, we 
use the Generic Semantic Model (GSM). 
The model was developed expressly for this 
survey and is based largely on three of the 
most prominent models found in the 
literature: the Entity-Relationship (ER) 
Model, the Functional Data Model (FDM), 
and the Semantic Data Model (SDM). The 
GSM is derived in large part from the IF0 
Model [Abiteboul and Hull 19871, which 
itself was developed as a theoretical frame- 
work for studying the prominent semantic 
models [Abriall974; Brodie and Ridjanovic 
1984; Hammer and McLeod 1981; Kersch- 
berg and Pacheco 1976; King and McLeod 
1985a; Shipman 1981; Sibley and Kersch- 
berg 19771. Although the GSM incorpo- 
rates many of the constructs and features 
of these models, it cannot be a true integra- 
tion of all semantic models because of the 
very different approaches they take. Spe- 
cifically, the approach taken by GSM is 
closest to the FDM. Because the primary 
purpose of GSM has been to serve as a tool 
for exposition, it is not completely specified 
in this paper. 

In some cases the literature taken as a 
whole uses a given term ambiguously. Per- 
haps the most common example of this is 
the term “aggregation.” At a philosophical 
level, this term is used universally to indi- 
cate object types that are formed by com- 
bining a group of other objects; for example, 
ADDRESS might be modeled as an aggre- 
gation of STREET, CITY, and ZIP. At a 
more technical level, some models support 
this using a construction based on Carte- 
sian product, whereas others use a con- 
struction based on attributes. In this 
section we adopt specific, somewhat tech- 
nical definitions for various terms. For 
example, we use aggregation to refer to 
Cartesian-product-based constructions. 
These more restrictive definitions will 
permit a clear articulation of the different 
concepts arising in the literature. 

This section has four major parts. The 
first briefly compares two broad philosoph- 
ical approaches that many models choose 
between, providing a useful perspective be- 
fore delving into a detailed discussion of 
the different building blocks of semantic 
models. The second part defines the spe- 
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cific constructs used for describing the 
structure of data in semantic models and 
presents examples that highlight similari- 
ties and differences between them. The 
third considers how these constructs are 
combined and augmented to form database 
schemas in semantic models. The fourth 
discusses languages for accessing and ma- 
nipulating data, and for specifying seman- 
tic schemas. 

2.1 Two Philosophical Approaches 

The GSM is meant to be representative of 
a wide class of semantic models; as a result 
of being somewhat eclectic, it blurs an 
important philosophical distinction arising 
in semantic modeling literature. Histori- 
cally, there have been two general 
approaches taken in constructing semantic 
models. The distinction between them is 
not black and white, but models have had 
a tendency to adopt one approach or the 
other. Essentially, various models place dif- 
ferent emphasis on the various constructs 
for interrelating object classes. One 
approach stresses the use of attributes to 
interrelate objects; the other places an 
emphasis on explicit type constructors. As 
a result, different data models may yield 
dramatically different schemas for the 
same underlying application. 

To illustrate this point, for the same 
underlying data we compare two schemas 
that give very different prominence to attri- 
butes and type constructors. The compari- 
son is particularly salient because the 
schemas reflect the underlying philosophies 
of two early influential semantic models, 
namely, the FDM and the ER Models, 
respectively. 

Figure 3 shows the two GSM schemas, 
both representing the same data underlying 
a portion of the World Traveler Database 
application. The schema in Figure 3a 
loosely follows the FDM and emphasizes 
the use of attributes for relating abstract 
object types with other abstract object 
types. The schema in Figure 3b loosely 
follows the philosophy of the ER Model in 
that it emphasizes the use of type construc- 
tor aggregation (called relationship in the 
ER Model) and grouping for relating 
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WORKS-FOR 

YEARS-OF-EMPLOYMENT 

(4 

(b) Emphasis on constructed types 

(b) 

Figure3. Two schemas for the same underlying data. (a) Schema emphasizing attributes. (b) Schema 
emphasizing type constructors. 

abstract object types. In both schemas an Interestingly, in an instance of the first 
instance includes a set of PERSONS and a schema the relationship of people and 
set of BUSINESSes (both considered sets their business is represented by the attri- 
of abstract objects), along with attributes bute (i.e., function) WORKS-FOR and its 
specifying person and business names and inverse WORKS-FOR-‘; in the second, the 
the languages spoken by PERSONS. aggregation EMPLOYMENT (which is a 
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use to represent the structure of data. The 
discussion is broken into three parts, which 
focus on types, attributes, and ISA relation- 
ships, respectively. Importantly, in the sec- 
tion on attributes we compare the notions 
of attributes and aggregations. 

set of ordered pairs) is used. Both schemas 
represent the constraint that many people 
work for the same business, but not the 
reverse: In the first schema this is accom- 
plished using a single-valued and a multi- 
valued attribute, and in the second by the 
N: 1 constraint. Further, in the first 
schema, a multivalued attribute is used to 
represent the languages spoken by a person, 
whereas in the second, a grouping construct 
is used. 

The choice of emphasis-attribute based 
or type constructor based-affects the lan- 
guage mechanisms that seem natural for 
manipulating semantic databases. Consider 
Figure 3a. If a user wanted to know the 
business of a particular person, the attrib- 
ute WORKS-FOR may be used to reference 
the business directly. In Figure 3b, the type 
constructor representing ordered pairs of 
PERSONS and BUSINESSes must be 
manipulated in order to obtain the desired 
data. On the other hand, the type construc- 
tor approach gives the user the flexibility 
of directly referencing, by name, ordered 
pairs in EMPLOYMENT. 

The use of type constructors also allows 
information to be associated directly with 
schema abstractions. As one illustration, 
the bottom subschema includes an attrib- 
ute on EMPLOYMENT that describes 
the length of time an individual has 
been employed at a particular company. 
(Essentially the same information is 
represented in the first schema with the 
two-argument attribute YEARS-OF- 
EMPLOYMENT, although the relation- 
ship EMPLOYMENT and this attribute 
are not linked together.) Analogously, in 
the second schema, the grouping construct 
for LANGUAGES is augmented by an 
attribute giving the cardinality of each set 
of languages. (No analog for this exists in 
the attribute-based approach.) In a model 
that stresses type constructors, relation- 
ships between types are essentially viewed 
as types in their own right; thus it makes 
perfect sense to allow these types to have 
attributes that further describe them. 

2.2 Local Constructs 

This section presents detailed descriptions 
of the building blocks that semantic models 

2.2.1 Atomic and Constructed Types 

A fundamental aspect of all semantic 
models is the direct representation of object 
types, distinct from their attributes and 
sub- or supertypes. Most models provide 
mechanisms to represent atomic or non- 
constructed object types, and many models 
also provide type constructors. In the dis- 
cussion below we focus on the use of object 
types in semantic models and on the two 
most prominent type constructors, namely, 
aggregation and grouping. 

A semantic model typically provides the 
ability to specify a number of atomic types. 
Intuitively, each of these types corresponds 
to a class of nonaggregate objects in the 
world, such as PERSONS or ZIP-codes. (Of 
course, the type PERSON has many attri- 
butes.) Many semantic models distinguish 
between atomic types that are abstract and 
those that are printable (or representable). 
The abstract types are typically used for 
physical objects in the world, such as PER- 
SONS, and for conceptual (or legal) objects, 
such as BUSINESSes. Atomic printable 
types are typically alphanumeric strings, 
but in some graphics-based systems they 
might include icons as well. It is often con- 
venient to articulate subclasses of these, 
such as ZIP-codes, Person-NAMES, or 
Business-NAMES, and most models asso- 
ciate operators, such as addition for num- 
bers, with them. As shown in the World 
Traveler schema, in the GSM abstract 
types are depicted with triangles, atomic 
printable types are depicted with flattened 
ovals, and subtypes are depicted with 
circles. 

In instances of a semantic schema, 
abstract objects are viewed conceptually to 
correspond directly to physical or concep- 
tual objects in the world and in some imple- 
mentations of semantic models, they are 
represented using internal identifiers that 
are not directly accessible to the user. This 
corresponds to the intuition that such 
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ADDRESS 

64 (b) 

Figure 4. Object types constructed with aggregation. (a) EMPLOYMENT = PERSON X 
BUSINESS. (b) ADDRESS = STREET x CITY x ZIP. 

objects cannot be “printed” or ‘displayed” 
on paper or on a monitor. 

When defining an instance of a semantic 
schema, an active domain is associated with 
each node of the schema. The active 
domain of an atomic type holds all objects 
of that type that are currently in the data- 
base. This notion of active domain is 
extended to type constructor nodes below. 

We now turn to type constructors. The 
most prominent of these in the semantic 
literature are aggregation (called relation- 
ship in the ER Model) and grouping (also 
known as association [Brodie and Ridja- 
novic 19841). An aggregation is a composite 
object constructed from other objects in the 
database. For example, each object associ- 
ated with the aggregation type EMPLOY- 
MENT in Figure 4a is an ordered pair of 
PERSON and BUSINESS values. Mathe- 
matically, an aggregation is an ordered n- 
tuple. In an instance, the active domain of 
an aggregation type will be a subset of the 
Cartesian product of the active domains 
assigned to the underlying nodes. For 
example, the active domain of EMPLOY- 
MENT will be the set of pairs correspond- 
ing to the set of employee-employer 
relationships currently true in the database 
application. According to our definition, 
the identity of an aggregation object is com- 
pletely determined by its component val- 
ues. Figure 4b highlights the use of 
aggregation for encapsulating information. 

Before continuing, we reiterate that the 
definition of aggregation used here is delib- 
erately narrow and differs from the usage 
of that term in some models, including 
SDM and TAXIS. The representation of 
aggregations in those models is generally 
based on attributes and is discussed in the 
next section. It should also be noted that 
some models, including FDM, emphasize 
the use of attributes, as well as support the 
use of aggregations in attribute domains. 

The grouping construct is used to repre- 
sent sets of objects of the same type. Fig- 
ure 5a shows the GSM depiction of the 
grouping construct to form a type whose 
objects are sets of languages. Mathemati- 
cally, a grouping is a finite set. In an 
instance, the active domain of a grouping 
type will hold a set of objects, each of which 
is a finite subset of the active domain of 
the underlying node. In a constructed 
object, a *-node will always have exactly 
one child. 

As defined here, a grouping object is a 
set of objects. Technically, then, the iden- 
tity of a grouping object is determined 
completely by that set. To emphasize 
the significance of this, we consider how 
committees might be modeled in a semantic 
schema. One approach is to define the type 
COMMITTEE as a grouping of PERSON 
because each committee is basically a set 
of people. This is probably not accurate 
in most cases because the identity of a 
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Data Model [Kuper and Vardi 1984, 19851 
provides an alternative formalism in which 
cycles are permitted. 

We close this section by mentioning 
other kinds of type constructors found in 
the literature. The TAXIS and Galileo 
models support metatypes; that is, types 
whose elements are themselves types. For 
example, in the World Traveler example, a 
metatype TYPE-OF-PERSON might con- 
tain the types PERSON, LINGUIST, 
TOURIST, and BUSINESS-TRAVELER. 
This metatype could have attributes such 
as SIZE or AVERAGE-AGE, which 
describe characteristics of the populations 
of the underlying types. A comparison 
of metatypes with both subtypes and 
the grouping construct is presented in 
Section 2.3.2. 

In principle, a data model can support 
essentially any type constructor in much 
the same way in which some programming 
languages do. Historically, almost all 
semantic models have focused almost 
exclusively on aggregation and grouping. 
Notable exceptions include SAM* (Seman- 
tic Association Model), TAXIS, and Gali- 
leo. These models permit a variety of type 
constructors that may be applied to atomic 
printable types. SAM* is oriented in part 
toward scientific and statistical applica- 
tions and supports sets, vectors, ordered 
sets, and matrices; TAXIS and Galileo sup- 
ports type constructors typical of impera- 
tive programming languages. 

To summarize, semantic models typically 
differentiate between abstract and printa- 
ble types and provide type constructors for 
aggregation and grouping. 

LANGUAGES 

LANGUAGE 

(a) 

d 
COMMI-ITEE 

r I 
(b) 

Figure5 Object types constructed with grouping. 
(a) LANGUAGES = * LANGUAGE. 

committee is separate from its membership 
at a particular time. Figure 5b shows a more 
appropriate approach. COMMITTEE is 
modeled as an abstract type and has an 
attribute MEMBERSHIP whose range is a 
grouping type. 

As illustrated in Figure 6, the type con- 
structors can be applied recursively. In this 
example, we view a VISIT as a triple con- 
sisting of a TOURIST-TRAP, a GUIDE 
(viewed as a subtype of PERSON), and a 
set of TOURISTS (also a subtype of per- 
son). As indicated in the figure, edges orig- 
inating from an aggregation node can be 
labeled by a role; this is important if more 
than one child of an aggregation is of the 
same type. In the GSM and most semantic 
models supporting aggregation and group- 
ing, there can be no (directed or undirected) 
cycle of type constructor edges. The Logical 

2.2.2 Attributes 

The second fundamental mechanism found 
in semantic models for relating objects is 
the notion of attribute (or function) 
between types. In this section we articulate 
a specific meaning for this notion and indi- 
cate the various forms it takes in different 
semantic models. We conclude with a com- 
parison of different modeling strategies 
using aggregation and attributes. 

We begin by defining the notion of attrib- 
ute as used in the GSM. Speaking formally, 
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VISIT 

DESTINATION 

T&&T 

/ 

0 TOURIST 

IURISTS 

VISIT = DESTINATION:TOURIST-TRAP x LEADER:GUIDE x FOLLOWERS:( *TOURIST ) 

Figure 6. Recursive application of aggregation and grouping constructs. 

a one-argument attribute in a GSM schema 
is a directed binary relationship between 
two types (depicted by an arrow), and an 
n-argument attribute is a directed relation- 
ship between a set of n types and one type 
(depicted by an arrow with n tails). Attri- 
butes can be single valued, depicted using 
an arrow with one pointer at its head, or 
multivalued, depicted using an arrow with 
two pointers at its head. In an instance, a 
mapping (a binary or (n + l)-ary relation) 
is assigned to each attribute; the domain of 
this mapping is the (cross product of the) 
active domain(s) of the source(s) of the 
attribute, and the range is the active 
domain of the target of the attribute. The 
mapping may be specified explicitly 
through updates, or in the case of derived 
attributes it may be computed according to 
a derivation rule. In the case of a single- 
valued attribute, the mapping must be a 
function in the strict mathematical sense, 
that is, each object (or tuple) in the domain 
is assigned at most one object in the range. 
In GSM, there are no restrictions on the 
types of the source or target of an attribute. 

Of course, there is a close correspondence 
between the semantics of a multivalued 
attribute and the semantics of a single- 
valued attribute whose range is a con- 
structed grouping type. In keeping with the 
general philosophy that the GSM incorpo- 
rates prominent features from several rep- 
resentative semantic models, both of these 
possibilities have been included. Most 
models in the literature support multival- 
ued attributes and do not permit an attrib- 
ute to map to a grouping type. Also, some 
models, including SDM and INSYDE, view 
all attributes as multivalued and use a con- 
straint if one of them is to be single valued. 
Similarly, there is also a close relation- 
ship between a one-argument attribute 
whose domain is an aggregation and an 
n-argument attribute. 

We now briefly mention another kind of 
attribute, called here a type attribute. This 
is supported in several models, including 
SDM, TAXIS, and SAM*. Type attributes 
associate a value with an entire type, 
instead of associating a value with each 
object in the active domain. For example, 
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Figure 7. Four alternative representations for ENROLLMENT. 

the type attribute COUNT might be asso- 
ciated with the type PERSON and would 
hold one value: the number of people cur- 
rently “in” the database. Other type attri- 
butes might hold more complex statistics 
about a type, for example, the average sal- 
ary or the standard deviation of those sal- 
aries. The value associated with a type 
attribute is generally prescribed in the 
schema; such attributes thus form a special 
kind of derived data. 

We conclude the section by comparing 
four different ways of representing essen- 
tially the same data interrelationships 
using the aggregation and attribute con- 

structs. Figure 7 shows four subschemas 
that might be used to model the type 
ENROLLMENT. To simplify the pictures, 
we depict all atomic nodes as circular. In 
the first subschema, ENROLLMENT is 
viewed as an aggregation of COURSE and 
STUDENT. Each object of type ENROLL- 
MENT will be an ordered pair, and a 
GRADE is associated with it by the attrib- 
ute shown. The IF0 and Galileo models 
provide explicit mechanisms for this rep- 
resentation. The second approach might be 
taken in such models as SAM* and SHM+, 
which do not provide an explicit attribute 
construct. In this case ENROLLMENT is 
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viewed as a ternary aggregation of 
COURSE, STUDENT, and GRADE. As 
suggested in the diagram, a key constraint 
is typically incorporated into this schema 
to ensure that each course-student pair has 
only one associated grade. The third 
approach shown in Figure 7c might be 
taken in models that do not provide an 
explicit type constructor for aggregation. 
Many semantic models fall into this cate- 
gory, including SBDM, SDM, TAXIS, 
and INSYDE (and the object-oriented 
programming language SMALLTALK, 
for that matter). Under this approach 
ENROLLMENT is viewed as an atomic 
type with three attributes defined on it. 
Although not shown in Figure 7c, a con- 
straint might be included so that no course- 
student pair has more than one grade. The 
fourth approach is especially interesting in 
that it does not require that the construct 
ENROLLMENT be explicitly named or 
defined if it is not in itself relevant to the 
application. In this case the attribute for 
GRADE would be a function with two argu- 
ments. FDM has this capability. 

We now compare the first three of these 
approaches from the perspective of object 
identity. In Figure 7a, each enrollment is 
an ordered pair. Thus, the grade associated 
with an enrollment can change without 
affecting the identity of the enrollment. 
Technically speaking, in the absence of the 
key dependency, this is not true in Figure 
7b, in which an enrollment is an ordered 
triple. In Figure 7c, the underlying identity 
is independent of any of the associated 
course, student, and grade values. An 
enrollment e with values CSlOl, Mary, and 
‘A’ might be modified to have values 
Math2, Mary, ‘B’ without losing its under- 
lying identity. Also, in the absence of a 
constraint, the structure does not preclude 
the possibility that two distinct enroll- 
ments e and e’ have the same course, the 
same student, and the same grade. 

2.2.3 ISA Relationships 

The third fundamental component of vir- 
tually all semantic models is the ability to 
represent ISA or supertype/subtype rela- 
tionships. In this section we review the 

basic intuitions underlying these relation- 
ships and describe different variations of 
the concept found in the literature. The 
focus of this section is on the local proper- 
ties of ISA relationships; global restrictions 
on how they may be combined are discussed 
in Section 2.3.1. In several models subtypes 
arise almost exclusively as derived sub- 
types; this aspect of subtypes is considered 
in Section 2.3.2. 

Intuitively, an ISA relationship from a 
type SUB to a type SUPER indicates that 
each object associated with SUB is associ- 
ated with the type SUPER. For example, 
in the World Traveler schema the ISA edge 
from ,TOURIST to PERSON indicates that 
each tourist is a person. More formally, in 
each instance of the schema, the active 
domain of TOURIST must be contained in 
the active domain of PERSON. In most 
semantic models each attribute defined on 
the type SUPER is automatically defined 
on SUB; that is, attributes of SUPER are 
inherited by SUB. It is also generally true 
that a subtype may have attributes not 
shared by the parent type. 

The family of ISA relationships in a 
schema forms a directed graph. In the lit- 
erature this has been widely termed the 
ISA “hierarchy.” However, as suggested in 
Figure 8, most semantic models permit 
undirected (or weak) cycles in this graph. 
For this reason we follow Atzeni and Parker 
[ 19861 and Lenzerini [ 19871 in adopting the 
term ISA network. Although ISA relation- 
ships are transitive, it is customary to spec- 
ify the fundamental ISA relationships 
explicitly and view the links due to transi- 
tivity as specified implicitly. 

Speaking informally, ISA relationships 
might be used in a semantic schema for two 
closely related purposes. The first is to 
represent one or more possibly overlapping 
subtypes of a type, as with the subtypes of 
PERSON shown in the World Traveler 
schema. The second purpose is to form a 
type that contains the union of types 
already present in a schema. For example, 
a type VEHICLE might be defined as the 
union of the types CAR, BOAT, and 
PLANE, or the type LEGAL-ENTITY 
might be the union of PERSON, CORPO- 
RATION, and LIMITED-PARTNER- 
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SALARY EMPLOYEE I [ STUDENT \ MAJOR ) 

Figure 8. ISA network with undirected cycle. 

SHIP. When using ISA for forming a 
union, it is common to include a covering 
constraint, which states that the (active 
domain of the) supertype is contained in 
the union of the (active domains of the) 
subtypes. Also, the semantics of update 
propagation varies for the different kinds 
of ISA relationships. 

Historically, semantic models have used 
a single kind of ISA relationship for both 
of these purposes. Furthermore, several 
early papers on semantic modeling (includ- 
ing FDM and SDM) provide schema 
definition primitives that favor the 
specification of ISA networks from top to 
bottom. For example, in these models the 
type VEHICLE would be specified first, 
and subtypes CAR, BOAT, and PLANE 
would be specified subsequently. In con- 
trast, the seminal paper [Smith and Smith 
19771 uses ISA relationships to form unions 
of existing types. 

More recent research on semantic mod- 
eling has differentiated several kinds of ISA 
relationship; and some models, including 
IFO, RM/T, Galileo, and extensions of the 
ER Model, incorporate more than one type 
of ISA into the same model. For example, 
in the extension of the ER Model described 

in Teorey et al. [1986], subset and general- 
ization ISA relationships are supported. A 
subset ISA relationship arises when one 
type is contained in another; this is the 
notion already discussed in connection with 
the GSM. Generalization ISA relationships 
arise when one type is partitioned by its 
subtypes, that is, when the subtypes are 
disjoint and together cover the supertype. 
Generalization ISA relationships could 
thus be used for the VEHICLE and 
LEGAL-ENTITY types mentioned above. 
As noted in Abiteboul and Hull [1987] and 
Teorey et al. [ 19861, the update semantics 
of these two constructs are different. For 
example, in the first case deletion of an 
object from a subtype has no impact on the 
supertype; in the second case deletion from 
a subtype also requires deletion from the 
supertype. 

A second broad motivation for distin- 
guishing kinds of ISA relationships stems 
from studies of schema integration [Batini 
et al. 1986; Dayal and Hwang 1984; 
Navathe et al. 1986; NEL86]. For example, 
Dayal and Hwang [ 19841 study the problem 
of integrating two or more FDM schemas. 
Suppose that two FDM schemas contain 
types EMPl and EMPB, respectively, for 
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employees. To integrate these, a new type 
EMPLOYEE can be formed as the gener- 
alization of EMPl and EMPB. This 
generalization may have overlapping sub- 
types but must be covered by them. Inter- 
estingly, Dayal and Hwang [1984] also 
permit ISA relationships between attri- 
butes. 

2.3 Global Considerations 

In Section 2.2 we discussed the constructs 
used in semantic models largely in isola- 
tion. This section takes a broader perspec- 
tive and examines the larger issue of how 
the constructs are used to form schemas. 
The discussion is broken into three areas. 
The first concerns restrictions of an essen- 
tially structural nature on how the con- 
structs can be combined, for example, that 
there be no directed cycles of ISA relation- 
ships. The second and third areas are two 
closely related mechanisms for extending 
the expressive power of schemas, namely, 
derived schema components and integrity 
constraints. 

2.3.1 Combining the Local Constructs 

Although many semantic models support 
the basic constructs of object construction, 
attribute, and ISA, they do not permit arbi- 
trary combinations of them in the forma- 
tion of schemas. Restrictions on how the 
constructs can be combined generally stem 
from underlying philosophical principles or 
from intuitive considerations concerning 
the use or meaning of different possible 
combinations. Such restrictions have also 
played a prominent role in theoretical 
investigations of update propagation in 
semantic schemas [Abiteboul and Hull 
1987; Hecht and Kerschberg 19811. The 
restrictions are typically realized in one of 
two ways: in the definition of the constructs 
themselves (e.g., in the original ER Model, 
all attribute ranges are printable types) or 
as global restrictions on schema formation 
(e.g., that there be no directed cycles of ISA 
relationships). The following discussion 
surveys some of the intuitions and restric- 
tions arising in construct definitions and 
then considers global restrictions on 
schema formation. 

In the description of the local constructs 
given in Section 2.2, relatively few restric- 
tions are placed on their combination. For 
example, aggregation and grouping can be 
used recursively, and attributes can have 
arbitrary domain and range types. Indeed, 
part of the design philosophy of the GSM 
was to present the underlying constructs in 
as unrestricted a form as feasible in order 
to separate fundamental aspects of the con- 
structs from their usage in the various 
semantic models of the literature. In con- 
trast with the GSM, many semantic models 
in the literature present constructs in 
restricted forms; for example, some models 
permit aggregations in attribute domains 
but not as attribute ranges or in ISA rela- 
tionships. 

Restrictions explicitly included in the 
definition of constructs are essentially 
local. However, these restrictions can affect 
the overall or global structure of the family 
of schemas of a given model. A dramatic 
illustration of this is provided by the origi- 
nal ER Model [Chen 19761. In that model, 
aggregation can be used only to combine 
abstract types. As a result, schemas from 
the model have a two-tier character; with 
abstract types in one level and aggregations 
in the second. Attributes may be defined 
on both abstract types or aggregations, but 
they must have ranges of printable type. 

We conclude our discussion of local con- 
structs by attempting to indicate why cer- 
tain models introduce restrained versions 
of constructs. Intuitively, a model designer 
tries to construct a simple yet comprehen- 
sive model that can represent a large family 
of naturally occurring applications. Thus, 
for example, FDM allows grouping only in 
attribute ranges. As illustrated in the dis- 
cussion of COMMITTEES in Section 2.2.1 
(see Figure 5b), grouping objects are rarely 
of interest in isolation. 

In addition to restricting the use of con- 
structs at the local level, many semantic 
models specify global restrictions on how 
they may be combined (including notably 
Abiteboul and Hull [1987]; Brodie and 
Ridjanovic [1984]; Brown and Parker 
[1983]; Dayal and Hwang [1984]; Hecht 
and Kerschberg [1981]). The most promi- 
nent restrictions of this kind concern the 
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n TOURIST 

(4 (b) 

Figure 9. “Schemas” violating intuitions concerning ISA. 

combining of ISA relationships. More 
recently, the interplay between constructed 
types and ISA relationships has also been 
studied. To give the flavor of this aspect of 
semantic models, we present a representa- 
tive family of global restrictions on ISA 
relationships. It should also be noted that 
several models [Albano et al. 1985; Ham- 
mer and McLeod 1981; King and McLeod 
1985a; Shipman 1981; Su 19831 do not 
explicitly state global rules of this sort but 
nevertheless imply them in the definitions 
of the underlying constructs. 

To focus our discussion of ISA restric- 
tions, we consider only abstract types. This 
coincides with most early semantic models, 
including FDM and SDM. In schemas for 
these models, a family of base types is 
viewed as being defined first, and subtypes 
are subsequently defined from these in a 
top-to-bottom fashion. The World Traveler 
schema follows this philosophy, as does the 
example in Figure 8. In the GSM, subtypes 
are depicted using a subtype (circle) node, 
indicating that they are not base types. To 
enforce this philosophy, we might insist 
that the tail of each specialization edge is a 
subtype node and the head of each special- 
ization edge is an abstract or subtype node. 

A second general restriction on ISA 
involves directed cycles. Consider the 
“schema” of Figure 9a. (We use quotes 
because this graph does not satisfy the 
global restriction we are about to state.) It 
suggests that TOURIST is a subtype of 
BUSINESS-TRAVELER, which is a sub- 

type of LINGUIST, which is a subtype of 
TOURIST. Intuitively, this cycle implies 
that the three types are redundant; that is, 
in every instance, the three types will con- 
tain the same set of objects. Furthermore, 
if the cycle is not connected via ISA rela- 
tionships to some abstract type, there is no 
way of determining the underlying type 
(e.g., PERSON) of any of the three types. 
Thus, we might insist that there is no 
directed cycle of ISA edges. 

In the “schema” of Figure 9b, the type 
labeled ? is supposed to be a subtype of the 
abstract type PERSON and also of the 
abstract type BUSINESS. If we suppose 
that the underlying domains of PERSON 
and BUSINESS are disjoint, then in every 
instance the node labeled ? will be assigned 
the empty set. Speaking intuitively, the ? 
node cannot hold useful information. So, 
we might insist that any pair of directed 
paths of ISA edges originating at a given 
node can be extended to a common node. 

The above discussion provides a complete 
family of restrictions on ISA relationships 
for the GSM considered without type con- 
structors. Speaking informally, the rules 
are complete because they capture all of the 
basic natural intuitions concerning how 
ISA relationships (of the top-to-bottom 
variety) must be restricted in order to be 
meaningful. On a more formal level, it can 
be shown that, if a schema satisfies these 
rules, then every node will have an unam- 
biguous underlying type, no pair of nodes 
will be redundant, and every node will be 
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satisfiable in the sense that some instance 
will assign a nonempty active domain to 
that node. 

The set of rules given above applies to 
the special case of abstract types and top- 
to-bottom ISA relationships. As discussed 
in Section 2.2.3, some models support dif- 
ferent kinds of ISA relationships. Further- 
more, in some models constructed types can 
participate in ISA relationships. Specifica- 
tion of global rules in these cases is more 
involved; the IF0 model presents one such 
set of rules [Abiteboul and Hull 19871. 

2.3.2 Derived Schema Components 

Derived schema components are one of 
the fundamental mechanisms in semantic 
models for data abstraction and encap- 
sulation. A derived schema component 
consists of two elements: a structural spec- 
ification for holding the derived informa- 
tion and a mechanism for specifying how 
that structure is to be filled, called a deri- 
vation rule. (Keeping with common termi- 
nology, we refer to derived schema 
components simply as “derived data.“) 
Derived data thus allow computed infor- 
mation to be incorporated into a database 
schema. 

In published semantic models the most 
commonly arising kinds of derived data are 
derived subtypes and derived attributes. 
Each of these is illustrated in the World 
Traveler schema: LINGUIST is a derived 
subtype of PERSON that contains all per- 
sons who speak at least two languages, and 
LANG-COUNT is a derived attribute that 
gives the number of languages that mem- 
bers of LINGUIST speak. In queries, users 
may freely access these derived data in the 
same manner in which they access data 
from other parts of the schema. As a result, 
the qo:cific computations used to deter- 
mine the members of LINGUIST and the 
value of LANG-COUNT are invisible to 
the user. The derivation rules defining 
derived data can be quite complex, and 
moreover, they can use previously defined 
derived data. 

In any given semantic model, a language 
for specifying derivation rules must be 
defined. In the notable models supporting 

derived data [Hammer and McLeod 1981; 
King and McLeod 1985a; Shipman 19811, 
this language is a variant of the first-order 
predicate calculus, extended to permit the 
direct use of attribute names occurring in 
the schema, the use of aggregate attributes, 
and the use of set operators (such as set 
membership and set inclusion). This is dis- 
cussed further in Section 2.4. (Although not 
traditionally done, the language for speci- 
fying derivation rules can, in principle, 
allow side effects.) 

To illustrate the potential power of a 
derived data mechanism, we present an 
example that could be supported in the 
DBMS CACTIS [Hudson and King 19861. 
Figure 10 shows a schema involving 
BUSINESS-TRAVELERS and TRIPS 
they have taken. The derived attribute 
TOTAL-MILES-TRAVELED is also de- 
fined on business travelers. The attribute 
uses two pieces of information: the TRIP 
attribute of BUSINESS-TRAVELER and 
the ADDRESS attribute of BUSINESS. 
TRIP consists of ordered pairs of DATE 
and CITY, each representing one business 
trip. The definition of TOTAL-MILES- 
TRAVELED is based on a derivation rule 
that is a relatively complex function. For 
each city traveled to on a trip, this function 
computes the distance between that city 
and the city the individual works in. Then, 
the distances are summed and multiplied 
by 2 to give the total miles traveled per 
individual. This distance information may 
be stored elsewhere in the database or else- 
where in the system. 

To illustrate further the power of derived 
data, we present an example showing the 
interplay of derived data with schema 
structures. The example also provides a 
useful comparison of the notions of group- 
ing, subtype, and metatype. Figure 11 
shows three related ways of modeling cat- 
egorizations of people on the basis of the 
languages they can speak. Figure lla is 
taken from SDM and uses the grouping 
construct in conjunction with a derivation 
rule stating that the node should include 
sets of people grouped by the languages 
they speak. In an instance, this type would 
include the set of persons who speak 
French, the set of persons who speak 
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PROFICIENCY- 

(b) 

l l l 

LANGUAGE-BASED 
PERSON-TYPES 

l-yLIxr, 

(c) 

Figure 11. Related uses of derived schema components. (a) Expression-defined grouping 
type as in SDM. (b) Derived subtypes (derivation rules not shown). (c) Metatype whose 
elements are types, as in TAXIS. 
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associated with a derived schema compo- 
nent. In many cases such updates would 
have ambiguous consequences. For exam- 
ple, in an instance of the World Traveler 
Database, if someone were explicitly 
deleted from LINGUIST, the set of lan- 
guages that person speaks would have to be 
reduced, but the system would not know 
which languages to remove. 

In some cases explicit updates against a 
derived schema component might have an 
unambiguous impact on the underlying 
data. For example, updates on the 
FRENCH-SPEAKING-PERSON subtype 
of Figure llb are easily translated into 
updates on the SPEAKS attribute. Impor- 
tantly, FDM as described in Shipman 
[ 19811 provides facilities for specifying how 
updates to the derived data, if permitted at 
all, should be propagated in the underlying 
data. Interestingly, the derived update 
problem is related to the view update prob- 
lem in relational databases [Cosmadakis 
and Papadimitriou 19841. 

Chinese, and, more generally, a set of per- 
sons for each of the languages in the data- 
base. These sets are accessed in queries by 
referring to languages. (This construction 
is closely related to forming the inverse 
function SPEAKS-‘.) In the example, we 
also define a (nonderived) attribute on the 
grouping type. 

The schema of Figure llb includes a 
derived subtype for each of the languages 
that arises. In this representation different 
attributes can be associated with each of 
the subtypes. Importantly, the number of 
subtypes is equal to the number of lan- 
guages arising in the underlying instance, 
whereas in the schema of Figure lla, only 
one additional type is used. Although not 
shown here, type attributes can be defined 
on the subtypes to record information on 
the number of speakers of each language. 

The schema of Figure llb can be 
extended to include the graph of Figure llc, 
which shows the use of a metatype, as found 
in TAXIS. The elements of this metatype 
are types from elsewhere in the schema. 
The derived attribute NUMBER-OF- 
SPEAKERS defined on this metatype 
shows a third way of obtaining this cardi- 
nality information. 

Several models, including FDM and 
SDM, view the specification of derived data 
as part of the schema design and/or evolu- 
tion process, whereas others support a 
much more dynamic view. For example, in 
the implementation of INSYDE described 
in King [1984], users can specify derived 
data at any time and incorporate them as 
permanent in the schema. Indeed, in the 
graphics-based interface to this model 
[King 19841, database queries are formed 
through the iterative specification of 
derived data (see Section 4.3). 

We close this section with a discussion 
of the interaction of derived data with data- 
base updates. Speaking in general terms, 
derived data are automatically updated as 
required by updates to other parts of the 
schema. For example, in the World Trav- 
eler Database, if a person who speaks one 
language learns a second, that person is 
automatically placed in the LINGUIST 
subtype, and the attribute LANG-COUNT 
is extended to this person. A subtlety arises 
if the user attempts to directly update data 

2.3.3 Static Integrity Constraints 

As is clear from the above discussion, the 
structural component of semantic models 
provides considerably more expressive 
power than that of the record-oriented 
models. However, there is still a wide 
variety of relationships and properties of 
relationships that cannot be directly 
represented using structure alone. For this 
reason, semantic models often provide 
mechanisms for specifying integrity con- 
straints. The discussion here focuses on 
three topics: the relationship between 
semantic models and the prominent rela- 
tional integrity constraints, prominent 
types of integrity constraints found in 
semantic models, and the differences 
between integrity constraints and derived 
data. Although integrity constraints can in 
principle focus on both the static and 
dynamic aspects of data [Tsichritzis and 
Lochovsky 1982; Vianu 19871, little 
research on dynamic constraints has been 
done relative to semantic models. For this 
reason, we focus on static integrity con- 
straints. 

Broadly speaking, semantic models 
express in a structural manner the most 
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important types of relational integrity con- 
straints, namely, key dependencies and 
inclusion dependencies. As suggested by the 
World Traveler schema in Figure 1 and the 
associated relational schema in Figure 2, 
relational key dependencies can be repre- 
sented using single-valued attributes. 
Inclusion dependencies arising from sub- 
typing can be represented using ISA rela- 
tionships. Inclusion dependencies that 
serve as referential constraints are typically 
modeled in an implicit manner in semantic 
schemas. For example, the dependency 
BUSTRAV[EMPLOYER] C BUSI- 
NESS[BNAME] in the relational schema 
is represented in the semantic schema by 
the fact that the attribute edge WORKS- 
FOR points directly to the BUSINESS 
node as its range. Interestingly, some exam- 
ples of multivalued dependency [Fagin 
1977; Zaniolo 19761 are naturally modeled 
using multivalued attributes. 

We now turn to the various kinds of 
constraints used in semantic models. Many 
of these focus on restricting the individual 
constructs occurring in a schema. On attri- 
butes, such constraints include restrictions 
that they be l-l, onto, or total. For exam- 
ple, in the World Traveler schema, the 
HAS-NAME attribute is restricted to be 
l-l and total. ISA relationships can also be 
constrained in various ways. For example, 
a disjointness constraint states that certain 
subtypes of a type are disjoint (e.g., that no 
TOURIST is a BUSINESS-TRAVELER). 
A covering constraint states that a set of 
subtypes together covers a type. In some 
investigations, these constraints are 
applied to types that need not be related by 
ISA edges [Lenzerini 19871. 

An important class of constraints on con- 
structs restrict cardinalities in various 
ways. Perhaps the best known types of 
cardinality constraint are found in the ER 
Model: These specify whether a binary 
aggregation (relationship) is 1: 1,l :N, N:l, 
or M:N. For example, in Figure 3b, the 
aggregation EMPLOYMENT between 
PERSON and BUSINESS is constrained 
to be N:l. In each instance of this schema, 
several (N) people can be associated with 
a given business, but only one (1) business 

can be associated with a given person. 
Multivalued attributes can be restricted in 
a similar manner: An attribute mapping 
students to courses might be restricted to 
be [l : 61, meaning that each student must 
be taking at least one course but no more 
than six courses. As detailed in Section 3.2, 
the IRIS data model permits the specifica- 
tion of several cardinality constraints on 
the same n-ary aggregation, thereby provid- 
ing considerable expressive power. 

Another prominent constraint is an 
existence constraint. This is related to a 
relational inclusion dependency and states 
that each entity of some type must occur 
in some aggregation. Consider the schema 
of Figure 3b, which represents the aggre- 
gation EMPLOYMENT. It makes no sense 
in this particular application for a business 
to exist in the database unless it partici- 
pates in an EMPLOYMENT aggregation 
for at least one employee. To enforce this, 
we would say that there is an existence 
dependency between BUSINESS and 
EMPLOYMENT. It is also natural to place 
existence dependencies on attribute ranges. 

The semantic modeling literature has 
also described constraints that are com- 
puted in nature; such constraints may 
involve schema components that are arbi- 
trarily separated. These constraints are 
generally specified using a predicate 
describing properties of data taken from 
disparate parts of a schema. Such con- 
straints in the World Traveler Database, 
for example, can state that for each busi- 
ness-traveler p, the city of p’s employer is 
equal to the city where p lives or that the 
number of persons living in a given zip- 
code area is no greater than 10,000. 
Although several authors have suggested 
the usefullness of computed constraints in 
principle [Hammer and McLeod 1981; King 
and McLeod 1985a; Tsichritzis and 
Lochovsky 19821, no models in the litera- 
ture support them formally. 

There is a close relationship between 
integrity constraints and derived schema 
components. Both require that data asso- 
ciated with different parts of a schema be 
consistent according to some criteria. The 
essential difference is that an integrity 
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Essentially, a semantic manipulation lan- 
guage typically takes the form of an exten- 
sion to a language resembling a relational 
query language. Some semantic manipula- 
tion languages also include the flow-of- 
control and computational capabilities of 
general-purpose imperative programming 
languages. The GSM data manipulation 
language is a simple SEQUEL-like lan- 
guage. 

Here is a query that lists the names of 
all linguists who speak three or more lan- 
guages; it illustrates the basic capabilities 
of a semantic access language to manipu- 
late types and functions: 

for each X in LINGUIST 
such that LANGCOUNT 2 3 

print PNAME(X) 

The next query prints any address such 
that more than one person resides at the 
given address: 

for each X in ADDRESS 
such that for some Y in PERSON 
and for some Z in PERSON 

Y#Zand 
ADDRESS(Y) = X and 

ADDRESS(Z) = X 
print X.STREET, X.CITY, X.ZIP 

constraint does not extend the database 
with any new information, whereas derived 
data truly augment the database. 

2.4 Manipulation Languages 

Up to this point we have provided an over- 
view of the data structuring mechanisms 
supported by typical semantic models. 
These capabilities would normally be sup- 
ported by a data definition language asso- 
ciated with a specific model. No data model 
is complete without a corresponding data 
manipulation language, which allows the 
database user to create, update, and delete 
data that correspond to a give schema. In 
this section, we describe the general struc- 
ture of a data manipulation language for 
the GSM and use it as a means of discussing 
the general nature of semantic data manip- 
ulation. 

There are three fundamental capabilities 
that differentiate a semantic data manipu- 
lation language from a manipulation lan- 
guage for a traditional record-oriented 
model. First, the language must be able to 
query abstract types. Second, it must pro- 
vide facilities for referencing and manipu- 
lating attributes. In this way, abstract, 
nonprintable information may be manipu- 
lated. Third, semantic manipulation lan- 
guages often allow the user to manage 
derived data in the form of subtypes and 
functions constructed from existing 
(sub)types and functions. Thus, the speci- 
fication of derived data is not reserved for 
the user of the data definition languages 
but may also be performed at run time. 
This blurs to some degree the traditional 
boundary between schema and data; the 
user’s view of the world may now be 
extended dynamically with new infor- 
mation constructed from existing data. 
This provides a marked contrast with 
approaches taken in record-oriented 
models, in which the data definition and 
data manipulation languages are quite dis- 
tinct. 

Semantic data manipulation languages 
represent diverse programming language 
paradigms, but there are strong common- 
alities in terms of their functionality. 

Note that the “.” notation is used to refer- 
ence the various components of an aggre- 
gation. It is also true that if, for example, 
an address could have two components of 
the same type (e.g., two ZIPS), this notation 
would create an ambiguity. In general, it is 
necessary to be able to give names to the 
components of an aggregation and to ref- 
erence them by those names, rather than 
by their types. 

The following query illustrates the capa- 
bility of a semantic language to manipulate 
derived information: 

create subtype ROMANCE-LINGUIST of 
LINGUIST 

where SPEAKS includes French, Italian, 
Spanish, Portuguese, Rumanian, 
Sardinian 

for each X in ROMANCE-LINGUIST print 
PNAME(X) 

record ROMANCE-LINGUIST 
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The query creates a subtype, called 
ROMANCE-LINGUIST, of all linguists 
who speak French, Italian, Spanish, Por- 
tuguese, Rumanian, and Sardinian. Then 
the names of all romance linguists are 
printed, and the subtype is permanently 
recorded in the database schema. When a 
query specifies a derived subtype, it must 
be possible to name the subtype in order to 
reference it later. Again, we note that as a 
direct result of their rich modeling capabil- 
ities, semantic models require the creation 
of names that would not exist in a corre- 
sponding relational schema. Since such 
things as aggregations and subtypes may be 
created and referenced, they need names. 
This can be viewed as a limitation to the 
casual user who might feel that a semantic 
model causes a proliferation of names and 
therefore creates confusing schemas. 

In the examples presented above, the 
output of the queries was a list of objects 
or values, not instances of semantic types. 
This is quite different from relational quer- 
ies, which take relations as input and pro- 
duce relations as output. As a result, in 
most semantic languages operations cannot 
be composed. Notably, the language FQL 
does not suffer from this limitation (see 
Section 3.5). 

3. SURVEY 

In this section we survey a number of 
‘semantic models. In particular, we discuss 
the first ten models (four horizontal 
groups) listed in Figure 12. We begin, in 
Section 3.1, with three models that are 
highly prominent in the literature. These 
are the Entity-Relationship (ER) Model, 
the Functional Data Model (FDM), and the 
Semantic Data Model (SDM). Then we 
briefly consider a number of other semantic 
models in Sections 3.2-3.4. Finally, in Sec- 
tion 3.5 we review the prominent semantic 
data manipulation languages. 

The models of Sections 3.1 and 3.2 
embody a number of explicit, distinct con- 
structs in support of complex data model- 
ing. Section 3.3 considers the binary models 
that offer only a minimal set of simple 
constructs, which are then used to build up 
more complex structures. In Section 3.4 we 

consider models that represent complex 
data by extending the relational model. The 
models in the last two horizontal groups of 
Figure 12 focus primarily on the research 
goals of encapsulating transaction facili- 
ties and theoretical investigations. These 
models are discussed in Section 4. (In this 
and all subsequent summary tables, a blank 
entry indicates that the specified feature is 
not present to the best of the authors’ 
knowledge.) 

The three prominent models and those 
discussed in Section 3.2 all explicitly sup- 
port constructs for defining semantic data- 
bases. This approach has the advantage of 
providing a refined set of powerful model- 
ing capabilities that the database designer 
and user may quickly comprehend. In con- 
trast, the binary and relational extension 
models represent two very different philo- 
sophical approaches. The binary models 
take a building block approach in that they 
support only simple constructs that are 
then used to develop more complicated 
ones. This minimalist approach has the 
advantage of being more general; the 
models are very simple object-oriented ones 
that allow the designer to develop a wide 
variety of modeling constructs. In contrast, 
the relational extensions rely on underlying 
relational primitives to support higher level 
constructs. This approach has the advan- 
tage of being able to draw on a large body 
of knowledge concerning relational data- 
bases, which is useful in developing imple- 
mentations and in enriching a system with 
integrity mechanisms, design methodol- 
ogies, query optimization, and transaction 
specification facilities. 

Figure 12 describes the various semantic 
models according to their structural and 
dynamic aspects. There are four main cat- 
egories at the top of the figure: References 
indicates references to initial research on 
the models. Philosophical Basis classifies 
the models along three spectras: their pri- 
mary research objectives, the nature of 
their underlying modeling primitives, and 
their general modeling philosophy. The 
research objective of each model is defined 
as providing a general-purpose semantic 
model, a basis for a structured design 
methodology, a programming language for 
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database applications, or a basis for theo- 
retical investigation. The primitives in a 
given model are classified as being either 
explicit, minimalist, or relational exten- 
sions. The modeling philosophies are clas- 
sified as being centered around attributes, 
aggregation, or more general type construc- 
tors, including aggregation (see Section 
2.1). 

The Schema Components category con- 
cerns the specific schema components 
supported by the individual models. We 
consider four capabilities: type constructors 
(including aggregation and grouping), attri- 
butes (including printable, object-valued, 
and multivalued attributes), ISA relation- 
ships, and derived schema components. In 
the figure, we indicate whether a capability 
is supported explicitly or implicitly, using 
combinations of other constructs (see Sec- 
tion 2). It is true, of course, that the lack 
of one of these capabilities or the choice 
of representing it implicitly rather than 
explicitly is not necessarily a deficiency; 
the underlying philosophy of a model is 
often simpler and cleaner if the number of 
constructs is kept minimal. 

The Dynamic Component category con- 
cerns dynamic capabilities that are as- 
sociated with each model. Specifically, 
literature references are provided to re- 
search that has been performed in the 
support of semantic query languages, data 
manipulation primitives, and trans- 
action structuring. (Query languages and 
data manipulation primitives are discussed 
in Section 2.4, a survey of the prominent 
query languages is given in Section 3.5, and 
transaction structuring is discussed in 
Section 4.2.) 

The general philosophy of semantic mod- 
eling has been applied to the development 
of special-purpose database models for 
applications such as very-large-scale inte- 
gration (VLSI) design [Batory and Kim 
19851. Although these efforts are of signif- 
icant interest and further validate the use- 
fulness of semantic modeling, they are 
beyond the scope of this paper. 

3.1 Prominent Models 

In this section we consider three well- 
known models from the literature, which 
are considered by many to be the most 
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influential semantic models. We see that, 
even though they are all explicit models, 
they vary greatly in their modeling capa- 
bilities and in their philosophical approach 
to database design. The first model con- 
structs complex objects out of aggregations, 
which are visualized at the same level of 
abstraction as types. Consequently, such 
aggregations can be considered irrespective 
of the types they interrelate; that is, they 
are semantic entities on their own (see Sec- 
tion 2.1). In contrast, the two latter models 
use attributes as their primary method of 
constructing complex data; attributes are 
viewed as secondary to types and have no 
meaning at all without defining domain and 
range types. Thus, we see that the promi- 
nent models are representative of the two 
general modeling approaches described in 
Section 2.1. 

3.1.1 The Entity-Relationship Model 

The Entity-Relationship (ER) Model, pro- 
posed by Chen in 1976, is generally consid- 
ered to be one of the first true semantic 
data models to appear in the literature, 
although the term “semantic” was not in 
use at the time. Schemas of this model have 
a natural graph-based representation and 
support the representation of abstract sets 
of entities, relationships between these 
entity sets, and attributes defined from 
both entity and relationship sets to print- 
able values. Thus, an ER schema consists 
of types and relationships interconnecting 
these types, along with printable attributes 
of the types and relationships. Relation- 
ships can be restricted to 1: 1, many: 1, 
or many: many, and attributes can be 
restricted to 1: 1. 

Figure 13 shows a portion of the World 
Travelers schema using the standard ER 
notation. Rectangles represent entity sets, 
that is, abstract types, diamonds represent 
relationships, that is, aggregation, and ovals 
represent the ranges of attributes. The ER 
schema of Figure 13 illustrates a few differ- 
ences between the original ER Model and 
other, later semantic models. The most fun- 
damental difference is that ISA relation- 
ships are not represented. Recently, the ER 
Model has been extended to include ISA 
relationships [Batini et al. 1986; Teorey et 
al. 19861 (see Section 2.2.3). 
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Figure 13. ER representation of part of the World Traveler schema. 
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Perhaps the most distinctive feature of relationships are not supported, but recent 
the ER Model is the way in which it researchers have proposed mechanisms for 
restricts the use of attributes and aggrega- supporting ISA within the ER Model. 
tion. Real-world attributes whose ranges 
are printable can be represented directly-in 
the ER Model. For example, in Figure 13 
ADDRESS has three printable attributes, 
STREET, CITY, and ZIP. On the other 
hand, real-world attributes that map to 
entity sets must be represented using rela- 
tionships, as illustrated by the LIVES-AT 
relationship. (This relationship is shown to 
be many: 1 because several persons might 
share the same address.) Because relation- 
ships are given names and, in a sense, 
viewed as entities themselves, it is straight- 
forward in the ER Model to represent attri- 
butes of relationships, as illustrated in 
Figure 3b. 

In the original ER Model, multivalued 
attributes also require the use of a relation- 
ship. This is because, as discussed above, 
attributes must be single valued. Thus, to 
represent the fact that a person may speak 
more than one language, the relationship 
SPEAKS is used to collect a number of 
languages into a set. The underlying phi- 
losophy is that an attribute is restricted to 
being a single fact about an entity, whereas 
a relationship can model the construction 
of more complex entities from other enti- 
ties. 

The ER Model was originally proposed 
[Chen 19761 as a schema design aid, per- 
mitting users to design schemas using 
a high-level object-based approach. The 
resulting ER schema would then be trans- 
lated into either the relational or the net- 
work model. Within this framework, an ER 
schema is designed primarily for the pur- 
pose of articulating the overall data man- 
agement objectives of an organization, but 
is not implemented per se. A detailed design 
methodology based on a generalization of 
the ER Model appears in Teorey et al. 
[1986]. 

In sum, the ER Model was the first 
semantic model centered around relation- 
ships, not attributes. It views the world as 
consisting of entities and relationships 
among entities. Both entities and relation- 
ships may have single-valued printable 
attributes. In the original ER Model ISA 

3.1.2 The Functional Data Model 

The Functional Data Model (FDM) was 
introduced in 1976 [Kerschberg and Pac- 
neco 19761 and is recognized as the first 
semantic model centered around functional 
relationships, that is, attributes. Like the 
ER Model, a considerable amount of 
research has developed around FDM, and 
several other semantic models have 
adopted the attribute-based approach. 
Attributes in FDM can be either single- or 
multivalued and can be defined on domains 
that are Cartesian products of the atomic 
entity sets. FDM also supports ISA rela- 
tionships. Significantly, the work of Ship- 
man [1981] on FDM is among the first to 
include derived schema components as an 
integral part of a semantic model. 

An informal graph-based representation 
of FDM schemas is introduced in Shipman 
[1981] and extended in Dayal and Hwang 
[ 19841 and elsewhere. An FDM schema cor- 
responding to the World Traveler schema 
is shown in Figure 14. FDM connects 
objects directly with attributes without the 
use of intermediate constructs such as 
aggregation and grouping. This may be 
viewed as producing simpler schemas. 

The data language DAPLEX [Shipman 
19811 for this model was the first integrated 
data definition and access language for- 
mulated entirely in the high-level terms 
provided by an object-oriented semantic 
database model. DAPLEX was also the 
first database access language to give a 
prominent role to attributes, permitting 
their direct usage and also the use of their 
inverses and compositions. This and other 
semantic data access languages are dis- 
cussed in Section 3.5. 

FDM has spawned several research 
projects. It has been used to provide a 
unified interface to distributed heteroge- 
neous databases in the Multibase project 
[Landers and Rosenberg 1982; Smith et 
al. 19811. Integration of FDM schemas is 
studied in Dayal and Hwang [1984]. FDM 
also served as the basis for one of the 
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original studies of update propagation in 
the context of semantic interconnections 
between data [Hecht and Kerschberg 19811 
(see Section 4.4). 

In summary, FDM was the first of a 
number of semantic models based on 
explicit representation of attributes with 
printables or objects as their ranges. It is a 
simple, elegant model with an easily under- 
stood visual representation. It gives prom- 
inence to atomic types and attributes, not 
to type constructors like aggregation and 
generalization. One of the major benefits of 
this model is the capacity to reference func- 
tions directly when manipulating proper- 
ties of data. 

3.1.3. The Semantic Database Model 

The Semantic Database Model (SDM) 
[Hammer and McLeod 19811 was among 
the first published models to emphasize the 
UL* of the grouping constructor and the 
support of derived schema components. In 
particular, derived schema components 
permit data relativism, that is, multiple per- 
spectives on the same underlying data set. 
SDM does not provide an explicit type con- 
structor for aggregation, and in that sense 
it is attribute oriented (see Section 2); 
SDM does simulate aggregation with the 
attribute primitive. 

SDM is unique in that it provides a rich 
set of primitives for specifying derived 
attributes and subtypes. For example, sub- 
type relationships in SDM are broken into 
four categories: (i) those that are attribute 
defined, (ii) those defined by set operations 
(e.g., intersection) on existing types, (iii) 
those that serve as the range of some attrib- 
ute, and (iv) those that are user specified 
(or user controllable in the terminology of 
Hammer and McLeod [1981]). 

As an example of the second sort of sub- 
type, we might form a subtype called 
RETIRED-TOURIST (retired people who 
travel), give it the same properties of 
TOURIST, and union it with TOURIST 
to give the new subtype ALL-TOURIST. 
An example of a subtype that exists explic- 
itly to serve as the range of an attribute 
would be if TOURIST in the World Trav- 

eler schema were the range of an attribute, 
say HAS-BEEN-VISITED-BY, of a type 
COUNTRY. An example of the fourth 
sort of subtype would be SUSPICIOUS- 
TOURISTS, whose contents would be 
updated directly by the end user on the 
basis of personal criteria. Primitives for 
specifying derived attributes are also sup- 
ported in SDM. 

One of the predicates used in conjunction 
with the grouping construct is of particular 
interest because it provides expressive 
power of a structural nature. For example, 
in the World Traveler Database an enu- 
merated grouping class called EMPLOYA- 
BLE-PERSON-TYPES can be defined to 
hold the already existing types LINGUIST 
and BUSINESS-TRAVELER. This is 
roughly equivalent to forming a metatype 
from a user-specified set of types. Attri- 
butes of this new type (e.g., number of 
elements, median income) are type attri- 
butes on the underlying types. Although 
this ability to view types as both sets and 
individual elements is found in only a few 
semantic data models (SAM* and TAXIS 
being other notable models), it is commonly 
supported by frame-based approaches to 
knowledge representation in AI [Fikes and 
Kehler 19851. 

The richness of SDM as a schema spec- 
ification language highlights the trade-off 
in semantic modeling between providing a 
small or large number of primitive data 
structuring constructs. In models with a 
small number of constructs, the represen- 
tation of some data sets requires the arti- 
ficial combination of these constructs; in a 
model with many constructs such as SDM, 
the designer is continually forced to choose 
from among a variety of ways of represent- 
ing the same data. Thus, a model like FDM 
might seem stark compared with SDM, but 
for some users it might prove easier to learn 
and use. 

SDM refines the notions of subtype and 
attribute by considering how they are 
defined. However, it does not support an 
explicit aggregation type constructor. Of 
our three prominent models, it appeared in 
the literature most recently. SDM, like 
FDM and unlike the ER Model, is centered 
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In SAM* physical or abstract objects 
are represented using nonatomic concepts. 
Seven kinds of associations or type con- 
structors for building these concepts are 
used. The different associations have some- 
what specific intended uses, and operations 
especially tailored to them. 

We first consider four associations typi- 
cal of most database applications. First, 
membership association permits the speci- 
fication of the domain of a type or an 
attribute range. For example, a member- 
ship association could be used to specify 
that the type CITY has individual members 
Paris, Beijing, and so on. The SAM* rep- 
resentation of this is shown in Figure 15a. 
(The M in the root node indicates that it is 
a membership association.) The next two 
kinds of association are closely related to 
aggregation. The first of these is called 
aggregation association and is illustrated in 
Figure 15b. This kind of association is typ- 
ically used to provide a description of an 
entity and its attributes. In the figure, 
PNAME is indicated to be a key. In terms 
of the GSM, SAM*‘s interaction association 
also has the structure of aggregation. In 
SAM*, this is typically used to represent 
abstract concepts based on more concrete 
concepts. For example, the ENROLL- 
MENT type (consisting of pairs of courses 
and students) can be modeled as an inter- 
action association. Cardinality conditions 
can be specified for these associations. In 
some cases a given concept can be viewed 
in a SAM* schema as both an aggregation 
association and an interaction association. 
In this way different users can view the 
same schema in different ways. Finally, 
generalization associations are used to 
model ISA relationships. A generalization 
association forms the union of its underly- 
ing types. Constraints such as disjointness 
can be specified. 

The remaining three associations focus 
on aggregate properties of sets and are espe- 
cially suited for statistical applications. 
One of these is cross-product association. 
This form of association is again an aggre- 
gation in the terminology of GSM but typ- 
ically holds all of the Cartesian product of 
the underlying types instead of a subset of 

around attributes, but it is richer (and thus 
more complex) than either FDM or the ER 
Model. 

3.2 Other Highly Structured Models 

In this section we consider three other 
highly structured models, the Semantic 
Association Model (SAM*), the IF0 Model, 
and the IRIS Model. SAM* and IRIS have 
been developed to support full-fledged 
database applications, whereas IF0 was 
developed primarily for theoretical inves- 
tigation. SAM* focuses largely on special 
forms of the aggregation construct, and 
both IF0 and IRIS include both type con- 
structors and attributes. 

The Semantic Association Model (SAM*) 
[Su 19831, an extension of SAM [ Su 
19801, attempts to provide a set of con- 
structs rich enough to exhaust the possible 
relationship types that might arise in both 
commercial and statistical applications. 
The model distinguishes different uses of 
some of the fundamental structural con- 
structs of semantic models and in some 
cases provides them with different update 
semantics. As a result, the model supports 
a limited form of data relativism whereby 
a given construct might be viewed as having 
two or more different underlying structures 
within the same schema. The paper [Su 
19831 presents a graph-based representa- 
tion for SAM* schemas and also suggests 
an approach to implementing SAM* based 
on data structures called G-relations, which 
are closely related to non-first-normal- 
form relations [Abiteboul and Bidoit 1984; 
Fischer and Thomas 1983; Jaeschke and 
Schek 1982; Makinouchi 19771. Schema 
definition and data manipulation lan- 
guages for SAM* are under development 
[Su 19861. 

The basis for SAM* schemas is provided 
by what are called atomic concepts in Su 
[1983]. These include integer, real, charac- 
ter-string, and Boolean types, as well as 
structured programming language data 
types constructed from these, including 
vectors, arrays, and ordered and unordered 
sets, time, time series, text, and G-rela- 
tions. 
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Figure 15. Membership and aggregation associations in SAM*. 

that product. This association might be 
used to identify a variety of categories; 
for example, in a statistical database on 
populations it may be useful to consider 
categories formed from triples of AGE- 
RANGES, RACE, and SEX. These triples 
would then serve as the domain of functions 
describing statistical features of the differ- 
ent population groups they delimit. A COM- 
position association is used to hold a vector 
of sets. For example, a composition associ- 
ation for CURRENT-FLEET might be a 
triple, with three coordinates for the cur- 
rent sets of cars, trucks, and boats, respec- 
tively, that a business owns. In an instance, 
a composition association node will hold 
exactly one such tuple. Composition asso- 
ciations can participate in aggregations. 
Finally, summarization association is used 
to specify attributes for both cross-product 
associations and composition associations. 
These attributes typically hold statistical 
values and are thus a form of derived data. 
In the case of cross-product associations 
the attributes will be attributes in the sense 
of GSM; in the case of composition associ- 
ations they will be type attributes. 

To summarize, the seven kinds of asso- 
ciations used in SAM* have overlapping 
semantics but are distinguished by their 
associated update semantics and the con- 
straints permitted. Although not discussed 
here, a variety of local restrictions is placed 
on how the constructs can be combined 

with each other, thereby ensuring that 
SAM* schemas are meaningful. 

SAM* has recently been applied to the 
area of manufacturing data [Su 19861. In 
particular, SAM* has been shown to be 
useful in representing the semantics of such 
complex data types as temporal data, recur- 
sively structured data, replicated data, and 
versions. 

The IF0 Model [Abiteboul and Hull 
19871 was developed to provide a theoreti- 
cal framework for studying the structural 
aspects of semantic data models. The model 
incorporates attributes and type construc- 
tors for aggregation and grouping at a fun- 
damental level and distinguishes between 
two kinds of ISA relationships. The model 
is used in Abiteboul and Hull [1987] to 
characterize the propagation of simple 
updates in the presence of semantic model 
relationships and to analyze formally the 
interplay between constructed types and 
ISA relationships. 

In many respects the IF0 Model is sim- 
ilar to (and inspired) the structural portion 
of the GSM; a fundamental difference con- 
cerns how IF0 combines the semantic 
constructs in forming schemas. The basic 
building block of an IF0 schema is called a 
fragment. Fragments are used as abstrac- 
tion mechanisms for representing an object 
type along with its internal structure and 
its attributes. Figure 16, which shows the 
IF0 representation of a portion of the 
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World Traveler schema, contains three 
fragments: one for PERSON, one for 
TOURIST, and one for ADDRESS. The 
fragment for PERSON illustrates how IF0 
clusters information about a type and its 
attributes. In particular, the HOME node 
is used as a place holder for the range of 
LIVES-AT. This node is shown as a free 
(circle) node and is restricted by a special- 
ization edge to take its values from the type 
ADDRESS. Free nodes are used in IF0 to 
indicate that the type of objects populating 
it is determined through ISA relationships 
by another part of the schema. In IFO, 
nodes such as HOME that occur as attrib- 
ute ranges cannot be used in the same 
manner as atomic type nodes or the roots 
of constructed types. The specialization 
edge from HOME to ADDRESS enforces a 
form of referential constraint; this is 
related to but somewhat different from 
the subtype constraint represented by the 
ISA edge from TOURIST to PERSON. 
In IF0 the leaves of constructed types 
are also represented as free types that are 
restricted using referential constraint ISA 
edges. 

The use of fragments in IF0 highlights 
some of the similarities between semantic 
models and frame-based approaches to 
knowledge representation such as KL-ONE 
[Brachman and Schmolze 19851. A frag- 
ment in IF0 corresponds loosely to a frame. 
Fragments provide a natural way of repre- 
senting nested or context-dependent attri- 
butes. To illustrate, consider the set-valued 
attribute SPEAKS of the World Traveler 
schema. In IF0 this could be augmented 
with a nested attribute WITH-PROFI- 
CIENCY, which would specify the profi- 
ciency. For example, if Mary spoke French 
and Chinese, this nested attribute might 
state that she speaks French with profi- 
ciency of 2 and Chinese with a proficiency 
of 3. Furthermore, the IF0 model dis- 
tinguishes between two kinds of ISA re- 
lationships, essentially as described in 
Section 2.2.3. 

The IRIS Model [Derrett et al. 19851 was 
introduced recently, and a number of 
research projects using the model have been 
undertaken. The model is based primarily 
on object types, specialization, multivalued 

attributes, and some forms of derived 
schema components. An initial prototype 
version of IRIS [Derrett et al. 19851 will 
include a nonprocedural language for quer- 
ies and specifying derived data, as well as 
schema definition capabilities. The use of 
the IRIS Model as the basis for software 
specification has been investigated [Lyng- 
baek and Kent 19861, and a theoretical 
investigation of the model has been initi- 
ated [Lyngbaek and Vianu 19871. We focus 
on the support of derived data in the model 
and on the constraints used. 

The basic building blocks of the struc- 
tural portion of IRIS are readily described 
in terms of the GSM. IRIS supports both 
literal (printable) and nonliteral (abstract) 
object types. These types participate in a 
directed acyclic graph of ISA relationships 
that has the unique type OBJECT at its 
top. Objects may also be related through 
(typically multivalued) attributes, whose 
domains and ranges may be types or cross 
products of types. Aggregations are mod- 
eled using a single-valued attribute from a 
cross product of types into the Boolean 
type. 

IRIS uses derived schema components to 
support a form of data relativism whereby 
the same data can be viewed structurally 
from more than one perspective. In partic- 
ular, IRIS permits the derivation of several 
attributes from a single base predicate, that 
is, aggregation. Figure 17 illustrates this 
point with a simple example. The base 
predicate shown in Figure 17a specifies 4- 
tuples describing enrollments. We assume 
here that each COURSE is offered in sev- 
eral different LECTURES, that STU- 
DENTS take a given lecture of a course, 
and that students receive a GRADE. In 
Figure 17b, this information is viewed using 
the attribute COURSE-STUDENT-STA- 
TUS, which maps each course-student pair 
into the lecture the student is taking and 
the grade received. IRIS permits the speci- 
fication of this attribute as being derived 
from the base predicate. An important 
underlying principle of IRIS is highlighted 
by this example: The attributes ENROLL- 
MENT and COURSE-STUDENT-STA- 
TUS are viewed as independent of any 
particular underlying type. In general, 
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(b) 

Figure 17. Two views of aggregation supported in IRIS. 

several different attributes can be derived 
from a given base predicate. 

IRIS supports a powerful kind of cardi- 
nality constraint called an object participa- 
tion constraint. On the base predicate of 
Figure 17a, the constraint STUDENT[ 1,5] 
would indicate that each student must be 
enrolled in at least one course-lecture pair 
and cannot be enrolled in more than 5. In 
Lyngbaek and Vianu [1987] these con- 
straints are extended to attributes to 
address more than one coordinate at a time. 
For example, COURSE-STUDENT[O, l] 
is used to state that each course-student 
pair can appear 0 or 1 time in the base 
predicate. This implies that the attribute 
of Figure 17b is single valued. An analysis 
of these constraints is presented in Lyng- 
baek and Vianu [ 19871. Translation of IRIS 
schemas into relational schemas is also pre- 
sented there. 

241 

3.3 Binary Models 

In this section, we consider a representative 
of the family of “binary” models, which 
attempts to supply a small, universal set of 
constructs that are used to build more pow- 
erful structures. These models are thus 
minimalist in the sense that they require 
the database designer to understand fewer 
constructs. 

The Semantic Binary Data Model 
(SBDM) [Abrial 19741 is representative of 
this family of models [Bracchi et al. 1976; 
Deheneffe et al. 1974; Hainaut and Lechar- 
lier 1974; Senko 19751, all of which repre- 
sent data using two constructs: entity sets 
and binary relations. As indicated in Fig- 
ure 18, schemas of these models typically 
consist of labeled nodes for entity sets and 
labeled arcs corresponding to binary rela- 
tionships between them. The primary 
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PERSON 

STREET CITY ZIP 

Figure 18. SBDM representation of part of World Traveler schema. 

contribution of these models was to provide 
an early vehicle within which a number of 
fundamental types of data relationships 
could be articulated and studied. 

In the SBDM, each binary relation is 
actually viewed as an inverse pair of possi- 
bly multivalued functions. For example, the 
binary relation connecting PERSON with 
ADDRESS in Figure 18 is viewed as con- 
sisting of the (single-valued) function 
LIVES-AT and the (multivalued) function 
IS-ADDRESS-OF. A data definition lan- 
guage and data manipulation language for 
the SBDM are defined in Abrial [ 19741. 
The defined database transactions can be 
stored within the database; in this respect 
the SBDM follows INGRES [Stonebraker 
et al. 19761, in that the data dictionary 
access language is the data manipulation 
language applied to a certain part of the 
database. Recent work with these models 
includes the use of the SBDM as the basis 
for a formal schema design methodology 
[Dardailler et al. 19851, and the use of an 
extended binary model that incorporates 
ISA relationships and local constraints 

on relationships (e.g., 1: 1 or N: 1) [Rishe 
1985, 19861. 

As just described, the SBDM is closely 
related to the GSM in representational 
power. A major difference is that the type 
constructors of GSM must be simulated in 
SBDM. For example, the aggregation 
ADDRESS of the World Traveler schema 
is modeled as an abstract type with three 
binary relationships in the SBDM schema 
of Figure 18. As with FDM, a constraint 
must be added to ensure that each 
STREET, CITY, and ZIP tuple is unique. 
Also, the SBDM as described in Abrial 
[1974] does not support ISA relationships, 
although such relationships can essentially 
be represented within the framework. 

3.4 Relational Extensions 

The ER Model, FDM, SDM, and the other 
explicit models are similar in that they all 
take the approach of supplying a handful 
of distinct constructs that together are 
designed to serve the vast majority of mod- 
eling situations arising in typical database 
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application environments. They differ 
largely in the approach taken to interrelate 
data (type constructors versus attributes) 
and in the number of constructs supported. 
In this section we consider a very different 
approach taken by some researchers. We 
examine several models that support com- 
plex data as an extension to the well-known 
relational model. In these models the 
designer and user of a database view data 
from the relational perspective but are 
given mechanisms built out of the rela- 
tional model to construct semantic sche- 
mas. A benefit of this approach is that these 
models may draw on the large body of 
knowledge known about the relational 
model, including query optimization, 
implementation strategies, and query lan- 
guage formulation. A potential drawback is 
that each of these models, like the rela- 
tional model, imposes a level of indirection 
owing to the representation of objects and 
relationships based on records and identi- 
fier comparisons. By some users this might 
be viewed as tedius and inelegant. 

The Structural Model [Wiederhold and 
El-Masri 19801 is a relatively simple exten- 
sion of the relational model, which was 
introduced primarily as a tool for designing 
and integrating schemas for the record- 
oriented models. In this model, data are 
stored in relations, and five types of rela- 
tion are distinguished. First, primary entity 
relations are used to store sets of tuples 
that closely correspond to classes of entities 
in the world. These relations store identi- 
fiers for these entities, along with single- 
valued attributes defined on them. In 
general, primary entity relations will not be 
affected by updates on other parts of the 
schema. Referenced entity relations, on the 
other hand, are used for entity sets that 
serve primarily as the range of attributes 
defined on the primary entity types. Nest 
relations are used for holding many-valued 
attributes, and lexicon relations are used to 
hold 1: 1 correspondences between differ- 
ent names for the same object (e.g., person- 
name and Social Security number). Finally, 
association relations serve the same role 
as relationships in the ER Model and are 
used to model many: many relationships 
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between primary entity types. Additional 
semantics are incorporated into the model 
by restricting how these different types of 
relations can reference each other (e.g., a 
referenced entity relation must be refer- 
enced by at least one other relation). In 
sum, the Structural Model uses relations to 
simulate an object-oriented approach that 
incorporates aggregation and single- and 
multivalued attributes in a fairly direct 
manner. On the other hand, ISA relation- 
ships are not incorporated as directly. An 
interesting application of the Structural 
Model is described in Brown and Parker 
[ 19831. This paper introduces a graph- 
based representation of Structural Model 
schemas and describes a methodology for 
simplifying them. 

RM/T [Codd 19791 is Codd’s extension 
of the relational model. As in the Structural 
Model, various kinds of relations for rep- 
resenting different semantic modeling 
constructs are distinguished, and update 
semantics are specified for them. In 
RM/T, abstract objects are represented by 
permanent surrogates, and each type has 
an associated one-column E-relation that 
holds the surrogates of the objects currently 
populating that type. Although users can 
request that surrogates be created or 
deleted, they can never explicitly reference 
or view them. In this way, RM/T closely 
follows the object-oriented spirit of most 
semantic models. Single- and multivalued 
attributes are stored in relations using sur- 
rogates and printable values. Two forms of 
aggregation are supported: The so-called 
associative entities are aggregation objects 
that are assigned a new surrogate. The 
nonentity associations are aggregations for 
which no surrogates are assigned, these 
aggregations cannot have multivalued 
attributes, nor can they participate in ISA 
relationships. Grouping types based on 
attribute values (see Section 2.3.2) are 
called cover aggregations in RM/T. The 
model also provides explicit constructs 
for representing precedence relationships 
between entities that have time-valued 
attributes. 

RM/T supports two types of ISA rela- 
tionships. Unconditional generalization is 
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essentially the notion of ISA used in the 
GSM; each object in a subtype of an uncon- 
ditional generalization must be a member 
of the supertype. Alternative (or condi- 
tional) generalization is used to form sub- 
sets of a union of types. For example, the 
type CUSTOMER might be defined as an 
alternative generalization of PERSON, 
BUSINESS, and PARTNERSHIP. In 
RM/T, this means that each customer must 
be either a person, a business, or a partner- 
ship, but that the set of customers does not 
have to contain all persons, businesses, and 
partnerships. Note that in some models, 
the type CUSTOMER could be modeled 
by first forming a supertype LEGAL- 
ENTITY of the three base types and then 
defining CUSTOMER as a subtype of that. 

GEM [Tsur and Zaniolo 1984; Zaniolo 
19831 is a relational extension that can also 
be viewed as an extension of the ER Model. 
In particular, this model supports entities 
and relationships, as well as subtyping and 
nonatomic attribute ranges. An unusual 
aspect of GEM is that it was developed as 
an experiment in supporting a semantic 
data language by extending a relational 
query language (see Section 3.5). This is in 
contradistinction to investigations that 
extend the relational model itself. 

3.5 Access Languages 

We conclude our survey of semantic models 
by examining various access languages that 
have appeared in the literature and that 
support semantic modeling constructs. We 
include these languages in this section (and 
not in Section 4, which discusses research 
directions of semantic modeling) because 
several of them were defined concurrently 
and independently of the various semantic 
models. Indeed, numerous researchers have 
taken the approach of viewing data model- 
ing and data manipulation as an integrated 
mechanism. In this section we illustrate the 
general capabilities of semantic access lan- 
guages using a language similar in form to 
DAPLEX [Shipman 19811 and Semdal 
[King 19841 and briefly survey the promi- 
nent languages in the literature. Figure 19 
gives a brief survey of these languages. In 
this section we do not consider data manip- 
ulation for deeply nested constructed types; 

theoretical approaches to this problem are 
discussed in Section 4.4. 

Three of the access languages, DAPLEX, 
GEM, and ARIEL, are extensions of the 
relational calculus [Date 1981; Ullman 
19821 designed to encompass standard rela- 
tional as well as semantic data structures. 
FQL is unique because it is based on the 
paradigm of functional programming (not 
to be confused with the Functional Data 
Model, which it supports). Unlike most 
database query languages, FQL does not 
support update specification or schema def- 
inition. Finally, TAXIS, DIAL, Semdal, 
and Galileo are imperative languages, with 
philosphical similarities to typical Pascal- 
like languages, including standard flow of 
control facilities and arithmetic capabili- 
ties. 

DAPLEX supports the Functional Data 
Model. Like the other languages in this 
class, the query specification portion of this 
language contains syntactically elegant 
renditions of most of the basic elements 
of the first-order predicate calculus and 
is thus fundamentally nonprocedural. 
DAPLEX also supports the direct mention 
of attributes, their inverses, and their com- 
positions and thus permits queries to have 
a somewhat navigational flavor. It also sup- 
ports the specification of aggregate values 
such as averages, of orderings and similar 
properties of entity sets, and of database 
updates. It also supports the definition of 
schema components, including derived 
data. 

FQL finds its roots in the work of Backus 
[1978] on functional programming lan- 
guages. This approach offers several ad- 
vantages. In particular, the functional 
approach reduces the use of secondary stor- 
age, simplifies the interface needed to pro- 
vide outside programs with database access, 
and also typically enjoys an implementa- 
tion that is quite compact [Buneman et al. 
19821. 

A query in FQL is formed by composing 
one or more functions, which may them- 
selves be formed using transformations 
such as inverse or *, which turns a single- 
valued function into its analog that maps 
sets to sets. Another important operator is 
restriction, denoted using a 1, which acts 
like a filter on a list of values. To illustrate 
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the approach, we present an FQL-like 
query that corresponds to the first query of 
Section 2.4. In this query a list of all lin- 
guists is formed using !LINGUIST. This 
list is filtered by an operator, which first 
forms ordered pairs with first coordinate 
the language count associated with a given 
linguist, and second coordinate the number 
3, and then determines whether this pair 
stands in the 2 relation. At this point, then, 
a list of linguists who speak at least three 
languages has been formed. This functional 
is now composed with *PNAME (which is 
the natural extension of the attribute 
PNAME to lists of persons): 

!LINGUIST 0 1 ([LANG-COUNT,31 0 2) 
0 *PNAME 

As discussed above, FQL does not support 
database updates or schema definition, and 
it is not clear how such capabilities could 
be incorporated into the language in a nat- 
ural fashion. 

TAXIS, Galileo, DIAL, and Semdal are 
designed to act as both query and applica- 
tion languages and are thus called database 
programming languages. The advantage of 
this approach is a cleaner integration of 
semantic database operations into applica- 
tion programs. The goal is to support the 
flexibility of general-purpose programming 
language constructs in constructing data- 
base transactions. In a database program- 
ming language, the user can write 
application programs that use semantic 
data types as program data types-and 
count on them to persist until the next use 
of the database, without having consciously 
to separate database archival tasks from 
general programming tasks. In this way, 
the user may extend the conceptual bene- 
fits of manipulating complex objects 
and ISA hierarchies into nondatabase 
manipulations. TAXIS and Galileo are dis- 
cussed further in Section 4.2 below; an 
excellent survey of these and other pro- 
gramming languages can be found in Atkin- 
son and Buneman [ 19871. 

4. FROM IMPLEMENTATIONS TO 
THEORETICAL ANALYSIS 

In this section we examine a number of 
research projects that have evolved around 
semantic modeling. These projects, instead 

of focusing on constructing new modeling 
techniques, have studied and applied 
semantic modeling to such areas as the 
implementation of physical access methods 
of semantic databases, the construction of 
mechanisms for the specification of data- 
base dynamics, the design of graphical 
interfaces to databases, and the theoretical 
analysis of database issues. 

After semantic models and data lan- 
guages based on semantic models had been 
in the research literature for a few years, 
some researchers began to wonder about 
the possibility of constructing full, efficient 
DBMSs based on these constructs. In Sec- 
tion 4.1 we discuss various implementation 
issues unique to semantic models and sur- 
vey five implementations described in the 
literature. 

In this article we have focused primarily 
on the static aspects of semantic models 
and discussed how they are used to struc- 
ture and modularize database schemas. 
Some researchers have extended the area 
by developing mechanisms for structuring 
and modularizing the dynamic aspects of 
these models, with a primary focus on 
database transactions. In Section 4.2 we 
discuss two approaches researchers have 
taken in this area and survey the TAXIS, 
Galileo, SHM+, and INSYDE data models. 

Section 4.3 examines what is perhaps the 
newest application of semantic modeling. A 
number of researchers have discovered that 
semantic models make useful mediums for 
providing interactive database interfaces. 
We examine several experimental graphics- 
based interfaces that use this approach. 

Finally, Section 4.4 discusses theoretical 
investigations of concepts arising in seman- 
tic modeling. These include the develop- 
ment of formal query languages for 
constructed types, characterizations of 
update propagation, and other topics. This 
section also surveys the Format and Logical 
Data Models. 

4.1 Systems 

Two fundamental issues arise in the con- 
struction of full, efficient DBMSs based on 
the paradigm of semantic modeling. On the 
one hand, semantic models contain unusual 
constructs that force the physical designer 
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Ada. GEM is an attempt to support a 
semantic front end that is compatible with 
existing relational DBMSs and to assess 
the usefulness of relational database 
machines in supporting semantic models. 
The EFDM system concentrates on using 
a persistent language as a database imple- 
mentation tool. 

Sembase is an experiment in producing 
an integrated semantic language and 
graphical interface (see Section 4.3) and in 
providing efficient maintenance of derived 
data. A novel aspect of the Sembase imple- 
mentation is the homogeneous treatment 
of records corresponding to objects of var- 
ious types. All object records are stored in 
a heap on disk and accessed using a system 
of B-trees. In this way Sembase can adapt 
to predominantly used access patterns. 
Sembase also provides very efficient means 
of keeping derived subtypes and some 
forms of derived attributes up to date so 
that only a minimal amount of processing 
is required when a user requests a piece of 
derived information. To do this, Sembase 
maintains complex dependency informa- 
tion at the data level. For example, in the 
World Traveler Database, if a person 
speaks one language and learns another, 
the system will know that the given traveler 
must be reevaluated vis-a-vis the derivation 
rule for LINGUIST, the subtype as a whole 
will not be reevaluated. A recent extension 
of Sembase called CACTIS [Hudson and 
King 1986, 19871 supports the elegant and 
efficient maintenance of a much wider class 
of derived attributes. 

An extension of ADAPLEX, called the 
Distributed Data Manager [Chan et al. 
19831, supports a distributed semantic 
DBMS. This system uses the Functional 
Data Model and demonstrates that it is 
possible to implement a distributed seman- 
tic DBMS efficiently. Further, a semantic 
model is shown to be useful in creating 
more efficient distributed systems by mak- 
ing use of the extra semantics supplied in 
a schema when deciding how to distribute 
data. In particular, the Distributed Data 
Manager uses “fragment groups” as a 
means of localizing interobject references. 
Essentially, derived subtyping is used as a 
means of creating a small level of granular- 
ity to describe how different types of data 

of a database to develop unique implemen- 
tation constructs-abstract objects, sub- 
type hierarchies, and derived data, in 
particular, introduce new issues in database 
physical design. On the other hand, like 
hierarchical and network databases, 
semantic schemas suggest expected access 
patterns to the designer. The designer of 
the physical implementation may capitalize 
on this information in selecting appropriate 
data structures. 

In studying this area researchers have 
concentrated on two broad strategies: the 
use of existing data management capabili- 
ties (like relational systems and persistent 
programming languages) and the develop- 
ment of special-purpose, highly efficient 
access mechanisms. These efforts vary in 
the depth of their implementations and 
in the goals of the projects themselves. 
Figure 20 describes five sample systems in 
chronological order of their presentation in 
the literature. In the following these sys- 
tems are described in some detail. 

Three of the systems use existing tools 
to perform low-level data management: 
EFDM uses persistent ALGOL, GEM is 
built on top of Britton Lee’s IDM500 rela- 
tional database machine, and TAXIS is 
implemented in PASCALR. In both GEM 
and TAXIS each type is mapped to a rela- 
tion. For greater efficiency, ADAPLEX and 
Sembase directly implement storage and 
access mechanisms to support semantic 
constructs. Objects are represented as vari- 
able-length records, with a field for each 
attribute connection. Each such field con- 
tains a reference to an object or a set of 
objects. These two implementations use 
conventional access methods, like B-trees, 
to manage sets of related objects (e.g., sub- 
types). 

The five systems differ fundamentally in 
their intent as research projects. TAXIS is 
not intended to be a DBMS; rather, it is 
designed to support a programming lan- 
guage that encompasses data management 
facilities based on a semantic model. This 
language is described further in Section 4.2. 
ADAPLEX is an experiment in efficiently 
implementing a semantic database using 
general-purpose operating system files and 
in embedding a semantic database language 
(DAPLEX) in the programming language 
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relate. Thus, for example, travelers may be 
grouped according to where they have been 
and then localized near the appropriate site 
information. In this way fragment groups 
are used as the basis of distribution and 
replication. 

4.2 Dynamics 

Until recently, most semantic modeling 
research concentrated on specifying the 
structural aspects of constructed types and 
the relationships between them, not on the 
behavioral components of semantic models. 
In Section 2 we discussed the dynamic com- 
ponents of semantic models for schema 
specification and data manipulation at a 
fundamental level. In this section we con- 
sider the broader issue of providing facili- 
ties for structuring database manipulation 
primitives into transactions. 

The work on semantic transaction spec- 
ification stems from early work on the 
design of programming languages with 
embedded database access mechanisms 
(e.g., [Rowe and Schoens 1979; Wasserman 
19791) and the work of Abrial [1974] on 
data semantics in the context of the SBDM. 
Two philosophies emerge in the four 
models discussed here. TAXIS and Galileo 
synthesize semantic modeling constructs 
with control and typing mechanisms from 
imperative programming languages. In con- 
trast, SHM+ and INSYDE develop control 
mechanisms that closely follow the struc- 
ture of semantic schemas. 

TAXIS [Mylopoulous et al. 19801 is typ- 
ically viewed as a programming language 
for data-intensive applications that incor- 
porates several of the fundamental princi- 
ples of data representation found in the 
semantic database literature. In particular, 
TAXIS is recognized as one of the first 
systems to merge semantic data modeling 
concepts, including attributes and ISA rela- 
tionships, with more general programming 
language facilities such as abstract data 
types and exception handling. TAXIS pro- 
vides tools for modularizing the specifica- 
tion of database transactions and can 
support a wide class of interactive data 
management applications. 

To support the semantic data modeling 
concepts, TAXIS uses an extended form 

of the relational model (see Section 3). 
TAXIS incorporates most of the semantics 
associated with data in the specification of 
the operations associated with those data. 

A more recently developed language, 
Galileo [Albano et al. 19851, is similar to 
TAXIS in that it incorporates semantic 
data model mechanisms within a strongly 
typed programming language. Galileo 
introduces a general family of type con- 
structors for both database and nondata- 
base types and then uses them to support 
aggregation, attributes, and ISA relation- 
ships between database types. An interest- 
ing contribution of Galileo is the concept 
of environments, which are used as an 
abstraction mechanism in the support of 
modularization. Environments allow data 
operations to be incorporated into the data- 
base schema. Also, environments allow 
schemas to be built incrementally by giving 
the database user a mechanism for speci- 
fying, in a controlled fashion, exactly how 
new operators and schema components 
should interact with the existing schema. 

The Extended Semantic Hierarchy Model 
(SHM+) [Brodie and Ridjanovic 19841 has 
highly structured static and dynamic com- 
ponents. The model for static data repre- 
sentation used in SHM+ is based on 
aggregation, grouping, and subtypes and 
represents attribute relationships using 
aggregation and keys. Static schemas in the 
model have a very hierarchical and modular 
flavor. In SHM+, behavioral components 
form an integral part of the structural 
building blocks. For example, a primitive 
for iterative application of an operation is 
directly associated with the grouping con- 
struct. As a result, it is very easy to specify 
involved database updates as highly struc- 
tured transactions [Brodie and Ridjanovic 
19841. A comprehensive methodology for 
incremental design of the static and 
dynamic components of schemas is devel- 
oped in Brodie and Ridjanovic [ 19841. 

The INSYDE Model [King and McLeod 
1985a], which is derived from the Event 
Model [King and McLeod 1982, 19841 is a 
semantic database model that combines 
static as well as dynamic primitives at a 
fundamental level. The static portion of the 
model is essentially a rich subset of SDM, 
and the dynamic component includes 
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language constructs to support data manip- 
ulation as well as schema design and 
evolution. The INSYDE Model provides a 
unified support system for the entire life 
cycle of a database, providing tools and 
abstraction mechanisms for the design of 
the static schema, the design of database 
transactions, and the support of schema 
evolution within an integrated framework. 
In particular, it includes a prescriptive, 
stepwise methodology for logical database 
design, the purpose of which is to guide a 
designer through both the specification and 
maintenance of a semantically expressive 
schema. This methodology gives a primary 
role to transactions: The expected trans- 
actions are a fundamental part of the initial 
functional specification of a system and 
are used to drive much of the refinement 
and implementation process. Use of the 
INSYDE Model is particularly appropriate 
in the design of Office Information Systems 
[King and McLeod 1985a]. 

4.3 Graphical Interfaces 

Several graphical interfaces to databases 
based on semantic models have been devel- 
oped. This is due largely to the fact that 
semantic models are conducive to visual 
representations. In fact, as we have seen, 
the data definition languages of some 
semantic models are already graphical in 
nature. The development of these inter- 
faces has also been encouraged by the 
advent of workstation technology, which 
provides relatively inexpensive bit-mapped 
displays and pointing devices (such as 
mice). Semantic models are an obvious 
choice for capitalizing on the ability of bit- 
mapped workstations to display two- 
dimensional images. In this section we 
examine a few noteworthy attempts at 
using a semantic model as the basis of an 
interactive database interface. 

Figure 21 surveys six experimental data- 
base interfaces based on semantic models. 
In Figure 21 we construct a taxonomy of 
these systems along three central axes: 
functionality, implementation environ- 
ment, and the extent to which graphics are 
used. With each system, we also list the 
data model the interface supports. The six 

systems are listed chronologically, in terms 
of their presentation in the literature. We 
see that they tend to support more and 
more complex data models. GUIDE and 
LID support the ER Model; DDEW is 
based on an ER Model extended to provide 
subtyping. SKI and ISIS support models 
that are functionally very similar to 
restricted subsets of SDM. SNAP supports 
a subset of the IF0 model. 

As indicated by the functionality area of 
the chart, all of the systems except LID 
concentrate on schema management, pro- 
viding capabilities for schema definition, 
schema browsing, and query formulation. 
The ISIS and SNAP systems also provide 
some limited facilities for convenient rep- 
resentation and perusal of printed data. 
And, in contrast to the other five systems, 
LID is oriented entirely toward data brows- 
ing and allows the user, given a particular 
object in the database, to traverse schema 
relationships to find related objects. In LID 
there is no capability of viewing sets of 
objects, only individual ones. Therefore, if 
the user wishes, say, to view all travelers 
who have been to Japan, the locations vis- 
ited by each traveler would have to be 
examined individually. The system will not 
perform the search and return the result as 
one conceptual entity. 

With respect to the implementations of 
these six systems, Figure 21 indicates that 
all but DDEW are experimental research 
prototypes and DDEW and SKI are the 
only ones that interface with actual, disk- 
based databases. DDEW may be used to 
specify and browse schemas; SKI may also 
be used to formulate a query on an existing 
semantic database. Clearly, however, the 
lack of actual DBMSs underneath these 
systems does not detract from the signifi- 
cance of their research contributions. Any 
issues concerning the speed of disk accesses 
while examining data are largely irrelevant. 
Finally, we note that these systems indicate 
a historical trend toward workstation envi- 
ronments. 

The final axis in the chart refers to the 
use of graphics in the six example systems 
and indicates a progression from fairly sim- 
ple graph- (or network-) based representa- 
tions of schemas to richer visual (but still 
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graphlike) representations. Correspond- 
ingly, there has been a development in 
terms of the naturalness with which these 
systems allow the user to interact with the 
schema while browsing and specifying 
queries. In Foley and Dam [1982] the 
authors differentiate three sorts of feed- 
back that an interactive system can give: 
lexical (such as the echoing of typed char- 
acters), syntactic (such as highlighting a 
selected menu item), and semantic. Seman- 
tic feedback is the most sophisticated sort 
of feedback and might, for example, indi- 
cate in an obvious fashion that a user- 
requested operation has been performed 
(e.g., that a subtype has been added to the 
schema). In general, the six selected inter- 
active systems provide good semantic feed- 
back, with the visual representation of 
schemas being dynamically modified as 
they are manipulated. The trend has been 
toward richer semantic feedback. 

All six systems represent the schema 
using graph structures. GUIDE and DDEW 
do this essentially using ER diagrams. In 
GUIDE the schema is statically structured 
and is not altered by the user. In DDEW 
the system suggests an appropriate schema 
representation, but the user may alter it. In 
ISIS and SNAP the user directly defines 
the visual representation of the schema. 
SKI completely controls the visual struc- 
ture of the schema for the user. (Of course, 
LID, since it only supports the browsing of 
individual data items, does not provide vis- 
ual access to the entire schema.) All these 
systems (except LID) allow users to pan 
and zoom, and hide irrelevant portions of 
the schema. SKI, ISIS, and SNAP are now 
discussed in more detail. 

In the SKI system there is no notion of 
a statically defined graphical layout of the 
underlying schema. Instead, a graphical 
representation of the relevant subschema 
is created dynamically as the user specifies 
that various connections be displayed. The 
subschema is placed on a formated screen; 
the screen is broken into stripes, each con- 
taining components with different seman- 
tic significance (e.g., one for object types, 
another for attributes defined on these 
types). The philosophy behind this is to 
remove from the user the burden of having 

to manage a large, complex graph that rep- 
resents a schema and to automatically for- 
mat subschemas according to their content. 
Of course, this approach does not allow the 
user to return easily to familiar visual rep- 
resentations during a lengthy session. 

ISIS and SNAP both take the approach 
of providing more permanent representa- 
tions of schemas. In both systems the user 
creates much of the original visual repre- 
sentation of a schema; this is saved by the 
system and provides the basis for the dis- 
play of both the schema and portions of it. 
Both systems also permit users to modify 
the representation of schemas. 

With respect to the manner in which the 
user peruses the schema while browsing, all 
of the systems (except for LID) provide 
mechanisms for massaging the visual rep- 
resentation directly in order to focus on 
specific areas of interest within the schema. 
The user follows semantic connections 
(e.g., attributes and type/subtype relation- 
ships) in order to isolate various sorts of 
data that relate to each other. This is much 
more effective than forcing the user to 
peruse the schema only by navigating up 
and down, and right and left over a schema 
that is too large to fit on a screen. Thus, 
the user may hide levels of detail and/or 
annotate the schema while browsing. 
Schneiderman [ 19801 has coined the phrase 
direct manipulation to characterize this 
style of interaction, where the user has the 
feeling of manipulating a real-world object 
while interfacing with the system. This pro- 
vides very rich and effective semantic feed- 
back for the user. These systems vary 
somewhat in their approach to direct 
manipulation during browsing. ISIS sup- 
ports operators for maneuvering between 
its diagram for representing ISA relation- 
ships and its diagrams for representing 
attribute relationships. Also, SKI provides 
several high-level operators that may be 
used to make very dramatic shifts in focus, 
such as requesting to view all areas of the 
schema that would be affected if a partic- 
ular data operation was performed. 

The six systems also vary in how they 
support query specification, with a growing 
tendency toward more graphics-based 
methods of specifying an entire query. 

ACM Computing Surveys, Vol. 19, No. 3, September 1987 



Semantic Database Modeling l 253 

basis for theoretical investigations of these 
issues. In this section we briefly survey the 
work in these various areas. A more com- 
prehensive survey of work on theoretical 
research on constructed types may be found 
in Hull [ 19871. Also, we note that some of 
the theoretical work on the IF0 [Abiteboul 
and Hull 19871 and IRIS [Lyngbaek 
and Vianu 19871 models is discussed in 
Section 3.2. 

Surprisingly, a significant amount of the 
research on access languages for con- 
structed types has been performed using an 
offshoot of the relational model called non- 
first-normal-form relations [Abiteboul and 
Bidoit 1986; Fischer and Thomas 1983; 
Jaeschke and Schek 1982; Makinouchi 
19771. These are relations where some col- 
umns may hold relations instead of atomic 
values; nesting of relations in this way is 
permitted to arbitrary depths. The struc- 
ture of such a non-first-normal-form rela- 
tion may be viewed as a constructed type 
formed using alternating layers of aggre- 
gation and grouping. Calculus-based and 
algebraic languages for non-first-normal- 
form relations have been developed 
[Fischer and Thomas 1983; Jaeschke and 
Schek 19821 and shown to have equivalent 
expressive power [Abiteboul and Beeri 
1987; Kuper and Vardi 19841. 

Another model of constructed types is 
the Format Model [Hull and Yap 19841. 
Formats are built hierarchically from three 
constructs: aggregation, grouping, and 
marked or disjoint union. The third con- 
struct is used to model types that result 
from generalizations involving two or more 
disparate types. Original work on the For- 
mat Model focused on comparing the data 
capacity of formats [Hull and Yap 1984; 
O’Dunlaing and Yap 19821. A more recent 
paper [Abiteboul and Hull 19861 proposes 
a query language for formats that is based 
on a rewrite operator. 

The Logical Data Model (LDM) [Kuper 
and Vardi 1984, 1985; Kuper 19851 can be 
viewed as a further extension of con- 
structed types. LDM was introduced pri- 
marily to provide a logic-based model lying 
between the record-oriented models (rela- 
tional, network, hierarchical) and actual 
physical implementation, but issues studied 

GUIDE supports selection-like queries; to 
specify them, the user graphically identifies 
relevant portions of the schema, and a text- 
based query is constructed in parallel by 
the system. SKI was the first system to 
embody the concept of expressing queries 
through the iterative specification of 
derived data, thus making a query essen- 
tially an extension of the schema. The user 
may traverse the schema to find the general 
type of data of interest and then repeatedly 
refine this type by specifying subtype pred- 
icates. These predicates are defined tex- 
tually. SKI provides a series of pop-up 
menus that support an editor that displays 
the syntax permitted in subtype defini- 
tions. ISIS uses a similar paradigm but 
provides a much more sophisticated editor 
that allows the user to specify a query in 
an almost entirely mouse-based fashion. 
SNAP uses a different approach in which 
copies of schema components are directly 
manipulated to form queries. Intuitively, 
SNAP queries can be viewed as a generali- 
zation of Zloof’s Query-by-Example [Zloof 
19871 to a graphics-based model. 

A commercial implementation of a 
graphics interface based on a semantic 
model has recently been developed. It is 
similar in structure and function to SKI, 
ISIS, and SNAP and includes a schema 
design tool and a data browser [Rogers and 
Cattell 19871. 

4.4 Theory 

Over recent years, there has been increas- 
ing interest in the application of theoretical 
techniques to investigating concepts and 
problems raised by semantic database 
models. Considerable work has been per- 
formed on constructed types considered in 
isolation, with a primary focus on data 
access and manipulation languages for 
them. Another important topic considers 
ISA networks in isolation and studies the 
inference of various properties in them. 
Other important topics include comparing 
the data capacity of constructed types 
and characterizing update propagation in 
semantic schemas. These topics have been 
studied using a variety of different models; 
no one model has emerged as the common 

ACM Computing Surveys, Vol. 19, No. 3, September 198’7 



254 . R. Hull and R. King 

with the LDM are also important from the 
point of view of semantic models. 

As with the Format Model, LDM sche- 
mas are built from basic types and type 
constructors for aggregation, grouping, and 
marked union. (In Kuper and Vardi [1984, 
19851 marked union is not included.) 
Unlike the constructed types of GSM and 
the Format Model, however, schemas of the 
LDM are directed graphs rather than trees. 
Instances of LDM schemas are defined 
using the complementary notions of l- and 
r-values from the theory underlying 
programming language assignment state- 
ments. This formalism captures the object- 
oriented nature of semantic models in a 
novel manner: l-values correspond to object 
identities, while r-values correspond to 
their values. In Kuper and Vardi [1984, 
19851 calculus-based and algebraic manip- 
ulation languages are introduced for LDM 
and shown to have equivalent expressive 
power. In Kuper and Vardi [1985], the rel- 
ative data capacity of LDM schemas is 
studied. 

We now turn to research focused primar- 
ily on ISA relationships. Two recent papers 
study the interplay of ISA relationships 
in connection with integrity constraints 
[Atzeni and Parker 1986; Lenzerini 19871. 
Both of these works use a simple abstract 
semantic model based on abstract types and 
ISA relationships. In Atzeni and Parker 
[1986] the interaction of ISA relationships 
and disjointness constraints is studied, and 
a sound and complete set of inference rules 
for these properties is presented. Also, it is 
shown that various problems are decidable 
in polynomial time. One such problem is 
the satisfiubility problem, which concerns 
whether a node in a schema is nonempty in 
at least one instance. In Lenzerini [1987], 
covering constraints are studied in addition 
to disjointness constraints. In this case 
many problems are NP-complete, including 
the satisfiability problem. 

We now turn to the problem of determin- 
ing how atomic updates propagate in 
semantic schemas. This is of particular 
interest because it considers the various 
constructs of semantic models taken 
together rather than in isolation. As a sim- 
ple example of update propagation, suppose 
that in the World Traveler Database Pam 

is both a person and a tourist. If Pam is 
deleted from PERSON, she should also be 
deleted from TOURIST. Update propaga- 
tion relative to the basic structural com- 
ponents of semantic models has been 
studied in the context of both FDM [Hecht 
and Kerschberg 19811 and IF0 [Abiteboul 
and Hull 1985, 19871. In both papers the 
semantics of update propagation is broken 
into two logical pieces: one concerned with 
the impact of updates on the local con- 
structs of a schema and the other with the 
global impact implied by their combination. 
The overall impact of an update at a given 
node is essentially defined to be the sum of 
the impacts implied by the local update 
semantics. In both models, acyclicity con- 
ditions on ISA relationships ensure that 
each node need be visited at most once 
during this computation. 

5. CONCLUDING REMARKS 

In this paper we have surveyed a wide area 
of research, all of it centered around seman- 
tic database modeling. We have taken an 
in-depth look at the fundamental motiva- 
tions and aspects of semantic models and 
examined a number of specific models. Fur- 
ther, several research directions that are 
based on semantic models have been dis- 
cussed, including semantic data access lan- 
guages, graphical database interfaces based 
on semantic models, physical implementa- 
tions of semantic DBMSs, and theoretical 
investigations of semantic models. 

Clearly, there are many more research 
issues relating to semantic models that 
could be investigated, such as the integra- 
tion of temporal reasoning into semantic 
models, the optimization of semantic data- 
base queries, the development of semantic 
database machines, and the construction of 
expert database systems that use semantic 
models (such databases would be capable 
of making inferences about complex, 
semantic data). However, although some 
research is currently being conducted in 
these areas, it has not reached the level of 
maturity appropriate for a survey paper. 

We would, however, like to conclude this 
paper by mentioning a rapidly growing area 
of database research that is related to 
semantic modeling. Recently, a number of 
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designed for such applications as engineer- 
ing, is Probe [ Manola and Dayal 19861. The 
GENESIS project [Batory et al. 19881 
focuses on the rapid development of cus- 
tomized database management systems. 

Speaking broadly, semantic modeling has 
concentrated largely on building complex 
data via mechanisms like attributes, aggre- 
gation, and generalization, which are widely 
viewed to be adequate for most business 
and commercial applications. In contrast, 
object-oriented models are oriented toward 
novel applications that must support com- 
plex domains such as software design [Hud- 
son and King 19871, VLSI and printed 
circuit board design, and CAD/CAM 
[Andrews and Harris 1987; Su et al. 19881. 
These applications are generally interactive 
and require highly dynamic database sys- 
tems where the user may control local 
behavior and dynamically modify the type 
structure. Software specifications, text, and 
engineering designs are also much larger 
objects than typical business objects. Other 
novel research issues also arise in the con- 
text of object-oriented databases, including 
very long transactions (to support interac- 
tive design), nested transactions (to sup- 
port complex design functions), and 
mechanisms for obtaining multiple blocks 
of data from a mass storage device quickly 
(to allow the efficient retrieval of large 
objects). Research on these and related top- 
ics will be crucial in expanding the useful- 
ness of database systems to nontraditional, 
nonbusiness applications. 
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