
Semantic Database Modeling:
Survey, Applications, and Research Issues

RICHARD HULL

Computer Science Department, University of Southern California, Los Angeles, California 90089-0782

ROGER KING

Computer Science Department, University of Colorado, Boulder, Colorado 80309

Most common database management systems represent information in a simple
record-based format. Semantic modeling provides richer data structuring capabilities for
database applications. In particular, research in this area has articulated a number of
constructs that provide mechanisms for representing structurally complex interrelations
among data typically arising in commercial applications. In general terms, semantic
modeling complements work on knowledge representation (in artificial intelligence) and
on the new generation of database models based on the object-oriented paradigm of
programming languages.

This paper presents an in-depth discussion of semantic data modeling. It reviews the
philosophical motivations of semantic models, including the need for high-level modeling
abstractions and the reduction of semantic overloading of data type constructors. It then
provides a tutorial introduction to the primary components of semantic models, which are
the explicit representation of objects, attributes of and relationships among objects, type
constructors for building complex types, ISA relationships, and derived schema
components. Next, a survey of the prominent semantic models in the literature is
presented. Further, since a broad area of research has developed around semantic
modeling, a number of related topics based on these models are discussed, including data
languages, graphical interfaces, theoretical investigations, and physical implementation
strategies.

Categories and Subject Descriptors: H.0 [Information Systems] General, H.2.1
[Database Management] Logical Design-data models; H.2.2 [Database
Management] Physical Design--access methods; H.2.3 [Database Management]
Languages-data description lunguuges (DDL); data mnnipuhtion lunguuges (DML); query

hwew

General Terms: Design, Languages

Additional Key Words and Phrases: Conceptual database design, entity-relationship
model, functional data model, knowledge representation, semantic database model

INTRODUCTION directions in databases were ini-
tiated in the early 197Os, namely, the

Commercial database management systems introduction of the relational model and
have been available for two decades, origi- the development of semantic database
nally in the form of the hierarchical and models. The relational model revolution-
network models. Two opposing research ized the field by separating logical data

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
data appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1966 ACM 0360-0300/87/0900-0201$1.50

ACM Computing Surveys, Vol. 19, No. 3, September 1987

202 l R. Hull and R. King

CONTENTS

INTRODUCTION
1. PHILOSOPHICAL CONSIDERATIONS

1.1 An Example
1.2 Semantic Models versus Object-Oriented

Programming Languages
1.3 Advantages of Semantic Data Models
1.4 Database Design with a Semantic Model
1.5 Related Work in Artificial Intelligence

2. TUTORIAL
2.1 Two Philosophical Approaches
2.2 Local Constructs
2.3 Global Considerations
2.4 Manipulation Languages

3. SURVEY
3.1 Prominent Models
3.2 Other Highly Structured Models
3.3 Binary Models
3.4 Relational Extensions
3.5 Access Languages

4. FROM IMPLEMENTATIONS TO
THEORETICAL ANALYSIS
4.1 Systems
4.2 Dynamics
4.3 Graphical Interfaces
4.4 Theory

5. CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES

representation from physical implementa-
tion. Significantly, the inherent simplicity
in the model permitted the development of
powerful, nonprocedural query languages
and a variety of useful theoretical results.

The history of semantic modeling re-
search is quite different. Semantic models
were introduced primarily as schema design
tools: A schema could first be designed in a
high-level semantic model and then trans-
lated into one of the traditional models for
ultimate implementation. The emphasis of
the initial semantic models was to accu-
rately model data relationships that arise
frequently in typical database applications.
Consequently, semantic models are more
complex than the relational model and en-
courage a more navigational view of data
relationships. The field of semantic models
is continuing to evolve. There has been
increasing interest in using these models as
the bases for full-fledged database manage-

ment systems or at least as complete front
ends to existing systems.

The first published semantic model ap-
peared in 1974 [Abriel 19741. The area ma-
tured during the subsequent decade, with
the development of several prominent
models and a large body of related research
efforts. The central result of semantic mod-
eling research has been the development of
powerful mechanisms for representing the
structural aspects of business data. In re-
cent years, database researchers have
turned their attention toward incorporat-
ing the behavioral (or dynamic) aspects of
data into modeling formalisms; this work
is being heavily influenced by the object-
oriented paradigm from programming lan-
guages.

This paper provides both a survey and a
tutorial on semantic modeling and related
research. In keeping with the historical em-
phasis of the field, the primary focus is on
the structural aspects of semantic models;
a secondary emphasis is given to their be-
havioral aspects. We begin by giving a
broad overview of the fundamental com-
ponents and the philosophical roots of
semantic modeling (Section 1). We also
discuss the relationship of semantic mod-
eling to other research areas of computer
science. In particular, we discuss important
differences between the constructs found in
semantic models and in object-oriented
programming languages. In Section 2 we
use a Generic Semantic Model to provide
a detailed, comprehensive tutorial that
describes, compares, and contrasts the var-
ious semantic constructs found in the lit-
erature. In Section 3, we survey a number
of published models. We conclude with an
overview of ongoing research directions
that have grown out of semantic modeling
(Section 4); these include database systems
and graphical interfaces based on semantic
models and theoretical investigations of se-
mantic modeling.

Semantic data models and related issues
are described in the earlier survey article
by Kerschberg et al. [1976] by Tsichritzis
and Lochovsky [1982], and the collection
of articles that comprise Brodie et al.
[1984]. Also, Afsarmanesh and McLeod
[19841, King and McLeod [1985b], and

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 203

of data in computers, ultimately viewing
data as collections of records with printable
or pointer field values. Indeed, these models
are often referred to as being record based.
Semantic models were developed to provide
a higher level of abstraction for modeling
data, allowing database designers to think
of data in ways that correlate more directly
to how data arise in the world. Unlike the
traditional models, the constructs of most
semantic models naturally support a top-
down, modular view of the schema, thus
simplifying both schema design and data-
base usage. Indeed, although the semantic
models were first introduced as design
tools, there is increasing interest and re-
search directed toward developing them
into full-fledged database management sys-
tems.

To present the philosophy and advan-
tages of semantic database models in more
detail, we begin by introducing a simple
example using a generic semantic data
model, along with a corresponding third
normal form (3NF) relational schema. The
example is used for several purposes. First,
we present the fundamental differences
between semantic models and the object-
oriented paradigm from programming lan-
guages. Next, we illustrate the primary
advantages often cited in the literature of
semantic data models over the record-
oriented models. We then show how these
advantages relate to the process of schema
design. We conclude by comparing seman-
tic models with the related field of knowl-
edge representation in AI.

Maryanski and Peckham [1986] present
taxonomies of the more prominent models,
and Urban and Delcambre [1986] survey
several semantic models, with an emphasis
on features in support of temporal infor-
mation. The dynamic aspects of semantic
modeling are emphasized in Borgida
[1985]. The overall focus of the present
paper is somewhat different from these
other surveys in that here we discuss both
the prominent semantic models and the
research directions they have spawned.

1. PHILOSOPHICAL CONSIDERATIONS

There is an analogy between the motiva-
tions behind semantic models and those
behind high-level programming languages.
The ALGOL-like languages were developed
in an attempt to provide richer, more con-
venient programming abstractions; they
buffer the user from low-level machine con-
siderations. Similarly, semantic models
attempt to provide more powerful abstrac-
tions for the specification of database
schemas than are supported by the rela-
tional, hierarchical, and network models.
Of course, more complex abstraction mech-
anisms introduce implementation issues.
The construction of efficient semantic
databases is an interesting problem-and
largely an open research area.

In this section we focus on the major
motivations and advantages of semantic
database modeling as described in the lit-
erature. These were originally proposed in,
for example, Hammer and McLeod [1981],
Kent [19781, Kent [1979], and Smith and
Smith [1977] and have since been echoed
and extended in works such as Abiteboul
and Hull [1987], Brodie [1984], King and
McLeod [1985b], and Tsichritzis and
Lochovsky [19821.

Historically, semantic database models
were first developed to facilitate the design
of database schemas [Chen 1976; Hammer
and McLeod 1981; Smith and Smith
19771. In the 197Os, the traditional models
(relational, hierarchical, and network) were
gaining wide acceptance as efficient data
management tools. The data structures
used in these models are relatively close to
those used for the physical representation

1.1 An Example

The sample schema shown in Figure 1 is
used to provide an informal introduction to
many of the fundamental components of
semantic data models. This schema is based
on a generic model, called the Generic Se-
mantic Model (GSM), which was developed
for this survey and is presented in detail in
Section 2.

The primary components of semantic
models are the explicit representation of
objects, attributes of and relationships
among objects, type constructors for build-
ing complex types, ISA relationships, and

ACM Computing Surveys, Vol. 19, No. 3, September 1987

ADDRESS

HAS-NAME

/ LOCAl

Figure 1. Schema of World Traveler database.

‘ED-AT

_ - _- . . . - -- - - - -- .- -__ - - - _.. - .__ - - - -

Semantic Database Modeling l 205

The sample schema illustrates two fun-
damental uses of subtyping in semantic
models, these being to form user-specified
and derived subtypes. For example, the
subtypes TOURIST and BUSINESS-
TRAVELER are viewed here as being user
specified because a person will take on
either (or both) of these roles only if this is
specified by a database operation. In con-
trast, we assume here (again simplistically)
that a person is a LINGUIST if that person
can speak at least two languages. (The
attribute SPEAKS that is defined on
PERSON is discussed shortly.) Thus,
the contents of the subtype LINGUIST
can be derived from data stored elsewhere
in the schema, along with the defining
predicate (in pseudo-English) “LIN-
GUIST := PERSONS who SPEAK at least
two LANGUAGES”. This example illus-
trates one type of derived schema compo-
nent typical of semantic models.

The sample schema also illustrates how
constructed types can be built from atomic
types in a semantic data model. One ex-
ample of a constructed type is ADDRESS,
which is an aggregation (i.e., Cartesian
product) of three printable types STREET,
CITY, and ZIP. This is depicted in the
schema with an %-node that has three chil-
dren corresponding to the three coordinates
of the aggregation. Aggregation is one form
of abstraction offered by most semantic
data models. For example, here it allows
users to focus on the abstract notion of
ADDRESS while ignoring its component
parts. As we shall see, this aggregate object
will be referenced by two different parts of
the schema. A second prominent type con-
structor in many semantic models is called
grouping, or association (i.e., tinitary pow-
erset) and is used to build sets of elements
of an existing type. In the schema, grouping
is depicted by a *-node and is used to form,
for example, sets of LANGUAGES and
DESTINATIONS.

As illustrated above, object types can be
modeled in a semantic schema as being
abstract, printable, or constructed and can
be defined using an ISA relationship.
Through this flexibility the schema de-
signer may choose a construct appropriate
to the significance of the object type in the

derived schema components. The example
schema provides a brief introduction to
each of these. The schema corresponds to
a mythical database, called the World
Traveler Database, which contains infor-
mation about both business and pleasure
travelers. It is necessarily simplistic but
highlights the primary features common to
the prominent semantic database models.

The World Traveler schema represents
two fundamental object or entity types, cor-
responding to the types PERSON and
BUSINESS. These are depicted using tri-
angle nodes, indicating that they corre-
spond to abstract data types in the world.
Speaking conceptually, in an instance of
this schema, a set of objects of type PER-
SON is associated with the PERSON node.
In typical implementations of semantic
data models [Atkinson and Kulkarni 1983;
King 1984; Smith et al. 19811 (see Section
4.1), these abstract objects are referenced
using internal identifiers that are not visi-
ble to the user. A primary reason for this is
that objects in a semantic data model may
not be uniquely identifiable using printable
attributes that are directly associated with
them. In contrast with abstract types,
printable types such as PNAME (person-
name) are depicted using ovals. (In the
work by Verheijen and Bekkum [1982],
which considers the design of information
systems, printable types are called lexical
object types (LOT) and abstract types are
called nonlexical object types (NOLOT).

The schema also represents three sub-
types of the type PERSON, namely,
TOURIST, BUSINESS-TRAVELER, and
LINGUIST. Such subtype/supertype rela-
tionships are also called ISA relationships;
for example, each tourist “is-a” person. In
the schema, the three subtypes are depicted
using circular nodes (indicating that their
underlying type is given elsewhere in the
schema), along with double-shafted ISA ar-
rows indicating the ISA relationships. In
an instance of this schema, subsets of the
set of persons (i.e., the set of internal iden-
tifiers associated with PERSON node)
would be associated with each of the three
subtype nodes. Note that in the absence of
any restrictions, the sets corresponding to
these subtypes may overlap.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

206 l R. Hull and R. King

particular application environment. For ex-
ample, in a situation in which cities play a
more prominent role (e.g., if CITY had
associated attributes such as language or
climate information), the type of city could
be modeled as an abstract type instead of
as a printable. As discussed below, different
combinations of other semantic modeling
constructs provide further flexibility.

So far, we have focused on how object
types and subtypes can be represented in
semantic data models. Another fundamen-
tal component of most semantic models
consists of mechanisms for representing
attributes (i.e., functions) associated with
these types and subtypes. It should be noted
that unlike the functions typically found in
programming languages, many attributes
arising in semantic database schemas are
not computed but instead are specified ex-
plicitly by the user to correspond to facts
in the world. In the World Traveler Data-
base, attributes are represented using
(single-shafted) arrows originating at the
domain of the attribute and terminating at
its range. For example, the type PERSON
has four attributes: HAS-NAME, which
maps to the printable type PNAME;
LIVES-AT, which maps to objects of type
ADDRESS; SPEAKS, which maps each
person to the set of languages that person
speaks; and GOES-TO, which maps each
person to the set of destinations that person
frequents. In the schema the HAS-NAME
attribute is constrained to be a 1: 1, total
function. The attribute SPEAKS is set val-
ued in the sense that the attribute associ-
ates a set of languages (indicated by the
:-node) to each person. RESIDENT-OF is
similar in that it associates a set of people
with an address; however, this property is
represented with a multivalued attribute.
ENJOYS of TOURIST is also multivalued.
The distinction between set valued and
multivalued attributes is discussed in Sec-
tion 2. In several models it is typical to
depict both an attribute and its inverse. For
example, in the sample schema, the inverse
of the LIVES-AT attribute from PERSON
to ADDRESS is a set-valued attribute
RESIDENT-OF.

As shown in the schema, the subtype
BUSINESS-TRAVELER has two attri-

butes: WORKS-FOR and WORKS-AS.
Because business travelers are people, the
members of this subtype also inherit the
four attributes of the type PERSON. Sim-
ilarly, the other two subtypes of PERSON
inherit these attributes of type PERSON.

The schema also illustrates how attri-
butes can serve as derived schema compo-
nents. One example is the attribute
RESIDENT-OF; another is the attribute
LANG-COUNT of the (derived) subtype
LINGUIST, which is specified com-
pletely by the predicate “LANG-COUNT
is cardinality of SPEAKS” and other parts
of the schema.

To conclude this section, Figure 2 shows
a 3NF [Ullman 19821 relational schema
corresponding to the World Traveler
schema. In order to capture most of the
semantics of the original schema, key and
inclusion dependencies are included in the
relational schema. (Briefly, a key depen-
dency states that the value of one (or sev-
eral) field(s) of a tuple determines the
remaining field values of that tuple; an
inclusion dependency states that all of the
values occurring in one (or more) column(s)
of one relation also occur in some column(s)
of another relation.) For example, PNAME
is the key of PERSON, indicating that each
person has only one address; and the
PNAME column of TOURIST is contained
in the PNAME column of PERSON, indi-
cating that each tourist is a person. In this
schema one or more relations is used for
each of the object types in the semantic
schema. For example, even ignoring the
subtypes of the type PERSON, informs-
tion about persons is stored in the three
relations PERSON, PERSPEAKS, and
PERGOES. (In principle, a single relation
could be used for this information, but in
the presence of set-valued attributes such
as SPEAKS and GOES-TO, such relations
will not be in 3NF.)

1.2 Semantic Models versus Object-Oriented
Programming Languages

Now that we have briefly introduced the
essentials of semantic modeling, we are in
a position to describe the fundamental dis-
tinctions between semantic models and

ACM Computing Surveys, Vol. 19, No. 3, September 1987

PERSON PERSPEAKS

LINGUIST

/I

TOURIST BUSTRAV

PERGOES

BUSINESS

II

I I
I I i

I I
I ! I ! ! . .

(a)

PERSPEAKS[PNAME] G PERSON(PNAME]

PERGOES[PNAME] E PERSON[PNAME]

LINGUIST[PNAME] C PERSON[PNAME)

TOURIST[PNAME] C_ PERSON[PNAME]

BUSTRAV(PNAME] z PERSON[PNAME]

BUSTRAV[EMPLOYER] E BUSINESS[BNAME]

(b)

Figure 2. 3NF relational schema corresponding to the World Traveler schema. (a) Relations. (b) Inclusion dependencies.

208 l R. Hull and R. King

object-oriented programming [Bobrow et
al. 1986; Goldberg and Robson 1983; Moon
19861. This is crucial in light of current
database research thrusts.

Essentially, semantic models encapsu-
late structural aspects of objects, whereas
object-oriented languages encapsulate
behavioral aspects of objects. Historically,
object-oriented languages stem from re-
search on abstract data types [Guttag 1977;
Liskov et al. 19771. There are three princi-
ple features of object-oriented languages.
The first is the explicit representation of
object classes (or types). Objects are iden-
tified by surrogates rather than by their
values. The second feature is the encapsu-
lation of “methods” or operations within
objects. For example, the object type
GEOMETRIC-OBJECT may have the
method “display-self”. Users are free to
ignore the implementation details of meth-
ods. The final feature of object-oriented
languages is the inheritance of methods
from one class to another.

There are two central distinctions be-
tween this approach and that of semantic
models. First, object-oriented models do
not typically embody the rich type con-
structors of semantic models. From the
structural point of view, object-oriented
models support only the ability to define
single- and multivalued attributes. Second,
the inheritance of methods is strictly dif-
ferent from the inheritance of attributes
(as in semantic models). In a semantic
model, the inheritance of attributes is only
between types where one is a subset of the
other. The inheritance of a method, since
it is a behavioral-and not a structural-
property, can be between seemingly unlike
types. Thus, the object type TEXT might
be able to inherit the “display-self”
method of GEOMETRIC-OBJECT.

1.3 Advantages of Semantic Data Models

In this section we summarize the motiva-
tions often cited in the literature in support
of semantic data models over the tradi-
tional data models. We noted above that
semantic data models were first introduced
primarily as schema design tools and
embody the fundamental kinds of relation-

ACM Computing Surveys, Vol. 19, No. 3, September 1987

ships arising in typical database appli-
cations. As a result of this philosphical
foundation, semantically based data models
and systems provide the following advan-
tages over traditional, record-oriented
systems:

(1)

(2)

(3)

increased separation of conceptual and
physical components,
decreased semantic overloading of re-
lationship types,
availability of convenient abstraction
mechanisms.

Abstraction mechanisms are the means by
which the first two advantages of semantic
models are obtained. We discuss abstrac-
tion separately because of the significant
effort researchers have put into developing
these mechanisms. Each of the three ad-
vantages is discussed below.

1.3.1 Increased Separation of Logical
and Physical Components

In record-oriented models the access paths
available to end users tend to mimic the
logical structure of the database schema
directly [Chen 1976; Hammer and McLeod
1981; Kent 1979; Kerschberg and Pacheco
1979; Shipman 1981; Smith and Smith
19771. This phenomenom exhibits itself in
different ways in the relational and the
hierarchical/network models. In the rela-
tional model a user must simulate pointers
by comparing identifiers in order to tra-
verse from one relation to another (typi-
cally using the join operator). In contrast,
the attributes of semantic models may be
used as direct conceptual pointers. Thus,
users must consciously traverse through an
extra level of indirection imposed by the
relational model, making it more difficult
to form complex objects out of simpler ones.
For this reason, the relational model has
been referred to as being value oriented
[Khoshafian and Copeland 1986; Ullman
19871 as opposed to object oriented.

In the hierarchical and network models
a similar situation occurs. Users must nav-
igate through the database, constructing
larger objects out of flat record structures
by associating records of different types. In
contrast, semantic models allow users to

focus their attention directly on abstract
objects. Thus, in a hierarchical/network
model, the access paths correspond directly
to the low-level physical links between rec-
ords and not to the conceptual relation-
ships modeled in a semantic schema.

To illustrate this point using the rela-
tional model, suppose that in the World
Traveler database Mary is a business trav-
eler. Using attributes, the city of Mary’s
employer can be obtained with the simple
query:

print LOCATED-AT (WORKS-
FOR(‘Mary’)).CITY

This query operates as follows: Mary’s
employer is obtained by WORKS-
FOR(‘Mary’); applying LOCATED-AT
yields the address of that employer, and the
‘.CITY’ construct isolates the second coor-
dinate of the address. (We assume as syn-
tactic sugar that because HAS-NAME is
1: 1, the string ‘Mary’ can be used to denote
the person Mary; if not, in the above query,
‘Mary’ would have to be replaced by HAS-
NAME-l(‘Mary’).) Thus, the semantic
model permits users to refer to an object
(in this case using a printable surrogate
identifier) and to “navigate” through the
schema by applying attributes directly to
that object. In the relational model, on the
other hand, users must navigate through
the schema within the provided record
structure using joins. In the SEQUEL lan-
guage, for example, the analogous query
directed at the schema of Figure 2 would be

select CITY
from BUSINESS
where BNAME in

select EMPLOYER
from BUSTRAV
where PNAME = ‘Mary’

In essence, the user first obtains the
name of Mary’s employer by selecting
the record about Mary in the relation
BUSTRAV and retrieving the EM-
PLOYER attribute, then finds the record
in the relation BUSINESS that has that
value in its BNAME field, and finally reads
the CITY attribute of that record. Thus,
the linkage between the BUSTRAV and
BUSINESS relations is obtained by explic-

Semantic Database Modeling l 209

itly comparing business identifiers (the
EMPLOYER coordinate of BUSTRAV
and the BNAME coordinate of BUSI-
NESS).

1.3.2 Semantic Overloading

The second fundamental advantage cited
for the semantic models focuses on the fact
that the record-oriented models provide
only two or three constructs for represent-
ing data interrelationships, whereas se-
mantic models typically provide several
such constructs. As a result, constructs in
record-oriented models are semantically
overloaded in the sense that several differ-
ent types of relationships must be repre-
sented using the same constructs [Hammer
and McLeod 1981; Kent 1978,1979; Smith
and Smith 1977; Su 19831. In the relational
model, for example, there are only two ways
of representing relationships between ob-
jects: (1) within a relation and (2) by using
the same values in two or more relations.

To illustrate this point, we briefly com-
pare the relational and semantic schemas
of the World Traveler database. In the re-
lational schema, at least three different
types of relationships are represented
structurally within individual relations:

(1) the functional relationship between
PNAME and STREET;

(2) the many-many association between
PNAMEs and LANGUAGES;

(3) the clustering of STREET, CITY, and
ZIP values as addresses.

At least three other types of relationships
are

(4

(b)

(cl

represented by pairs of relations:

the type/subtype relationship between
PERSON and TOURIST;
the fact that PERSON, PERSPEAKS,
and PERGOES all describe the same
set of objects;
the fact that the employers of BUS-
TRAVs are described in the BUSI-
NESS relation.

In contrast, each of these types of relation-
ship has a different representation in the
semantic schema.

As indicated above, in the absence of
integrity constraints the data structuring

ACM Computing Surveys, Vol. 19, No. 3, September 1987

210 l R. Hull and R. King

primitives of the relational model (and
the other record-oriented models) are not
sufficient to model the different types of
commonly arising data relationships accu-
rately. This is one reason that integrity
constraints such as key and inclusion de-
pendencies are commonly used in conjunc-
tion with the relational model. Although
these do provide a more accurate represen-
tation of the data, they are typically ex-
pressed in a text-based language; it is
therefore difficult to comprehend their
combined significance. A primary objective
of many semantic models has been to pro-
vide a coherent family of constructs for
representing in a structural manner the
kinds of information that the relational
model can represent only through con-
straints. Indeed, semantic modeling can be
viewed as having shifted a substantial
amount of schema information from the
constraint side to the structure side.

1.3.3 Abstraction Mechanisms

Semantic models provide a variety of con-
venient mechanisms for viewing and ac-
cessing the schema at different levels of
abstraction [Hammer and McLeod 1981;
King and McLeod 1985a; Smith and Smith
1977; Su 1983; Tsichritzis and Lochovsky
19821. One dimension of abstraction pro-
vided by these models concerns the level of
detail at which portions of a schema can be
viewed. On the most abstract level, only
object types and ISA relationships are
considered. At this level the structure of
objects is ignored, for example, the x-node
ADDRESS would be shown without its
children. A more detailed view includes the
structure of complex objects; the further
detail includes attributes and the rules gov-
erning derived schema components.

A second dimension of the abstraction
provided by semantic models is the degree
of modularity they provide. It is easy to
isolate information about a given type, its
subtypes, and its attributes. Furthermore,
it is easy to follow semantic connections
(e.g., attribute and ISA relationships) to
find closely associated object types. Both of
the above dimensions of abstraction are
very useful in schema design and for

schema browsing, that is, the ad hoc perusal
of a schema to determine what and how
things are modeled. Interactive graphics-
based systems that use these properties
of semantic models have been developed
(see Section 4.3); comparable systems for
the record-oriented models have not been
developed.

An interesting question is why the cen-
tral components of semantic models-
objects, attributes, ISA relationships-are
necessarily the best mechanisms to use to
enrich a data model. Although, of course,
there can be no clearcut choice of modeling
constructs, there are two reasons to support
the selection of these particular primitives.
First, practice has shown that schemas con-
structed with traditional record-oriented
models tend to simulate objects and attri-
butes by interrelating records of different
types with logical and physical pointers.
The second point is that computer science
researchers in AI and programming lan-
guages have selected similar constructs to
enhance the usability of other software
tools. It is thus interesting that researchers
with somewhat different goals have found
semantic model-like mechanisms useful.
This latter point is discussed in more detail
later in this section.

A third dimension of abstraction is pro-
vided by derived schema components that
are supported by a few semantic models
[Hammer and McLeod 1981; King and
McLeod 1985a; Shipman 19811 and also by
some relational implementations [Stone-
braker et al. 19761. These schema compo-
nents allow users to define new portions of
a schema in terms of existing portions of a
schema. Derived schema components per-
mit the user to identify a specific subset of
the data, possibly perform computations on
it, and then structure it in a new format.
The “new” data are then given a name and
can subsequently be used while ignoring
the details of the computation and refor-
matting. In the relational model, derived
schema components must be either new
relations or new columns in existing rela-
tions. Semantic models provide a much
richer framework for defining derived
schema components. For example, a de-
rived subtype specifies both a new type and

ACM Computing Surveys, Vol. 19, No. 3, September 1987

an ISA relationship; similarly, a derived
single-valued attribute specifies both a
piece of data and a constraint on it. There-
fore, semantic models give the user consid-
erably more power for abstracting data in
this way.

Derived data are closely related to the
notion of a user view (or external schema)
[Chamberlain et al. 1975; Tsichritzis and
Klug 19771, except that derived data are
incorporated directly into the original
schema rather than used to form a separate
new schema. Another difference is that a
view may contain raw or underived com-
ponents, as well as derived information.

1.4 Database Design with a Semantic Model

In general, the advantages of semantic
models, as described in the literature, are
oriented toward the support of database
design and evolution [Brodie and Ridja-
novic 1984; Chen 1976; King and McLeod
1985a; Smith and Smith 19771. At the pres-
ent time the practical use of semantic
models has been generally limited to the
design of record-oriented schemas. Design-
ers often find it easier to express the high-
level structure of an application in a
semantic model and then map the seman-
tic schema into a lower level model. One
prominent semantic model, the Entity-
Relationship Model, has been used to de-
sign relational and network schemas for
over a decade [Teorey et al. 19861. Inter-
estingly, relational schemas designed using
the ER Model are typically in 3NF, an
indication of the naturalness of using a
semantic model as a design tool for tradi-
tional DBMSs.

develop structured design methodologies. A
detailed and fairly comprehensive design
methodology appears in Rosussopoulos and
Yeh [1984]. After requirements analysis is
performed, the authors advise the use of a
semantic model as a means of integrating
and formalizing the requirements. A se-
mantic model serves nicely as a buffer be-
tween the form of requirements collected
from noncomputer specialists and the low-
level computer-oriented form of record-
oriented models. Several methodologies
have also addressed the issue of integra-
ting schema and transaction design in order
to simplify the collection and formalization
of database dynamic requirements; see
Brodie and Ridjanovic [19841 and King and
McLeod [1985a] for examples.

Semantic models are a convenient mech-
anism for allowing database specifications
to evolve incrementally in a natural, con-
trolled fashion [Brodie and Ridjanovic
1984; Chen 1976; King and McLeod 1985a;
Teorey 19861. This is because semantic
models provide a framework for top-down
schema design, beginning with the specifi-
cation of the major object types arising in
the application environment, then specify-
ing subsidiary object types. Referring to
the World Traveler schema, the design
might begin with the specification of the
PERSON and BUSINESS nodes; the
LINGUIST, TOURIST, and BUSINESS-
TRAVELER nodes would follow; and fi-
nally the various attributes would be
defined. The constructed type ADDRESS
might be introduced when it is realized that
both PERSON and BUSINESS share the
identical attributes STREET, CITY, and
ZIP.

A number of features of semantic models In conclusion, significant research has
contribute to their use in both the design been directed at applying specific semantic
and the eventual evolution of database models to the design of either semantic or
schemas. They provide constructs that traditional database schemas. However,
closely parallel the kinds of relationships little work has been directed at pro-
typically arising in database application viding methodological support for selecting
areas; this makes the design process easier an appropriate semantic model or for
and lessens the likelihood of design errors. integrating the various modeling capabili-
This is in contrast to record-oriented ties found in semantic models. Rather,
models, which force the designer to concen- methodological approaches are typically
trate on many low-level details. Semantic tied to one model and to one prescrip-
models also provide a variety of abstraction tive approach to producing a semantic
mechanisms that researchers have used to schema.

Semantic Database Modeling l 211

ACM Computing Surveys, Vol. 19, No. 3, September 1987

212 l R. Hull and R. King

1.5 Related Work in Artificial Intelligence

We now consider the relationship between
semantic data modeling and research on
knowledge representation in artificial in-
telligence. Although they have different
goals, these two areas have developed sim-
ilar conceptual tools.

Early research on knowledge represen-
tation focused on semantic network [Fin-
dler 1979; Israel and Brachman 1984;
Mylopoulos 19801 and frames [Brachman
and Schmolze 1985; Fikes and Kehler 1985;
Minsky 19841. In a semantic network, real-
world knowledge is represented as a graph
formed of data items connected by edges.
The graph edges can be used to construct
complex items recursively and to place
items in categories according to similar
properties. The important relationship
types of ISA, is-instance-of, and is-part-of
(which is closely related to aggregation) are
naturally modeled in this context. Unlike
semantic data models, semantic networks
mix schema and data in the sense that they
do not typically provide convenient ways of
abstracting the structure of data from the
data itself. As a consequence, each object
modeled in a semantic network is repre-
sented using a node of the semantic net-
work; these networks can be quite large if
many objects are modeled. One of the ear-
liest semantic database models, the Seman-
tic Binary Data Model [Abrial 19741, is
closely related to semantic networks; sche-
mas from this model are essentially seman-
tic networks that focus exclusively on
object classes.

Frame-based approaches provide a much
more structured representation for object
classes and relationships between them.
Indeed, there are several rough parallels
between the frame-based approach and
semantic data models. The frame-based
analog of the abstract object types is called
a frame. A frame generally consists of a list
of properties of objects in the type (e.g.,
elephants have four legs) and a tuple of
slots, which are essentially equivalent to the
attributes of semantic data models. Frames
are typically organized using ISA relation-
ships, and slots are inherited along ISA
paths in a manner similar to the semantic

data models. In general, properties of a type
are inherited by a subtype, but exceptions
to this inheritance can also be expressed
within the framework (e.g., three-legged el-
ephants are elephants, but have only three
legs). Exception-handling mechanisms may
also be provided for the inheritance of slot
values. For example, referring to the World
Traveler Database, in a frame-based ap-
proach the HAS-NAME attribute of a
given person might be different in the role
of PERSON and the role of TOURIST
(e.g., a nick-name). (Although the termi-
nology used by the KL-ONE model [Brach-
man and Schmolze 19851 differs from that
just given, essentially the same concepts
are incorporated there.)

In general, frame-based approaches do
not permit explicit mechanisms, such as
aggregation and grouping for object con-
struction. In recent research and commer-
cial systems [Aikens 1985; Kehler and
Clemenson 1983; Stefik et al. 19831, frames
have been extended so that slots can hold
methods in the sense of object-oriented
programming languages; this develop-
ment parallels current research in object-
oriented databases, which is briefly
discussed in Section 5.

Because frame-based systems are gener-
ally in-memory tools, the sorts of research
efforts that have been directed at imple-
menting semantic databases have not been
applied to them. For example, considerable
research effort has focused on the efficient
implementation of semantic schemas and
derived schema components [Chan et al.
1982; Farmer et al. 1985; Hudson and King
1986, 1987; Smith et al. 19811.

2. TUTORIAL

This section provides an in-depth discus-
sion of the fundamental features and
components common to most semantic
database models. The various building
blocks used in semantic models are de-
scribed and illustrated, and subtle and
not-so-subtle differences between similar
components are highlighted. Philosoph-
ical implications of the overall approaches
to modeling taken by different models are
also considered.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

To provide a basis for our discussion, we
use the Generic Semantic Model (GSM).
The model was developed expressly for this
survey and is based largely on three of the
most prominent models found in the
literature: the Entity-Relationship (ER)
Model, the Functional Data Model (FDM),
and the Semantic Data Model (SDM). The
GSM is derived in large part from the IF0
Model [Abiteboul and Hull 19871, which
itself was developed as a theoretical frame-
work for studying the prominent semantic
models [Abriall974; Brodie and Ridjanovic
1984; Hammer and McLeod 1981; Kersch-
berg and Pacheco 1976; King and McLeod
1985a; Shipman 1981; Sibley and Kersch-
berg 19771. Although the GSM incorpo-
rates many of the constructs and features
of these models, it cannot be a true integra-
tion of all semantic models because of the
very different approaches they take. Spe-
cifically, the approach taken by GSM is
closest to the FDM. Because the primary
purpose of GSM has been to serve as a tool
for exposition, it is not completely specified
in this paper.

In some cases the literature taken as a
whole uses a given term ambiguously. Per-
haps the most common example of this is
the term “aggregation.” At a philosophical
level, this term is used universally to indi-
cate object types that are formed by com-
bining a group of other objects; for example,
ADDRESS might be modeled as an aggre-
gation of STREET, CITY, and ZIP. At a
more technical level, some models support
this using a construction based on Carte-
sian product, whereas others use a con-
struction based on attributes. In this
section we adopt specific, somewhat tech-
nical definitions for various terms. For
example, we use aggregation to refer to
Cartesian-product-based constructions.
These more restrictive definitions will
permit a clear articulation of the different
concepts arising in the literature.

This section has four major parts. The
first briefly compares two broad philosoph-
ical approaches that many models choose
between, providing a useful perspective be-
fore delving into a detailed discussion of
the different building blocks of semantic
models. The second part defines the spe-

Semantic Database Modeling l 213

cific constructs used for describing the
structure of data in semantic models and
presents examples that highlight similari-
ties and differences between them. The
third considers how these constructs are
combined and augmented to form database
schemas in semantic models. The fourth
discusses languages for accessing and ma-
nipulating data, and for specifying seman-
tic schemas.

2.1 Two Philosophical Approaches

The GSM is meant to be representative of
a wide class of semantic models; as a result
of being somewhat eclectic, it blurs an
important philosophical distinction arising
in semantic modeling literature. Histori-
cally, there have been two general
approaches taken in constructing semantic
models. The distinction between them is
not black and white, but models have had
a tendency to adopt one approach or the
other. Essentially, various models place dif-
ferent emphasis on the various constructs
for interrelating object classes. One
approach stresses the use of attributes to
interrelate objects; the other places an
emphasis on explicit type constructors. As
a result, different data models may yield
dramatically different schemas for the
same underlying application.

To illustrate this point, for the same
underlying data we compare two schemas
that give very different prominence to attri-
butes and type constructors. The compari-
son is particularly salient because the
schemas reflect the underlying philosophies
of two early influential semantic models,
namely, the FDM and the ER Models,
respectively.

Figure 3 shows the two GSM schemas,
both representing the same data underlying
a portion of the World Traveler Database
application. The schema in Figure 3a
loosely follows the FDM and emphasizes
the use of attributes for relating abstract
object types with other abstract object
types. The schema in Figure 3b loosely
follows the philosophy of the ER Model in
that it emphasizes the use of type construc-
tor aggregation (called relationship in the
ER Model) and grouping for relating

ACM Computing Surveys, Vol. 19, No. 3, September 1987

214 . R. Hull and R. King

WORKS-FOR

YEARS-OF-EMPLOYMENT

(4

(b) Emphasis on constructed types

(b)

Figure3. Two schemas for the same underlying data. (a) Schema emphasizing attributes. (b) Schema
emphasizing type constructors.

abstract object types. In both schemas an Interestingly, in an instance of the first
instance includes a set of PERSONS and a schema the relationship of people and
set of BUSINESSes (both considered sets their business is represented by the attri-
of abstract objects), along with attributes bute (i.e., function) WORKS-FOR and its
specifying person and business names and inverse WORKS-FOR-‘; in the second, the
the languages spoken by PERSONS. aggregation EMPLOYMENT (which is a

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 215

use to represent the structure of data. The
discussion is broken into three parts, which
focus on types, attributes, and ISA relation-
ships, respectively. Importantly, in the sec-
tion on attributes we compare the notions
of attributes and aggregations.

set of ordered pairs) is used. Both schemas
represent the constraint that many people
work for the same business, but not the
reverse: In the first schema this is accom-
plished using a single-valued and a multi-
valued attribute, and in the second by the
N: 1 constraint. Further, in the first
schema, a multivalued attribute is used to
represent the languages spoken by a person,
whereas in the second, a grouping construct
is used.

The choice of emphasis-attribute based
or type constructor based-affects the lan-
guage mechanisms that seem natural for
manipulating semantic databases. Consider
Figure 3a. If a user wanted to know the
business of a particular person, the attrib-
ute WORKS-FOR may be used to reference
the business directly. In Figure 3b, the type
constructor representing ordered pairs of
PERSONS and BUSINESSes must be
manipulated in order to obtain the desired
data. On the other hand, the type construc-
tor approach gives the user the flexibility
of directly referencing, by name, ordered
pairs in EMPLOYMENT.

The use of type constructors also allows
information to be associated directly with
schema abstractions. As one illustration,
the bottom subschema includes an attrib-
ute on EMPLOYMENT that describes
the length of time an individual has
been employed at a particular company.
(Essentially the same information is
represented in the first schema with the
two-argument attribute YEARS-OF-
EMPLOYMENT, although the relation-
ship EMPLOYMENT and this attribute
are not linked together.) Analogously, in
the second schema, the grouping construct
for LANGUAGES is augmented by an
attribute giving the cardinality of each set
of languages. (No analog for this exists in
the attribute-based approach.) In a model
that stresses type constructors, relation-
ships between types are essentially viewed
as types in their own right; thus it makes
perfect sense to allow these types to have
attributes that further describe them.

2.2 Local Constructs

This section presents detailed descriptions
of the building blocks that semantic models

2.2.1 Atomic and Constructed Types

A fundamental aspect of all semantic
models is the direct representation of object
types, distinct from their attributes and
sub- or supertypes. Most models provide
mechanisms to represent atomic or non-
constructed object types, and many models
also provide type constructors. In the dis-
cussion below we focus on the use of object
types in semantic models and on the two
most prominent type constructors, namely,
aggregation and grouping.

A semantic model typically provides the
ability to specify a number of atomic types.
Intuitively, each of these types corresponds
to a class of nonaggregate objects in the
world, such as PERSONS or ZIP-codes. (Of
course, the type PERSON has many attri-
butes.) Many semantic models distinguish
between atomic types that are abstract and
those that are printable (or representable).
The abstract types are typically used for
physical objects in the world, such as PER-
SONS, and for conceptual (or legal) objects,
such as BUSINESSes. Atomic printable
types are typically alphanumeric strings,
but in some graphics-based systems they
might include icons as well. It is often con-
venient to articulate subclasses of these,
such as ZIP-codes, Person-NAMES, or
Business-NAMES, and most models asso-
ciate operators, such as addition for num-
bers, with them. As shown in the World
Traveler schema, in the GSM abstract
types are depicted with triangles, atomic
printable types are depicted with flattened
ovals, and subtypes are depicted with
circles.

In instances of a semantic schema,
abstract objects are viewed conceptually to
correspond directly to physical or concep-
tual objects in the world and in some imple-
mentations of semantic models, they are
represented using internal identifiers that
are not directly accessible to the user. This
corresponds to the intuition that such

ACM Computing Surveys, Vol. 19, No. 3, September 1987

216

ADDRESS

64 (b)

Figure 4. Object types constructed with aggregation. (a) EMPLOYMENT = PERSON X
BUSINESS. (b) ADDRESS = STREET x CITY x ZIP.

objects cannot be “printed” or ‘displayed”
on paper or on a monitor.

When defining an instance of a semantic
schema, an active domain is associated with
each node of the schema. The active
domain of an atomic type holds all objects
of that type that are currently in the data-
base. This notion of active domain is
extended to type constructor nodes below.

We now turn to type constructors. The
most prominent of these in the semantic
literature are aggregation (called relation-
ship in the ER Model) and grouping (also
known as association [Brodie and Ridja-
novic 19841). An aggregation is a composite
object constructed from other objects in the
database. For example, each object associ-
ated with the aggregation type EMPLOY-
MENT in Figure 4a is an ordered pair of
PERSON and BUSINESS values. Mathe-
matically, an aggregation is an ordered n-
tuple. In an instance, the active domain of
an aggregation type will be a subset of the
Cartesian product of the active domains
assigned to the underlying nodes. For
example, the active domain of EMPLOY-
MENT will be the set of pairs correspond-
ing to the set of employee-employer
relationships currently true in the database
application. According to our definition,
the identity of an aggregation object is com-
pletely determined by its component val-
ues. Figure 4b highlights the use of
aggregation for encapsulating information.

Before continuing, we reiterate that the
definition of aggregation used here is delib-
erately narrow and differs from the usage
of that term in some models, including
SDM and TAXIS. The representation of
aggregations in those models is generally
based on attributes and is discussed in the
next section. It should also be noted that
some models, including FDM, emphasize
the use of attributes, as well as support the
use of aggregations in attribute domains.

The grouping construct is used to repre-
sent sets of objects of the same type. Fig-
ure 5a shows the GSM depiction of the
grouping construct to form a type whose
objects are sets of languages. Mathemati-
cally, a grouping is a finite set. In an
instance, the active domain of a grouping
type will hold a set of objects, each of which
is a finite subset of the active domain of
the underlying node. In a constructed
object, a *-node will always have exactly
one child.

As defined here, a grouping object is a
set of objects. Technically, then, the iden-
tity of a grouping object is determined
completely by that set. To emphasize
the significance of this, we consider how
committees might be modeled in a semantic
schema. One approach is to define the type
COMMITTEE as a grouping of PERSON
because each committee is basically a set
of people. This is probably not accurate
in most cases because the identity of a

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 217

Data Model [Kuper and Vardi 1984, 19851
provides an alternative formalism in which
cycles are permitted.

We close this section by mentioning
other kinds of type constructors found in
the literature. The TAXIS and Galileo
models support metatypes; that is, types
whose elements are themselves types. For
example, in the World Traveler example, a
metatype TYPE-OF-PERSON might con-
tain the types PERSON, LINGUIST,
TOURIST, and BUSINESS-TRAVELER.
This metatype could have attributes such
as SIZE or AVERAGE-AGE, which
describe characteristics of the populations
of the underlying types. A comparison
of metatypes with both subtypes and
the grouping construct is presented in
Section 2.3.2.

In principle, a data model can support
essentially any type constructor in much
the same way in which some programming
languages do. Historically, almost all
semantic models have focused almost
exclusively on aggregation and grouping.
Notable exceptions include SAM* (Seman-
tic Association Model), TAXIS, and Gali-
leo. These models permit a variety of type
constructors that may be applied to atomic
printable types. SAM* is oriented in part
toward scientific and statistical applica-
tions and supports sets, vectors, ordered
sets, and matrices; TAXIS and Galileo sup-
ports type constructors typical of impera-
tive programming languages.

To summarize, semantic models typically
differentiate between abstract and printa-
ble types and provide type constructors for
aggregation and grouping.

LANGUAGES

LANGUAGE

(a)

d
COMMI-ITEE

r I
(b)

Figure5 Object types constructed with grouping.
(a) LANGUAGES = * LANGUAGE.

committee is separate from its membership
at a particular time. Figure 5b shows a more
appropriate approach. COMMITTEE is
modeled as an abstract type and has an
attribute MEMBERSHIP whose range is a
grouping type.

As illustrated in Figure 6, the type con-
structors can be applied recursively. In this
example, we view a VISIT as a triple con-
sisting of a TOURIST-TRAP, a GUIDE
(viewed as a subtype of PERSON), and a
set of TOURISTS (also a subtype of per-
son). As indicated in the figure, edges orig-
inating from an aggregation node can be
labeled by a role; this is important if more
than one child of an aggregation is of the
same type. In the GSM and most semantic
models supporting aggregation and group-
ing, there can be no (directed or undirected)
cycle of type constructor edges. The Logical

2.2.2 Attributes

The second fundamental mechanism found
in semantic models for relating objects is
the notion of attribute (or function)
between types. In this section we articulate
a specific meaning for this notion and indi-
cate the various forms it takes in different
semantic models. We conclude with a com-
parison of different modeling strategies
using aggregation and attributes.

We begin by defining the notion of attrib-
ute as used in the GSM. Speaking formally,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

218 l R. Hull and R. King

VISIT

DESTINATION

T&&T

/

0 TOURIST

IURISTS

VISIT = DESTINATION:TOURIST-TRAP x LEADER:GUIDE x FOLLOWERS:(*TOURIST)

Figure 6. Recursive application of aggregation and grouping constructs.

a one-argument attribute in a GSM schema
is a directed binary relationship between
two types (depicted by an arrow), and an
n-argument attribute is a directed relation-
ship between a set of n types and one type
(depicted by an arrow with n tails). Attri-
butes can be single valued, depicted using
an arrow with one pointer at its head, or
multivalued, depicted using an arrow with
two pointers at its head. In an instance, a
mapping (a binary or (n + l)-ary relation)
is assigned to each attribute; the domain of
this mapping is the (cross product of the)
active domain(s) of the source(s) of the
attribute, and the range is the active
domain of the target of the attribute. The
mapping may be specified explicitly
through updates, or in the case of derived
attributes it may be computed according to
a derivation rule. In the case of a single-
valued attribute, the mapping must be a
function in the strict mathematical sense,
that is, each object (or tuple) in the domain
is assigned at most one object in the range.
In GSM, there are no restrictions on the
types of the source or target of an attribute.

Of course, there is a close correspondence
between the semantics of a multivalued
attribute and the semantics of a single-
valued attribute whose range is a con-
structed grouping type. In keeping with the
general philosophy that the GSM incorpo-
rates prominent features from several rep-
resentative semantic models, both of these
possibilities have been included. Most
models in the literature support multival-
ued attributes and do not permit an attrib-
ute to map to a grouping type. Also, some
models, including SDM and INSYDE, view
all attributes as multivalued and use a con-
straint if one of them is to be single valued.
Similarly, there is also a close relation-
ship between a one-argument attribute
whose domain is an aggregation and an
n-argument attribute.

We now briefly mention another kind of
attribute, called here a type attribute. This
is supported in several models, including
SDM, TAXIS, and SAM*. Type attributes
associate a value with an entire type,
instead of associating a value with each
object in the active domain. For example,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling

ENROLLMENT

l 219

ENROLLMENT

GRADE

@ijv

\

STUDENT

(4

ENROLLMENT

@
@Ll@ \ /

KEY

(b)

(cl (4

Figure 7. Four alternative representations for ENROLLMENT.

the type attribute COUNT might be asso-
ciated with the type PERSON and would
hold one value: the number of people cur-
rently “in” the database. Other type attri-
butes might hold more complex statistics
about a type, for example, the average sal-
ary or the standard deviation of those sal-
aries. The value associated with a type
attribute is generally prescribed in the
schema; such attributes thus form a special
kind of derived data.

We conclude the section by comparing
four different ways of representing essen-
tially the same data interrelationships
using the aggregation and attribute con-

structs. Figure 7 shows four subschemas
that might be used to model the type
ENROLLMENT. To simplify the pictures,
we depict all atomic nodes as circular. In
the first subschema, ENROLLMENT is
viewed as an aggregation of COURSE and
STUDENT. Each object of type ENROLL-
MENT will be an ordered pair, and a
GRADE is associated with it by the attrib-
ute shown. The IF0 and Galileo models
provide explicit mechanisms for this rep-
resentation. The second approach might be
taken in such models as SAM* and SHM+,
which do not provide an explicit attribute
construct. In this case ENROLLMENT is

ACM Computing Surveys, Vol. 19, No. 3, September 1987

220 l R. Hull and R. King

viewed as a ternary aggregation of
COURSE, STUDENT, and GRADE. As
suggested in the diagram, a key constraint
is typically incorporated into this schema
to ensure that each course-student pair has
only one associated grade. The third
approach shown in Figure 7c might be
taken in models that do not provide an
explicit type constructor for aggregation.
Many semantic models fall into this cate-
gory, including SBDM, SDM, TAXIS,
and INSYDE (and the object-oriented
programming language SMALLTALK,
for that matter). Under this approach
ENROLLMENT is viewed as an atomic
type with three attributes defined on it.
Although not shown in Figure 7c, a con-
straint might be included so that no course-
student pair has more than one grade. The
fourth approach is especially interesting in
that it does not require that the construct
ENROLLMENT be explicitly named or
defined if it is not in itself relevant to the
application. In this case the attribute for
GRADE would be a function with two argu-
ments. FDM has this capability.

We now compare the first three of these
approaches from the perspective of object
identity. In Figure 7a, each enrollment is
an ordered pair. Thus, the grade associated
with an enrollment can change without
affecting the identity of the enrollment.
Technically speaking, in the absence of the
key dependency, this is not true in Figure
7b, in which an enrollment is an ordered
triple. In Figure 7c, the underlying identity
is independent of any of the associated
course, student, and grade values. An
enrollment e with values CSlOl, Mary, and
‘A’ might be modified to have values
Math2, Mary, ‘B’ without losing its under-
lying identity. Also, in the absence of a
constraint, the structure does not preclude
the possibility that two distinct enroll-
ments e and e’ have the same course, the
same student, and the same grade.

2.2.3 ISA Relationships

The third fundamental component of vir-
tually all semantic models is the ability to
represent ISA or supertype/subtype rela-
tionships. In this section we review the

basic intuitions underlying these relation-
ships and describe different variations of
the concept found in the literature. The
focus of this section is on the local proper-
ties of ISA relationships; global restrictions
on how they may be combined are discussed
in Section 2.3.1. In several models subtypes
arise almost exclusively as derived sub-
types; this aspect of subtypes is considered
in Section 2.3.2.

Intuitively, an ISA relationship from a
type SUB to a type SUPER indicates that
each object associated with SUB is associ-
ated with the type SUPER. For example,
in the World Traveler schema the ISA edge
from ,TOURIST to PERSON indicates that
each tourist is a person. More formally, in
each instance of the schema, the active
domain of TOURIST must be contained in
the active domain of PERSON. In most
semantic models each attribute defined on
the type SUPER is automatically defined
on SUB; that is, attributes of SUPER are
inherited by SUB. It is also generally true
that a subtype may have attributes not
shared by the parent type.

The family of ISA relationships in a
schema forms a directed graph. In the lit-
erature this has been widely termed the
ISA “hierarchy.” However, as suggested in
Figure 8, most semantic models permit
undirected (or weak) cycles in this graph.
For this reason we follow Atzeni and Parker
[19861 and Lenzerini [19871 in adopting the
term ISA network. Although ISA relation-
ships are transitive, it is customary to spec-
ify the fundamental ISA relationships
explicitly and view the links due to transi-
tivity as specified implicitly.

Speaking informally, ISA relationships
might be used in a semantic schema for two
closely related purposes. The first is to
represent one or more possibly overlapping
subtypes of a type, as with the subtypes of
PERSON shown in the World Traveler
schema. The second purpose is to form a
type that contains the union of types
already present in a schema. For example,
a type VEHICLE might be defined as the
union of the types CAR, BOAT, and
PLANE, or the type LEGAL-ENTITY
might be the union of PERSON, CORPO-
RATION, and LIMITED-PARTNER-

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 221

SALARY EMPLOYEE I [STUDENT \ MAJOR)

Figure 8. ISA network with undirected cycle.

SHIP. When using ISA for forming a
union, it is common to include a covering
constraint, which states that the (active
domain of the) supertype is contained in
the union of the (active domains of the)
subtypes. Also, the semantics of update
propagation varies for the different kinds
of ISA relationships.

Historically, semantic models have used
a single kind of ISA relationship for both
of these purposes. Furthermore, several
early papers on semantic modeling (includ-
ing FDM and SDM) provide schema
definition primitives that favor the
specification of ISA networks from top to
bottom. For example, in these models the
type VEHICLE would be specified first,
and subtypes CAR, BOAT, and PLANE
would be specified subsequently. In con-
trast, the seminal paper [Smith and Smith
19771 uses ISA relationships to form unions
of existing types.

More recent research on semantic mod-
eling has differentiated several kinds of ISA
relationship; and some models, including
IFO, RM/T, Galileo, and extensions of the
ER Model, incorporate more than one type
of ISA into the same model. For example,
in the extension of the ER Model described

in Teorey et al. [1986], subset and general-
ization ISA relationships are supported. A
subset ISA relationship arises when one
type is contained in another; this is the
notion already discussed in connection with
the GSM. Generalization ISA relationships
arise when one type is partitioned by its
subtypes, that is, when the subtypes are
disjoint and together cover the supertype.
Generalization ISA relationships could
thus be used for the VEHICLE and
LEGAL-ENTITY types mentioned above.
As noted in Abiteboul and Hull [1987] and
Teorey et al. [19861, the update semantics
of these two constructs are different. For
example, in the first case deletion of an
object from a subtype has no impact on the
supertype; in the second case deletion from
a subtype also requires deletion from the
supertype.

A second broad motivation for distin-
guishing kinds of ISA relationships stems
from studies of schema integration [Batini
et al. 1986; Dayal and Hwang 1984;
Navathe et al. 1986; NEL86]. For example,
Dayal and Hwang [19841 study the problem
of integrating two or more FDM schemas.
Suppose that two FDM schemas contain
types EMPl and EMPB, respectively, for

ACM Computing Surveys, Vol. 19, No. 3, September 1987

222 ’ R. Hull and R. King

employees. To integrate these, a new type
EMPLOYEE can be formed as the gener-
alization of EMPl and EMPB. This
generalization may have overlapping sub-
types but must be covered by them. Inter-
estingly, Dayal and Hwang [1984] also
permit ISA relationships between attri-
butes.

2.3 Global Considerations

In Section 2.2 we discussed the constructs
used in semantic models largely in isola-
tion. This section takes a broader perspec-
tive and examines the larger issue of how
the constructs are used to form schemas.
The discussion is broken into three areas.
The first concerns restrictions of an essen-
tially structural nature on how the con-
structs can be combined, for example, that
there be no directed cycles of ISA relation-
ships. The second and third areas are two
closely related mechanisms for extending
the expressive power of schemas, namely,
derived schema components and integrity
constraints.

2.3.1 Combining the Local Constructs

Although many semantic models support
the basic constructs of object construction,
attribute, and ISA, they do not permit arbi-
trary combinations of them in the forma-
tion of schemas. Restrictions on how the
constructs can be combined generally stem
from underlying philosophical principles or
from intuitive considerations concerning
the use or meaning of different possible
combinations. Such restrictions have also
played a prominent role in theoretical
investigations of update propagation in
semantic schemas [Abiteboul and Hull
1987; Hecht and Kerschberg 19811. The
restrictions are typically realized in one of
two ways: in the definition of the constructs
themselves (e.g., in the original ER Model,
all attribute ranges are printable types) or
as global restrictions on schema formation
(e.g., that there be no directed cycles of ISA
relationships). The following discussion
surveys some of the intuitions and restric-
tions arising in construct definitions and
then considers global restrictions on
schema formation.

In the description of the local constructs
given in Section 2.2, relatively few restric-
tions are placed on their combination. For
example, aggregation and grouping can be
used recursively, and attributes can have
arbitrary domain and range types. Indeed,
part of the design philosophy of the GSM
was to present the underlying constructs in
as unrestricted a form as feasible in order
to separate fundamental aspects of the con-
structs from their usage in the various
semantic models of the literature. In con-
trast with the GSM, many semantic models
in the literature present constructs in
restricted forms; for example, some models
permit aggregations in attribute domains
but not as attribute ranges or in ISA rela-
tionships.

Restrictions explicitly included in the
definition of constructs are essentially
local. However, these restrictions can affect
the overall or global structure of the family
of schemas of a given model. A dramatic
illustration of this is provided by the origi-
nal ER Model [Chen 19761. In that model,
aggregation can be used only to combine
abstract types. As a result, schemas from
the model have a two-tier character; with
abstract types in one level and aggregations
in the second. Attributes may be defined
on both abstract types or aggregations, but
they must have ranges of printable type.

We conclude our discussion of local con-
structs by attempting to indicate why cer-
tain models introduce restrained versions
of constructs. Intuitively, a model designer
tries to construct a simple yet comprehen-
sive model that can represent a large family
of naturally occurring applications. Thus,
for example, FDM allows grouping only in
attribute ranges. As illustrated in the dis-
cussion of COMMITTEES in Section 2.2.1
(see Figure 5b), grouping objects are rarely
of interest in isolation.

In addition to restricting the use of con-
structs at the local level, many semantic
models specify global restrictions on how
they may be combined (including notably
Abiteboul and Hull [1987]; Brodie and
Ridjanovic [1984]; Brown and Parker
[1983]; Dayal and Hwang [1984]; Hecht
and Kerschberg [1981]). The most promi-
nent restrictions of this kind concern the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 223

n TOURIST

(4 (b)

Figure 9. “Schemas” violating intuitions concerning ISA.

combining of ISA relationships. More
recently, the interplay between constructed
types and ISA relationships has also been
studied. To give the flavor of this aspect of
semantic models, we present a representa-
tive family of global restrictions on ISA
relationships. It should also be noted that
several models [Albano et al. 1985; Ham-
mer and McLeod 1981; King and McLeod
1985a; Shipman 1981; Su 19831 do not
explicitly state global rules of this sort but
nevertheless imply them in the definitions
of the underlying constructs.

To focus our discussion of ISA restric-
tions, we consider only abstract types. This
coincides with most early semantic models,
including FDM and SDM. In schemas for
these models, a family of base types is
viewed as being defined first, and subtypes
are subsequently defined from these in a
top-to-bottom fashion. The World Traveler
schema follows this philosophy, as does the
example in Figure 8. In the GSM, subtypes
are depicted using a subtype (circle) node,
indicating that they are not base types. To
enforce this philosophy, we might insist
that the tail of each specialization edge is a
subtype node and the head of each special-
ization edge is an abstract or subtype node.

A second general restriction on ISA
involves directed cycles. Consider the
“schema” of Figure 9a. (We use quotes
because this graph does not satisfy the
global restriction we are about to state.) It
suggests that TOURIST is a subtype of
BUSINESS-TRAVELER, which is a sub-

type of LINGUIST, which is a subtype of
TOURIST. Intuitively, this cycle implies
that the three types are redundant; that is,
in every instance, the three types will con-
tain the same set of objects. Furthermore,
if the cycle is not connected via ISA rela-
tionships to some abstract type, there is no
way of determining the underlying type
(e.g., PERSON) of any of the three types.
Thus, we might insist that there is no
directed cycle of ISA edges.

In the “schema” of Figure 9b, the type
labeled ? is supposed to be a subtype of the
abstract type PERSON and also of the
abstract type BUSINESS. If we suppose
that the underlying domains of PERSON
and BUSINESS are disjoint, then in every
instance the node labeled ? will be assigned
the empty set. Speaking intuitively, the ?
node cannot hold useful information. So,
we might insist that any pair of directed
paths of ISA edges originating at a given
node can be extended to a common node.

The above discussion provides a complete
family of restrictions on ISA relationships
for the GSM considered without type con-
structors. Speaking informally, the rules
are complete because they capture all of the
basic natural intuitions concerning how
ISA relationships (of the top-to-bottom
variety) must be restricted in order to be
meaningful. On a more formal level, it can
be shown that, if a schema satisfies these
rules, then every node will have an unam-
biguous underlying type, no pair of nodes
will be redundant, and every node will be

ACM Computing Surveys, Vol. 19, No. 3, September 1987

224 . R. Hull and R. King

satisfiable in the sense that some instance
will assign a nonempty active domain to
that node.

The set of rules given above applies to
the special case of abstract types and top-
to-bottom ISA relationships. As discussed
in Section 2.2.3, some models support dif-
ferent kinds of ISA relationships. Further-
more, in some models constructed types can
participate in ISA relationships. Specifica-
tion of global rules in these cases is more
involved; the IF0 model presents one such
set of rules [Abiteboul and Hull 19871.

2.3.2 Derived Schema Components

Derived schema components are one of
the fundamental mechanisms in semantic
models for data abstraction and encap-
sulation. A derived schema component
consists of two elements: a structural spec-
ification for holding the derived informa-
tion and a mechanism for specifying how
that structure is to be filled, called a deri-
vation rule. (Keeping with common termi-
nology, we refer to derived schema
components simply as “derived data.“)
Derived data thus allow computed infor-
mation to be incorporated into a database
schema.

In published semantic models the most
commonly arising kinds of derived data are
derived subtypes and derived attributes.
Each of these is illustrated in the World
Traveler schema: LINGUIST is a derived
subtype of PERSON that contains all per-
sons who speak at least two languages, and
LANG-COUNT is a derived attribute that
gives the number of languages that mem-
bers of LINGUIST speak. In queries, users
may freely access these derived data in the
same manner in which they access data
from other parts of the schema. As a result,
the qo:cific computations used to deter-
mine the members of LINGUIST and the
value of LANG-COUNT are invisible to
the user. The derivation rules defining
derived data can be quite complex, and
moreover, they can use previously defined
derived data.

In any given semantic model, a language
for specifying derivation rules must be
defined. In the notable models supporting

derived data [Hammer and McLeod 1981;
King and McLeod 1985a; Shipman 19811,
this language is a variant of the first-order
predicate calculus, extended to permit the
direct use of attribute names occurring in
the schema, the use of aggregate attributes,
and the use of set operators (such as set
membership and set inclusion). This is dis-
cussed further in Section 2.4. (Although not
traditionally done, the language for speci-
fying derivation rules can, in principle,
allow side effects.)

To illustrate the potential power of a
derived data mechanism, we present an
example that could be supported in the
DBMS CACTIS [Hudson and King 19861.
Figure 10 shows a schema involving
BUSINESS-TRAVELERS and TRIPS
they have taken. The derived attribute
TOTAL-MILES-TRAVELED is also de-
fined on business travelers. The attribute
uses two pieces of information: the TRIP
attribute of BUSINESS-TRAVELER and
the ADDRESS attribute of BUSINESS.
TRIP consists of ordered pairs of DATE
and CITY, each representing one business
trip. The definition of TOTAL-MILES-
TRAVELED is based on a derivation rule
that is a relatively complex function. For
each city traveled to on a trip, this function
computes the distance between that city
and the city the individual works in. Then,
the distances are summed and multiplied
by 2 to give the total miles traveled per
individual. This distance information may
be stored elsewhere in the database or else-
where in the system.

To illustrate further the power of derived
data, we present an example showing the
interplay of derived data with schema
structures. The example also provides a
useful comparison of the notions of group-
ing, subtype, and metatype. Figure 11
shows three related ways of modeling cat-
egorizations of people on the basis of the
languages they can speak. Figure lla is
taken from SDM and uses the grouping
construct in conjunction with a derivation
rule stating that the node should include
sets of people grouped by the languages
they speak. In an instance, this type would
include the set of persons who speak
French, the set of persons who speak

ACM Computing Surveys, Vol. 19, No. 3, September 1987

ADDRESS
A

WORKS-FOR LOCATED-AT
TRAVELER ’

TOTAL-MILES-TRAVELED

Figure 10. Schema used in example of derived attribute.

226 l R. Hull and R. King

PROFICIENCY-

(b)

l l l

LANGUAGE-BASED
PERSON-TYPES

l-yLIxr,

(c)

Figure 11. Related uses of derived schema components. (a) Expression-defined grouping
type as in SDM. (b) Derived subtypes (derivation rules not shown). (c) Metatype whose
elements are types, as in TAXIS.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 227

associated with a derived schema compo-
nent. In many cases such updates would
have ambiguous consequences. For exam-
ple, in an instance of the World Traveler
Database, if someone were explicitly
deleted from LINGUIST, the set of lan-
guages that person speaks would have to be
reduced, but the system would not know
which languages to remove.

In some cases explicit updates against a
derived schema component might have an
unambiguous impact on the underlying
data. For example, updates on the
FRENCH-SPEAKING-PERSON subtype
of Figure llb are easily translated into
updates on the SPEAKS attribute. Impor-
tantly, FDM as described in Shipman
[19811 provides facilities for specifying how
updates to the derived data, if permitted at
all, should be propagated in the underlying
data. Interestingly, the derived update
problem is related to the view update prob-
lem in relational databases [Cosmadakis
and Papadimitriou 19841.

Chinese, and, more generally, a set of per-
sons for each of the languages in the data-
base. These sets are accessed in queries by
referring to languages. (This construction
is closely related to forming the inverse
function SPEAKS-‘.) In the example, we
also define a (nonderived) attribute on the
grouping type.

The schema of Figure llb includes a
derived subtype for each of the languages
that arises. In this representation different
attributes can be associated with each of
the subtypes. Importantly, the number of
subtypes is equal to the number of lan-
guages arising in the underlying instance,
whereas in the schema of Figure lla, only
one additional type is used. Although not
shown here, type attributes can be defined
on the subtypes to record information on
the number of speakers of each language.

The schema of Figure llb can be
extended to include the graph of Figure llc,
which shows the use of a metatype, as found
in TAXIS. The elements of this metatype
are types from elsewhere in the schema.
The derived attribute NUMBER-OF-
SPEAKERS defined on this metatype
shows a third way of obtaining this cardi-
nality information.

Several models, including FDM and
SDM, view the specification of derived data
as part of the schema design and/or evolu-
tion process, whereas others support a
much more dynamic view. For example, in
the implementation of INSYDE described
in King [1984], users can specify derived
data at any time and incorporate them as
permanent in the schema. Indeed, in the
graphics-based interface to this model
[King 19841, database queries are formed
through the iterative specification of
derived data (see Section 4.3).

We close this section with a discussion
of the interaction of derived data with data-
base updates. Speaking in general terms,
derived data are automatically updated as
required by updates to other parts of the
schema. For example, in the World Trav-
eler Database, if a person who speaks one
language learns a second, that person is
automatically placed in the LINGUIST
subtype, and the attribute LANG-COUNT
is extended to this person. A subtlety arises
if the user attempts to directly update data

2.3.3 Static Integrity Constraints

As is clear from the above discussion, the
structural component of semantic models
provides considerably more expressive
power than that of the record-oriented
models. However, there is still a wide
variety of relationships and properties of
relationships that cannot be directly
represented using structure alone. For this
reason, semantic models often provide
mechanisms for specifying integrity con-
straints. The discussion here focuses on
three topics: the relationship between
semantic models and the prominent rela-
tional integrity constraints, prominent
types of integrity constraints found in
semantic models, and the differences
between integrity constraints and derived
data. Although integrity constraints can in
principle focus on both the static and
dynamic aspects of data [Tsichritzis and
Lochovsky 1982; Vianu 19871, little
research on dynamic constraints has been
done relative to semantic models. For this
reason, we focus on static integrity con-
straints.

Broadly speaking, semantic models
express in a structural manner the most

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

228 l R. Hull and R. King

important types of relational integrity con-
straints, namely, key dependencies and
inclusion dependencies. As suggested by the
World Traveler schema in Figure 1 and the
associated relational schema in Figure 2,
relational key dependencies can be repre-
sented using single-valued attributes.
Inclusion dependencies arising from sub-
typing can be represented using ISA rela-
tionships. Inclusion dependencies that
serve as referential constraints are typically
modeled in an implicit manner in semantic
schemas. For example, the dependency
BUSTRAV[EMPLOYER] C BUSI-
NESS[BNAME] in the relational schema
is represented in the semantic schema by
the fact that the attribute edge WORKS-
FOR points directly to the BUSINESS
node as its range. Interestingly, some exam-
ples of multivalued dependency [Fagin
1977; Zaniolo 19761 are naturally modeled
using multivalued attributes.

We now turn to the various kinds of
constraints used in semantic models. Many
of these focus on restricting the individual
constructs occurring in a schema. On attri-
butes, such constraints include restrictions
that they be l-l, onto, or total. For exam-
ple, in the World Traveler schema, the
HAS-NAME attribute is restricted to be
l-l and total. ISA relationships can also be
constrained in various ways. For example,
a disjointness constraint states that certain
subtypes of a type are disjoint (e.g., that no
TOURIST is a BUSINESS-TRAVELER).
A covering constraint states that a set of
subtypes together covers a type. In some
investigations, these constraints are
applied to types that need not be related by
ISA edges [Lenzerini 19871.

An important class of constraints on con-
structs restrict cardinalities in various
ways. Perhaps the best known types of
cardinality constraint are found in the ER
Model: These specify whether a binary
aggregation (relationship) is 1: 1,l :N, N:l,
or M:N. For example, in Figure 3b, the
aggregation EMPLOYMENT between
PERSON and BUSINESS is constrained
to be N:l. In each instance of this schema,
several (N) people can be associated with
a given business, but only one (1) business

can be associated with a given person.
Multivalued attributes can be restricted in
a similar manner: An attribute mapping
students to courses might be restricted to
be [l : 61, meaning that each student must
be taking at least one course but no more
than six courses. As detailed in Section 3.2,
the IRIS data model permits the specifica-
tion of several cardinality constraints on
the same n-ary aggregation, thereby provid-
ing considerable expressive power.

Another prominent constraint is an
existence constraint. This is related to a
relational inclusion dependency and states
that each entity of some type must occur
in some aggregation. Consider the schema
of Figure 3b, which represents the aggre-
gation EMPLOYMENT. It makes no sense
in this particular application for a business
to exist in the database unless it partici-
pates in an EMPLOYMENT aggregation
for at least one employee. To enforce this,
we would say that there is an existence
dependency between BUSINESS and
EMPLOYMENT. It is also natural to place
existence dependencies on attribute ranges.

The semantic modeling literature has
also described constraints that are com-
puted in nature; such constraints may
involve schema components that are arbi-
trarily separated. These constraints are
generally specified using a predicate
describing properties of data taken from
disparate parts of a schema. Such con-
straints in the World Traveler Database,
for example, can state that for each busi-
ness-traveler p, the city of p’s employer is
equal to the city where p lives or that the
number of persons living in a given zip-
code area is no greater than 10,000.
Although several authors have suggested
the usefullness of computed constraints in
principle [Hammer and McLeod 1981; King
and McLeod 1985a; Tsichritzis and
Lochovsky 19821, no models in the litera-
ture support them formally.

There is a close relationship between
integrity constraints and derived schema
components. Both require that data asso-
ciated with different parts of a schema be
consistent according to some criteria. The
essential difference is that an integrity

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 229

Essentially, a semantic manipulation lan-
guage typically takes the form of an exten-
sion to a language resembling a relational
query language. Some semantic manipula-
tion languages also include the flow-of-
control and computational capabilities of
general-purpose imperative programming
languages. The GSM data manipulation
language is a simple SEQUEL-like lan-
guage.

Here is a query that lists the names of
all linguists who speak three or more lan-
guages; it illustrates the basic capabilities
of a semantic access language to manipu-
late types and functions:

for each X in LINGUIST
such that LANGCOUNT 2 3

print PNAME(X)

The next query prints any address such
that more than one person resides at the
given address:

for each X in ADDRESS
such that for some Y in PERSON
and for some Z in PERSON

Y#Zand
ADDRESS(Y) = X and

ADDRESS(Z) = X
print X.STREET, X.CITY, X.ZIP

constraint does not extend the database
with any new information, whereas derived
data truly augment the database.

2.4 Manipulation Languages

Up to this point we have provided an over-
view of the data structuring mechanisms
supported by typical semantic models.
These capabilities would normally be sup-
ported by a data definition language asso-
ciated with a specific model. No data model
is complete without a corresponding data
manipulation language, which allows the
database user to create, update, and delete
data that correspond to a give schema. In
this section, we describe the general struc-
ture of a data manipulation language for
the GSM and use it as a means of discussing
the general nature of semantic data manip-
ulation.

There are three fundamental capabilities
that differentiate a semantic data manipu-
lation language from a manipulation lan-
guage for a traditional record-oriented
model. First, the language must be able to
query abstract types. Second, it must pro-
vide facilities for referencing and manipu-
lating attributes. In this way, abstract,
nonprintable information may be manipu-
lated. Third, semantic manipulation lan-
guages often allow the user to manage
derived data in the form of subtypes and
functions constructed from existing
(sub)types and functions. Thus, the speci-
fication of derived data is not reserved for
the user of the data definition languages
but may also be performed at run time.
This blurs to some degree the traditional
boundary between schema and data; the
user’s view of the world may now be
extended dynamically with new infor-
mation constructed from existing data.
This provides a marked contrast with
approaches taken in record-oriented
models, in which the data definition and
data manipulation languages are quite dis-
tinct.

Semantic data manipulation languages
represent diverse programming language
paradigms, but there are strong common-
alities in terms of their functionality.

Note that the “.” notation is used to refer-
ence the various components of an aggre-
gation. It is also true that if, for example,
an address could have two components of
the same type (e.g., two ZIPS), this notation
would create an ambiguity. In general, it is
necessary to be able to give names to the
components of an aggregation and to ref-
erence them by those names, rather than
by their types.

The following query illustrates the capa-
bility of a semantic language to manipulate
derived information:

create subtype ROMANCE-LINGUIST of
LINGUIST

where SPEAKS includes French, Italian,
Spanish, Portuguese, Rumanian,
Sardinian

for each X in ROMANCE-LINGUIST print
PNAME(X)

record ROMANCE-LINGUIST

ACM Computing Surveys, Vol. 19, No. 3, September 1987

230 l R. Hull and R. King

The query creates a subtype, called
ROMANCE-LINGUIST, of all linguists
who speak French, Italian, Spanish, Por-
tuguese, Rumanian, and Sardinian. Then
the names of all romance linguists are
printed, and the subtype is permanently
recorded in the database schema. When a
query specifies a derived subtype, it must
be possible to name the subtype in order to
reference it later. Again, we note that as a
direct result of their rich modeling capabil-
ities, semantic models require the creation
of names that would not exist in a corre-
sponding relational schema. Since such
things as aggregations and subtypes may be
created and referenced, they need names.
This can be viewed as a limitation to the
casual user who might feel that a semantic
model causes a proliferation of names and
therefore creates confusing schemas.

In the examples presented above, the
output of the queries was a list of objects
or values, not instances of semantic types.
This is quite different from relational quer-
ies, which take relations as input and pro-
duce relations as output. As a result, in
most semantic languages operations cannot
be composed. Notably, the language FQL
does not suffer from this limitation (see
Section 3.5).

3. SURVEY

In this section we survey a number of
‘semantic models. In particular, we discuss
the first ten models (four horizontal
groups) listed in Figure 12. We begin, in
Section 3.1, with three models that are
highly prominent in the literature. These
are the Entity-Relationship (ER) Model,
the Functional Data Model (FDM), and the
Semantic Data Model (SDM). Then we
briefly consider a number of other semantic
models in Sections 3.2-3.4. Finally, in Sec-
tion 3.5 we review the prominent semantic
data manipulation languages.

The models of Sections 3.1 and 3.2
embody a number of explicit, distinct con-
structs in support of complex data model-
ing. Section 3.3 considers the binary models
that offer only a minimal set of simple
constructs, which are then used to build up
more complex structures. In Section 3.4 we

consider models that represent complex
data by extending the relational model. The
models in the last two horizontal groups of
Figure 12 focus primarily on the research
goals of encapsulating transaction facili-
ties and theoretical investigations. These
models are discussed in Section 4. (In this
and all subsequent summary tables, a blank
entry indicates that the specified feature is
not present to the best of the authors’
knowledge.)

The three prominent models and those
discussed in Section 3.2 all explicitly sup-
port constructs for defining semantic data-
bases. This approach has the advantage of
providing a refined set of powerful model-
ing capabilities that the database designer
and user may quickly comprehend. In con-
trast, the binary and relational extension
models represent two very different philo-
sophical approaches. The binary models
take a building block approach in that they
support only simple constructs that are
then used to develop more complicated
ones. This minimalist approach has the
advantage of being more general; the
models are very simple object-oriented ones
that allow the designer to develop a wide
variety of modeling constructs. In contrast,
the relational extensions rely on underlying
relational primitives to support higher level
constructs. This approach has the advan-
tage of being able to draw on a large body
of knowledge concerning relational data-
bases, which is useful in developing imple-
mentations and in enriching a system with
integrity mechanisms, design methodol-
ogies, query optimization, and transaction
specification facilities.

Figure 12 describes the various semantic
models according to their structural and
dynamic aspects. There are four main cat-
egories at the top of the figure: References
indicates references to initial research on
the models. Philosophical Basis classifies
the models along three spectras: their pri-
mary research objectives, the nature of
their underlying modeling primitives, and
their general modeling philosophy. The
research objective of each model is defined
as providing a general-purpose semantic
model, a basis for a structured design
methodology, a programming language for

ACM Computing Surveys, Vol. 19, No. 3, September 1987

PONENTS

RESEARCH
OsJECTl”ES

ER ,m?761 , GENERAL PURPOSE

PROMINENT

MODELS
EXP

-
EXP EXPLICIT

EXP

OTHER
HIGHLY SRUCTURED

MODELS

BINARY MODEL

EXP EXPLlClT

EXP
-
IMP

-
EXP

RELATIOUAL

EXTENSIONS -
EXP

-
EXP

-
EXP

GEM I I 1zan*3. GENERAL P”RPOSE TSZ84, AGGREGATION EXP IMP IMP

=#I

ATTR,B”TES IMP IMP EXP

TYPE IMP IMP EXP
CONSTR”CTORS

EXPUCIT

YODELS
FOCUSED ON

DYNAMICS
EXPLIC,, ATTRIBUTES 1 EXPI IMP) EXP EXP [KiM85bl IKiM85bl

TYPE EXP EXP IMP
CONSTR”CTORS

2E

TYPE EXP EXP
CONSTR”CTORS
TYPE EXP EXP IMP
CONSTR”CTORS

EXPLlClT EXP

-

liHm41 ,BrR*4I

MODELS
FOCUSED ON

THEORY

-
IMP EXPLlClT

Figure 12. Summary of prominent Semantic Data Models. Blanks indicate capability not supported to the authors’ knowledge. References in this figure
are keyed to the reference list.

232 l R. Hull and R. King

database applications, or a basis for theo-
retical investigation. The primitives in a
given model are classified as being either
explicit, minimalist, or relational exten-
sions. The modeling philosophies are clas-
sified as being centered around attributes,
aggregation, or more general type construc-
tors, including aggregation (see Section
2.1).

The Schema Components category con-
cerns the specific schema components
supported by the individual models. We
consider four capabilities: type constructors
(including aggregation and grouping), attri-
butes (including printable, object-valued,
and multivalued attributes), ISA relation-
ships, and derived schema components. In
the figure, we indicate whether a capability
is supported explicitly or implicitly, using
combinations of other constructs (see Sec-
tion 2). It is true, of course, that the lack
of one of these capabilities or the choice
of representing it implicitly rather than
explicitly is not necessarily a deficiency;
the underlying philosophy of a model is
often simpler and cleaner if the number of
constructs is kept minimal.

The Dynamic Component category con-
cerns dynamic capabilities that are as-
sociated with each model. Specifically,
literature references are provided to re-
search that has been performed in the
support of semantic query languages, data
manipulation primitives, and trans-
action structuring. (Query languages and
data manipulation primitives are discussed
in Section 2.4, a survey of the prominent
query languages is given in Section 3.5, and
transaction structuring is discussed in
Section 4.2.)

The general philosophy of semantic mod-
eling has been applied to the development
of special-purpose database models for
applications such as very-large-scale inte-
gration (VLSI) design [Batory and Kim
19851. Although these efforts are of signif-
icant interest and further validate the use-
fulness of semantic modeling, they are
beyond the scope of this paper.

3.1 Prominent Models

In this section we consider three well-
known models from the literature, which
are considered by many to be the most

ACM Computing Surveys, Vol. 19, No. 3, September 1987

influential semantic models. We see that,
even though they are all explicit models,
they vary greatly in their modeling capa-
bilities and in their philosophical approach
to database design. The first model con-
structs complex objects out of aggregations,
which are visualized at the same level of
abstraction as types. Consequently, such
aggregations can be considered irrespective
of the types they interrelate; that is, they
are semantic entities on their own (see Sec-
tion 2.1). In contrast, the two latter models
use attributes as their primary method of
constructing complex data; attributes are
viewed as secondary to types and have no
meaning at all without defining domain and
range types. Thus, we see that the promi-
nent models are representative of the two
general modeling approaches described in
Section 2.1.

3.1.1 The Entity-Relationship Model

The Entity-Relationship (ER) Model, pro-
posed by Chen in 1976, is generally consid-
ered to be one of the first true semantic
data models to appear in the literature,
although the term “semantic” was not in
use at the time. Schemas of this model have
a natural graph-based representation and
support the representation of abstract sets
of entities, relationships between these
entity sets, and attributes defined from
both entity and relationship sets to print-
able values. Thus, an ER schema consists
of types and relationships interconnecting
these types, along with printable attributes
of the types and relationships. Relation-
ships can be restricted to 1: 1, many: 1,
or many: many, and attributes can be
restricted to 1: 1.

Figure 13 shows a portion of the World
Travelers schema using the standard ER
notation. Rectangles represent entity sets,
that is, abstract types, diamonds represent
relationships, that is, aggregation, and ovals
represent the ranges of attributes. The ER
schema of Figure 13 illustrates a few differ-
ences between the original ER Model and
other, later semantic models. The most fun-
damental difference is that ISA relation-
ships are not represented. Recently, the ER
Model has been extended to include ISA
relationships [Batini et al. 1986; Teorey et
al. 19861 (see Section 2.2.3).

\ I /

PERSON ADDRESS

1

Figure 13. ER representation of part of the World Traveler schema.

234 l R. Hull and R. King

Perhaps the most distinctive feature of relationships are not supported, but recent
the ER Model is the way in which it researchers have proposed mechanisms for
restricts the use of attributes and aggrega- supporting ISA within the ER Model.
tion. Real-world attributes whose ranges
are printable can be represented directly-in
the ER Model. For example, in Figure 13
ADDRESS has three printable attributes,
STREET, CITY, and ZIP. On the other
hand, real-world attributes that map to
entity sets must be represented using rela-
tionships, as illustrated by the LIVES-AT
relationship. (This relationship is shown to
be many: 1 because several persons might
share the same address.) Because relation-
ships are given names and, in a sense,
viewed as entities themselves, it is straight-
forward in the ER Model to represent attri-
butes of relationships, as illustrated in
Figure 3b.

In the original ER Model, multivalued
attributes also require the use of a relation-
ship. This is because, as discussed above,
attributes must be single valued. Thus, to
represent the fact that a person may speak
more than one language, the relationship
SPEAKS is used to collect a number of
languages into a set. The underlying phi-
losophy is that an attribute is restricted to
being a single fact about an entity, whereas
a relationship can model the construction
of more complex entities from other enti-
ties.

The ER Model was originally proposed
[Chen 19761 as a schema design aid, per-
mitting users to design schemas using
a high-level object-based approach. The
resulting ER schema would then be trans-
lated into either the relational or the net-
work model. Within this framework, an ER
schema is designed primarily for the pur-
pose of articulating the overall data man-
agement objectives of an organization, but
is not implemented per se. A detailed design
methodology based on a generalization of
the ER Model appears in Teorey et al.
[1986].

In sum, the ER Model was the first
semantic model centered around relation-
ships, not attributes. It views the world as
consisting of entities and relationships
among entities. Both entities and relation-
ships may have single-valued printable
attributes. In the original ER Model ISA

3.1.2 The Functional Data Model

The Functional Data Model (FDM) was
introduced in 1976 [Kerschberg and Pac-
neco 19761 and is recognized as the first
semantic model centered around functional
relationships, that is, attributes. Like the
ER Model, a considerable amount of
research has developed around FDM, and
several other semantic models have
adopted the attribute-based approach.
Attributes in FDM can be either single- or
multivalued and can be defined on domains
that are Cartesian products of the atomic
entity sets. FDM also supports ISA rela-
tionships. Significantly, the work of Ship-
man [1981] on FDM is among the first to
include derived schema components as an
integral part of a semantic model.

An informal graph-based representation
of FDM schemas is introduced in Shipman
[1981] and extended in Dayal and Hwang
[19841 and elsewhere. An FDM schema cor-
responding to the World Traveler schema
is shown in Figure 14. FDM connects
objects directly with attributes without the
use of intermediate constructs such as
aggregation and grouping. This may be
viewed as producing simpler schemas.

The data language DAPLEX [Shipman
19811 for this model was the first integrated
data definition and access language for-
mulated entirely in the high-level terms
provided by an object-oriented semantic
database model. DAPLEX was also the
first database access language to give a
prominent role to attributes, permitting
their direct usage and also the use of their
inverses and compositions. This and other
semantic data access languages are dis-
cussed in Section 3.5.

FDM has spawned several research
projects. It has been used to provide a
unified interface to distributed heteroge-
neous databases in the Multibase project
[Landers and Rosenberg 1982; Smith et
al. 19811. Integration of FDM schemas is
studied in Dayal and Hwang [1984]. FDM
also served as the basis for one of the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

LOCATED-AT

BUSINESS WORKS-FOR .
I WORKS-AS

Figure 14. FDM representation of World Traveler schema.

Yl - - _ - -- - - - - - - . - _ _. __ .~ n - I .~ - .- .I - - - - . __ - - -~ . . - - .Y .I . - - . I.

236 l R. Hull and R. King

original studies of update propagation in
the context of semantic interconnections
between data [Hecht and Kerschberg 19811
(see Section 4.4).

In summary, FDM was the first of a
number of semantic models based on
explicit representation of attributes with
printables or objects as their ranges. It is a
simple, elegant model with an easily under-
stood visual representation. It gives prom-
inence to atomic types and attributes, not
to type constructors like aggregation and
generalization. One of the major benefits of
this model is the capacity to reference func-
tions directly when manipulating proper-
ties of data.

3.1.3. The Semantic Database Model

The Semantic Database Model (SDM)
[Hammer and McLeod 19811 was among
the first published models to emphasize the
UL* of the grouping constructor and the
support of derived schema components. In
particular, derived schema components
permit data relativism, that is, multiple per-
spectives on the same underlying data set.
SDM does not provide an explicit type con-
structor for aggregation, and in that sense
it is attribute oriented (see Section 2);
SDM does simulate aggregation with the
attribute primitive.

SDM is unique in that it provides a rich
set of primitives for specifying derived
attributes and subtypes. For example, sub-
type relationships in SDM are broken into
four categories: (i) those that are attribute
defined, (ii) those defined by set operations
(e.g., intersection) on existing types, (iii)
those that serve as the range of some attrib-
ute, and (iv) those that are user specified
(or user controllable in the terminology of
Hammer and McLeod [1981]).

As an example of the second sort of sub-
type, we might form a subtype called
RETIRED-TOURIST (retired people who
travel), give it the same properties of
TOURIST, and union it with TOURIST
to give the new subtype ALL-TOURIST.
An example of a subtype that exists explic-
itly to serve as the range of an attribute
would be if TOURIST in the World Trav-

eler schema were the range of an attribute,
say HAS-BEEN-VISITED-BY, of a type
COUNTRY. An example of the fourth
sort of subtype would be SUSPICIOUS-
TOURISTS, whose contents would be
updated directly by the end user on the
basis of personal criteria. Primitives for
specifying derived attributes are also sup-
ported in SDM.

One of the predicates used in conjunction
with the grouping construct is of particular
interest because it provides expressive
power of a structural nature. For example,
in the World Traveler Database an enu-
merated grouping class called EMPLOYA-
BLE-PERSON-TYPES can be defined to
hold the already existing types LINGUIST
and BUSINESS-TRAVELER. This is
roughly equivalent to forming a metatype
from a user-specified set of types. Attri-
butes of this new type (e.g., number of
elements, median income) are type attri-
butes on the underlying types. Although
this ability to view types as both sets and
individual elements is found in only a few
semantic data models (SAM* and TAXIS
being other notable models), it is commonly
supported by frame-based approaches to
knowledge representation in AI [Fikes and
Kehler 19851.

The richness of SDM as a schema spec-
ification language highlights the trade-off
in semantic modeling between providing a
small or large number of primitive data
structuring constructs. In models with a
small number of constructs, the represen-
tation of some data sets requires the arti-
ficial combination of these constructs; in a
model with many constructs such as SDM,
the designer is continually forced to choose
from among a variety of ways of represent-
ing the same data. Thus, a model like FDM
might seem stark compared with SDM, but
for some users it might prove easier to learn
and use.

SDM refines the notions of subtype and
attribute by considering how they are
defined. However, it does not support an
explicit aggregation type constructor. Of
our three prominent models, it appeared in
the literature most recently. SDM, like
FDM and unlike the ER Model, is centered

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 237

In SAM* physical or abstract objects
are represented using nonatomic concepts.
Seven kinds of associations or type con-
structors for building these concepts are
used. The different associations have some-
what specific intended uses, and operations
especially tailored to them.

We first consider four associations typi-
cal of most database applications. First,
membership association permits the speci-
fication of the domain of a type or an
attribute range. For example, a member-
ship association could be used to specify
that the type CITY has individual members
Paris, Beijing, and so on. The SAM* rep-
resentation of this is shown in Figure 15a.
(The M in the root node indicates that it is
a membership association.) The next two
kinds of association are closely related to
aggregation. The first of these is called
aggregation association and is illustrated in
Figure 15b. This kind of association is typ-
ically used to provide a description of an
entity and its attributes. In the figure,
PNAME is indicated to be a key. In terms
of the GSM, SAM*‘s interaction association
also has the structure of aggregation. In
SAM*, this is typically used to represent
abstract concepts based on more concrete
concepts. For example, the ENROLL-
MENT type (consisting of pairs of courses
and students) can be modeled as an inter-
action association. Cardinality conditions
can be specified for these associations. In
some cases a given concept can be viewed
in a SAM* schema as both an aggregation
association and an interaction association.
In this way different users can view the
same schema in different ways. Finally,
generalization associations are used to
model ISA relationships. A generalization
association forms the union of its underly-
ing types. Constraints such as disjointness
can be specified.

The remaining three associations focus
on aggregate properties of sets and are espe-
cially suited for statistical applications.
One of these is cross-product association.
This form of association is again an aggre-
gation in the terminology of GSM but typ-
ically holds all of the Cartesian product of
the underlying types instead of a subset of

around attributes, but it is richer (and thus
more complex) than either FDM or the ER
Model.

3.2 Other Highly Structured Models

In this section we consider three other
highly structured models, the Semantic
Association Model (SAM*), the IF0 Model,
and the IRIS Model. SAM* and IRIS have
been developed to support full-fledged
database applications, whereas IF0 was
developed primarily for theoretical inves-
tigation. SAM* focuses largely on special
forms of the aggregation construct, and
both IF0 and IRIS include both type con-
structors and attributes.

The Semantic Association Model (SAM*)
[Su 19831, an extension of SAM [Su
19801, attempts to provide a set of con-
structs rich enough to exhaust the possible
relationship types that might arise in both
commercial and statistical applications.
The model distinguishes different uses of
some of the fundamental structural con-
structs of semantic models and in some
cases provides them with different update
semantics. As a result, the model supports
a limited form of data relativism whereby
a given construct might be viewed as having
two or more different underlying structures
within the same schema. The paper [Su
19831 presents a graph-based representa-
tion for SAM* schemas and also suggests
an approach to implementing SAM* based
on data structures called G-relations, which
are closely related to non-first-normal-
form relations [Abiteboul and Bidoit 1984;
Fischer and Thomas 1983; Jaeschke and
Schek 1982; Makinouchi 19771. Schema
definition and data manipulation lan-
guages for SAM* are under development
[Su 19861.

The basis for SAM* schemas is provided
by what are called atomic concepts in Su
[1983]. These include integer, real, charac-
ter-string, and Boolean types, as well as
structured programming language data
types constructed from these, including
vectors, arrays, and ordered and unordered
sets, time, time series, text, and G-rela-
tions.

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

238 . R. Hull and R. King

PERSON

CITY

M

8
l . l

PARIS BEIJING

EMPLOYER

STREET CITY ZIP

(a) (b)

Figure 15. Membership and aggregation associations in SAM*.

that product. This association might be
used to identify a variety of categories;
for example, in a statistical database on
populations it may be useful to consider
categories formed from triples of AGE-
RANGES, RACE, and SEX. These triples
would then serve as the domain of functions
describing statistical features of the differ-
ent population groups they delimit. A COM-
position association is used to hold a vector
of sets. For example, a composition associ-
ation for CURRENT-FLEET might be a
triple, with three coordinates for the cur-
rent sets of cars, trucks, and boats, respec-
tively, that a business owns. In an instance,
a composition association node will hold
exactly one such tuple. Composition asso-
ciations can participate in aggregations.
Finally, summarization association is used
to specify attributes for both cross-product
associations and composition associations.
These attributes typically hold statistical
values and are thus a form of derived data.
In the case of cross-product associations
the attributes will be attributes in the sense
of GSM; in the case of composition associ-
ations they will be type attributes.

To summarize, the seven kinds of asso-
ciations used in SAM* have overlapping
semantics but are distinguished by their
associated update semantics and the con-
straints permitted. Although not discussed
here, a variety of local restrictions is placed
on how the constructs can be combined

with each other, thereby ensuring that
SAM* schemas are meaningful.

SAM* has recently been applied to the
area of manufacturing data [Su 19861. In
particular, SAM* has been shown to be
useful in representing the semantics of such
complex data types as temporal data, recur-
sively structured data, replicated data, and
versions.

The IF0 Model [Abiteboul and Hull
19871 was developed to provide a theoreti-
cal framework for studying the structural
aspects of semantic data models. The model
incorporates attributes and type construc-
tors for aggregation and grouping at a fun-
damental level and distinguishes between
two kinds of ISA relationships. The model
is used in Abiteboul and Hull [1987] to
characterize the propagation of simple
updates in the presence of semantic model
relationships and to analyze formally the
interplay between constructed types and
ISA relationships.

In many respects the IF0 Model is sim-
ilar to (and inspired) the structural portion
of the GSM; a fundamental difference con-
cerns how IF0 combines the semantic
constructs in forming schemas. The basic
building block of an IF0 schema is called a
fragment. Fragments are used as abstrac-
tion mechanisms for representing an object
type along with its internal structure and
its attributes. Figure 16, which shows the
IF0 representation of a portion of the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Figure 16. IF0 representation of portion of World Traveler schema.

240 l R. Hull and R. King

World Traveler schema, contains three
fragments: one for PERSON, one for
TOURIST, and one for ADDRESS. The
fragment for PERSON illustrates how IF0
clusters information about a type and its
attributes. In particular, the HOME node
is used as a place holder for the range of
LIVES-AT. This node is shown as a free
(circle) node and is restricted by a special-
ization edge to take its values from the type
ADDRESS. Free nodes are used in IF0 to
indicate that the type of objects populating
it is determined through ISA relationships
by another part of the schema. In IFO,
nodes such as HOME that occur as attrib-
ute ranges cannot be used in the same
manner as atomic type nodes or the roots
of constructed types. The specialization
edge from HOME to ADDRESS enforces a
form of referential constraint; this is
related to but somewhat different from
the subtype constraint represented by the
ISA edge from TOURIST to PERSON.
In IF0 the leaves of constructed types
are also represented as free types that are
restricted using referential constraint ISA
edges.

The use of fragments in IF0 highlights
some of the similarities between semantic
models and frame-based approaches to
knowledge representation such as KL-ONE
[Brachman and Schmolze 19851. A frag-
ment in IF0 corresponds loosely to a frame.
Fragments provide a natural way of repre-
senting nested or context-dependent attri-
butes. To illustrate, consider the set-valued
attribute SPEAKS of the World Traveler
schema. In IF0 this could be augmented
with a nested attribute WITH-PROFI-
CIENCY, which would specify the profi-
ciency. For example, if Mary spoke French
and Chinese, this nested attribute might
state that she speaks French with profi-
ciency of 2 and Chinese with a proficiency
of 3. Furthermore, the IF0 model dis-
tinguishes between two kinds of ISA re-
lationships, essentially as described in
Section 2.2.3.

The IRIS Model [Derrett et al. 19851 was
introduced recently, and a number of
research projects using the model have been
undertaken. The model is based primarily
on object types, specialization, multivalued

attributes, and some forms of derived
schema components. An initial prototype
version of IRIS [Derrett et al. 19851 will
include a nonprocedural language for quer-
ies and specifying derived data, as well as
schema definition capabilities. The use of
the IRIS Model as the basis for software
specification has been investigated [Lyng-
baek and Kent 19861, and a theoretical
investigation of the model has been initi-
ated [Lyngbaek and Vianu 19871. We focus
on the support of derived data in the model
and on the constraints used.

The basic building blocks of the struc-
tural portion of IRIS are readily described
in terms of the GSM. IRIS supports both
literal (printable) and nonliteral (abstract)
object types. These types participate in a
directed acyclic graph of ISA relationships
that has the unique type OBJECT at its
top. Objects may also be related through
(typically multivalued) attributes, whose
domains and ranges may be types or cross
products of types. Aggregations are mod-
eled using a single-valued attribute from a
cross product of types into the Boolean
type.

IRIS uses derived schema components to
support a form of data relativism whereby
the same data can be viewed structurally
from more than one perspective. In partic-
ular, IRIS permits the derivation of several
attributes from a single base predicate, that
is, aggregation. Figure 17 illustrates this
point with a simple example. The base
predicate shown in Figure 17a specifies 4-
tuples describing enrollments. We assume
here that each COURSE is offered in sev-
eral different LECTURES, that STU-
DENTS take a given lecture of a course,
and that students receive a GRADE. In
Figure 17b, this information is viewed using
the attribute COURSE-STUDENT-STA-
TUS, which maps each course-student pair
into the lecture the student is taking and
the grade received. IRIS permits the speci-
fication of this attribute as being derived
from the base predicate. An important
underlying principle of IRIS is highlighted
by this example: The attributes ENROLL-
MENT and COURSE-STUDENT-STA-
TUS are viewed as independent of any
particular underlying type. In general,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l

(b)

Figure 17. Two views of aggregation supported in IRIS.

several different attributes can be derived
from a given base predicate.

IRIS supports a powerful kind of cardi-
nality constraint called an object participa-
tion constraint. On the base predicate of
Figure 17a, the constraint STUDENT[1,5]
would indicate that each student must be
enrolled in at least one course-lecture pair
and cannot be enrolled in more than 5. In
Lyngbaek and Vianu [1987] these con-
straints are extended to attributes to
address more than one coordinate at a time.
For example, COURSE-STUDENT[O, l]
is used to state that each course-student
pair can appear 0 or 1 time in the base
predicate. This implies that the attribute
of Figure 17b is single valued. An analysis
of these constraints is presented in Lyng-
baek and Vianu [19871. Translation of IRIS
schemas into relational schemas is also pre-
sented there.

241

3.3 Binary Models

In this section, we consider a representative
of the family of “binary” models, which
attempts to supply a small, universal set of
constructs that are used to build more pow-
erful structures. These models are thus
minimalist in the sense that they require
the database designer to understand fewer
constructs.

The Semantic Binary Data Model
(SBDM) [Abrial 19741 is representative of
this family of models [Bracchi et al. 1976;
Deheneffe et al. 1974; Hainaut and Lechar-
lier 1974; Senko 19751, all of which repre-
sent data using two constructs: entity sets
and binary relations. As indicated in Fig-
ure 18, schemas of these models typically
consist of labeled nodes for entity sets and
labeled arcs corresponding to binary rela-
tionships between them. The primary

ACM Computing Surveys, Vol. 19, No. 3, September 1987

242 . R. Hull and R. King

PERSON

STREET CITY ZIP

Figure 18. SBDM representation of part of World Traveler schema.

contribution of these models was to provide
an early vehicle within which a number of
fundamental types of data relationships
could be articulated and studied.

In the SBDM, each binary relation is
actually viewed as an inverse pair of possi-
bly multivalued functions. For example, the
binary relation connecting PERSON with
ADDRESS in Figure 18 is viewed as con-
sisting of the (single-valued) function
LIVES-AT and the (multivalued) function
IS-ADDRESS-OF. A data definition lan-
guage and data manipulation language for
the SBDM are defined in Abrial [19741.
The defined database transactions can be
stored within the database; in this respect
the SBDM follows INGRES [Stonebraker
et al. 19761, in that the data dictionary
access language is the data manipulation
language applied to a certain part of the
database. Recent work with these models
includes the use of the SBDM as the basis
for a formal schema design methodology
[Dardailler et al. 19851, and the use of an
extended binary model that incorporates
ISA relationships and local constraints

on relationships (e.g., 1: 1 or N: 1) [Rishe
1985, 19861.

As just described, the SBDM is closely
related to the GSM in representational
power. A major difference is that the type
constructors of GSM must be simulated in
SBDM. For example, the aggregation
ADDRESS of the World Traveler schema
is modeled as an abstract type with three
binary relationships in the SBDM schema
of Figure 18. As with FDM, a constraint
must be added to ensure that each
STREET, CITY, and ZIP tuple is unique.
Also, the SBDM as described in Abrial
[1974] does not support ISA relationships,
although such relationships can essentially
be represented within the framework.

3.4 Relational Extensions

The ER Model, FDM, SDM, and the other
explicit models are similar in that they all
take the approach of supplying a handful
of distinct constructs that together are
designed to serve the vast majority of mod-
eling situations arising in typical database

ACM Computing Surveys, Vol. 19, No. 3, September 1987

application environments. They differ
largely in the approach taken to interrelate
data (type constructors versus attributes)
and in the number of constructs supported.
In this section we consider a very different
approach taken by some researchers. We
examine several models that support com-
plex data as an extension to the well-known
relational model. In these models the
designer and user of a database view data
from the relational perspective but are
given mechanisms built out of the rela-
tional model to construct semantic sche-
mas. A benefit of this approach is that these
models may draw on the large body of
knowledge known about the relational
model, including query optimization,
implementation strategies, and query lan-
guage formulation. A potential drawback is
that each of these models, like the rela-
tional model, imposes a level of indirection
owing to the representation of objects and
relationships based on records and identi-
fier comparisons. By some users this might
be viewed as tedius and inelegant.

The Structural Model [Wiederhold and
El-Masri 19801 is a relatively simple exten-
sion of the relational model, which was
introduced primarily as a tool for designing
and integrating schemas for the record-
oriented models. In this model, data are
stored in relations, and five types of rela-
tion are distinguished. First, primary entity
relations are used to store sets of tuples
that closely correspond to classes of entities
in the world. These relations store identi-
fiers for these entities, along with single-
valued attributes defined on them. In
general, primary entity relations will not be
affected by updates on other parts of the
schema. Referenced entity relations, on the
other hand, are used for entity sets that
serve primarily as the range of attributes
defined on the primary entity types. Nest
relations are used for holding many-valued
attributes, and lexicon relations are used to
hold 1: 1 correspondences between differ-
ent names for the same object (e.g., person-
name and Social Security number). Finally,
association relations serve the same role
as relationships in the ER Model and are
used to model many: many relationships

Semantic Database Modeling l 243

between primary entity types. Additional
semantics are incorporated into the model
by restricting how these different types of
relations can reference each other (e.g., a
referenced entity relation must be refer-
enced by at least one other relation). In
sum, the Structural Model uses relations to
simulate an object-oriented approach that
incorporates aggregation and single- and
multivalued attributes in a fairly direct
manner. On the other hand, ISA relation-
ships are not incorporated as directly. An
interesting application of the Structural
Model is described in Brown and Parker
[19831. This paper introduces a graph-
based representation of Structural Model
schemas and describes a methodology for
simplifying them.

RM/T [Codd 19791 is Codd’s extension
of the relational model. As in the Structural
Model, various kinds of relations for rep-
resenting different semantic modeling
constructs are distinguished, and update
semantics are specified for them. In
RM/T, abstract objects are represented by
permanent surrogates, and each type has
an associated one-column E-relation that
holds the surrogates of the objects currently
populating that type. Although users can
request that surrogates be created or
deleted, they can never explicitly reference
or view them. In this way, RM/T closely
follows the object-oriented spirit of most
semantic models. Single- and multivalued
attributes are stored in relations using sur-
rogates and printable values. Two forms of
aggregation are supported: The so-called
associative entities are aggregation objects
that are assigned a new surrogate. The
nonentity associations are aggregations for
which no surrogates are assigned, these
aggregations cannot have multivalued
attributes, nor can they participate in ISA
relationships. Grouping types based on
attribute values (see Section 2.3.2) are
called cover aggregations in RM/T. The
model also provides explicit constructs
for representing precedence relationships
between entities that have time-valued
attributes.

RM/T supports two types of ISA rela-
tionships. Unconditional generalization is

ACM Computing Surveys, Vol. 19, No. 3, September 1987

244 l R. Hull and R. King

essentially the notion of ISA used in the
GSM; each object in a subtype of an uncon-
ditional generalization must be a member
of the supertype. Alternative (or condi-
tional) generalization is used to form sub-
sets of a union of types. For example, the
type CUSTOMER might be defined as an
alternative generalization of PERSON,
BUSINESS, and PARTNERSHIP. In
RM/T, this means that each customer must
be either a person, a business, or a partner-
ship, but that the set of customers does not
have to contain all persons, businesses, and
partnerships. Note that in some models,
the type CUSTOMER could be modeled
by first forming a supertype LEGAL-
ENTITY of the three base types and then
defining CUSTOMER as a subtype of that.

GEM [Tsur and Zaniolo 1984; Zaniolo
19831 is a relational extension that can also
be viewed as an extension of the ER Model.
In particular, this model supports entities
and relationships, as well as subtyping and
nonatomic attribute ranges. An unusual
aspect of GEM is that it was developed as
an experiment in supporting a semantic
data language by extending a relational
query language (see Section 3.5). This is in
contradistinction to investigations that
extend the relational model itself.

3.5 Access Languages

We conclude our survey of semantic models
by examining various access languages that
have appeared in the literature and that
support semantic modeling constructs. We
include these languages in this section (and
not in Section 4, which discusses research
directions of semantic modeling) because
several of them were defined concurrently
and independently of the various semantic
models. Indeed, numerous researchers have
taken the approach of viewing data model-
ing and data manipulation as an integrated
mechanism. In this section we illustrate the
general capabilities of semantic access lan-
guages using a language similar in form to
DAPLEX [Shipman 19811 and Semdal
[King 19841 and briefly survey the promi-
nent languages in the literature. Figure 19
gives a brief survey of these languages. In
this section we do not consider data manip-
ulation for deeply nested constructed types;

theoretical approaches to this problem are
discussed in Section 4.4.

Three of the access languages, DAPLEX,
GEM, and ARIEL, are extensions of the
relational calculus [Date 1981; Ullman
19821 designed to encompass standard rela-
tional as well as semantic data structures.
FQL is unique because it is based on the
paradigm of functional programming (not
to be confused with the Functional Data
Model, which it supports). Unlike most
database query languages, FQL does not
support update specification or schema def-
inition. Finally, TAXIS, DIAL, Semdal,
and Galileo are imperative languages, with
philosphical similarities to typical Pascal-
like languages, including standard flow of
control facilities and arithmetic capabili-
ties.

DAPLEX supports the Functional Data
Model. Like the other languages in this
class, the query specification portion of this
language contains syntactically elegant
renditions of most of the basic elements
of the first-order predicate calculus and
is thus fundamentally nonprocedural.
DAPLEX also supports the direct mention
of attributes, their inverses, and their com-
positions and thus permits queries to have
a somewhat navigational flavor. It also sup-
ports the specification of aggregate values
such as averages, of orderings and similar
properties of entity sets, and of database
updates. It also supports the definition of
schema components, including derived
data.

FQL finds its roots in the work of Backus
[1978] on functional programming lan-
guages. This approach offers several ad-
vantages. In particular, the functional
approach reduces the use of secondary stor-
age, simplifies the interface needed to pro-
vide outside programs with database access,
and also typically enjoys an implementa-
tion that is quite compact [Buneman et al.
19821.

A query in FQL is formed by composing
one or more functions, which may them-
selves be formed using transformations
such as inverse or *, which turns a single-
valued function into its analog that maps
sets to sets. Another important operator is
restriction, denoted using a 1, which acts
like a filter on a list of values. To illustrate

ACM Computing Surveys, Vol. 19, No. 3, September 1987

FUNCTIONALITY I IMPLEMENTATION

REFERENCES1 MODEL 1 PARADIGM

OAPLEX

FQL

TAX IS

DIAL

GEM

Galileo [AC0851 Galileo IMPERATIVE WITH
DERIVED SCHEMA
COMPONENTS

J J J J ADAPLEX
EXTENSION

J FUNCTIONAL
DATA MODEL

J J J J RELATIONAL
FRONT-END

J J J J NOT IMP

SYSTEM EQUIP/OS/IMPL LANG

VAX/VMS/ADA ICDF821

VAX/VMS/PASCAL. CODASYL [Ntk84]

VAX/UNIX/PASCALRIMBG861

-
EMENTED

mj ~;;;UW;GE i SUN WORKSTATION,“AX,PYRAMID/UNIX/C

J J INGRES
FRONT-END

J J RELATIONAL
FRONT-END $woRKSTATloN /UNIX /PASCAL

d 1 J 1 -v’ 1 J 1 GALILEO 1 VAX/UNIX/VAX MACHINE CODE [AOOSS]

Figure lg. Data languages based on semantic models. Blanks indicate capability not supported to authors’ knowledge. References
in this figure are keyed to the reference list.

246 . R. Hull and R. King

the approach, we present an FQL-like
query that corresponds to the first query of
Section 2.4. In this query a list of all lin-
guists is formed using !LINGUIST. This
list is filtered by an operator, which first
forms ordered pairs with first coordinate
the language count associated with a given
linguist, and second coordinate the number
3, and then determines whether this pair
stands in the 2 relation. At this point, then,
a list of linguists who speak at least three
languages has been formed. This functional
is now composed with *PNAME (which is
the natural extension of the attribute
PNAME to lists of persons):

!LINGUIST 0 1 ([LANG-COUNT,31 0 2)
0 *PNAME

As discussed above, FQL does not support
database updates or schema definition, and
it is not clear how such capabilities could
be incorporated into the language in a nat-
ural fashion.

TAXIS, Galileo, DIAL, and Semdal are
designed to act as both query and applica-
tion languages and are thus called database
programming languages. The advantage of
this approach is a cleaner integration of
semantic database operations into applica-
tion programs. The goal is to support the
flexibility of general-purpose programming
language constructs in constructing data-
base transactions. In a database program-
ming language, the user can write
application programs that use semantic
data types as program data types-and
count on them to persist until the next use
of the database, without having consciously
to separate database archival tasks from
general programming tasks. In this way,
the user may extend the conceptual bene-
fits of manipulating complex objects
and ISA hierarchies into nondatabase
manipulations. TAXIS and Galileo are dis-
cussed further in Section 4.2 below; an
excellent survey of these and other pro-
gramming languages can be found in Atkin-
son and Buneman [19871.

4. FROM IMPLEMENTATIONS TO
THEORETICAL ANALYSIS

In this section we examine a number of
research projects that have evolved around
semantic modeling. These projects, instead

of focusing on constructing new modeling
techniques, have studied and applied
semantic modeling to such areas as the
implementation of physical access methods
of semantic databases, the construction of
mechanisms for the specification of data-
base dynamics, the design of graphical
interfaces to databases, and the theoretical
analysis of database issues.

After semantic models and data lan-
guages based on semantic models had been
in the research literature for a few years,
some researchers began to wonder about
the possibility of constructing full, efficient
DBMSs based on these constructs. In Sec-
tion 4.1 we discuss various implementation
issues unique to semantic models and sur-
vey five implementations described in the
literature.

In this article we have focused primarily
on the static aspects of semantic models
and discussed how they are used to struc-
ture and modularize database schemas.
Some researchers have extended the area
by developing mechanisms for structuring
and modularizing the dynamic aspects of
these models, with a primary focus on
database transactions. In Section 4.2 we
discuss two approaches researchers have
taken in this area and survey the TAXIS,
Galileo, SHM+, and INSYDE data models.

Section 4.3 examines what is perhaps the
newest application of semantic modeling. A
number of researchers have discovered that
semantic models make useful mediums for
providing interactive database interfaces.
We examine several experimental graphics-
based interfaces that use this approach.

Finally, Section 4.4 discusses theoretical
investigations of concepts arising in seman-
tic modeling. These include the develop-
ment of formal query languages for
constructed types, characterizations of
update propagation, and other topics. This
section also surveys the Format and Logical
Data Models.

4.1 Systems

Two fundamental issues arise in the con-
struction of full, efficient DBMSs based on
the paradigm of semantic modeling. On the
one hand, semantic models contain unusual
constructs that force the physical designer

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 247

Ada. GEM is an attempt to support a
semantic front end that is compatible with
existing relational DBMSs and to assess
the usefulness of relational database
machines in supporting semantic models.
The EFDM system concentrates on using
a persistent language as a database imple-
mentation tool.

Sembase is an experiment in producing
an integrated semantic language and
graphical interface (see Section 4.3) and in
providing efficient maintenance of derived
data. A novel aspect of the Sembase imple-
mentation is the homogeneous treatment
of records corresponding to objects of var-
ious types. All object records are stored in
a heap on disk and accessed using a system
of B-trees. In this way Sembase can adapt
to predominantly used access patterns.
Sembase also provides very efficient means
of keeping derived subtypes and some
forms of derived attributes up to date so
that only a minimal amount of processing
is required when a user requests a piece of
derived information. To do this, Sembase
maintains complex dependency informa-
tion at the data level. For example, in the
World Traveler Database, if a person
speaks one language and learns another,
the system will know that the given traveler
must be reevaluated vis-a-vis the derivation
rule for LINGUIST, the subtype as a whole
will not be reevaluated. A recent extension
of Sembase called CACTIS [Hudson and
King 1986, 19871 supports the elegant and
efficient maintenance of a much wider class
of derived attributes.

An extension of ADAPLEX, called the
Distributed Data Manager [Chan et al.
19831, supports a distributed semantic
DBMS. This system uses the Functional
Data Model and demonstrates that it is
possible to implement a distributed seman-
tic DBMS efficiently. Further, a semantic
model is shown to be useful in creating
more efficient distributed systems by mak-
ing use of the extra semantics supplied in
a schema when deciding how to distribute
data. In particular, the Distributed Data
Manager uses “fragment groups” as a
means of localizing interobject references.
Essentially, derived subtyping is used as a
means of creating a small level of granular-
ity to describe how different types of data

of a database to develop unique implemen-
tation constructs-abstract objects, sub-
type hierarchies, and derived data, in
particular, introduce new issues in database
physical design. On the other hand, like
hierarchical and network databases,
semantic schemas suggest expected access
patterns to the designer. The designer of
the physical implementation may capitalize
on this information in selecting appropriate
data structures.

In studying this area researchers have
concentrated on two broad strategies: the
use of existing data management capabili-
ties (like relational systems and persistent
programming languages) and the develop-
ment of special-purpose, highly efficient
access mechanisms. These efforts vary in
the depth of their implementations and
in the goals of the projects themselves.
Figure 20 describes five sample systems in
chronological order of their presentation in
the literature. In the following these sys-
tems are described in some detail.

Three of the systems use existing tools
to perform low-level data management:
EFDM uses persistent ALGOL, GEM is
built on top of Britton Lee’s IDM500 rela-
tional database machine, and TAXIS is
implemented in PASCALR. In both GEM
and TAXIS each type is mapped to a rela-
tion. For greater efficiency, ADAPLEX and
Sembase directly implement storage and
access mechanisms to support semantic
constructs. Objects are represented as vari-
able-length records, with a field for each
attribute connection. Each such field con-
tains a reference to an object or a set of
objects. These two implementations use
conventional access methods, like B-trees,
to manage sets of related objects (e.g., sub-
types).

The five systems differ fundamentally in
their intent as research projects. TAXIS is
not intended to be a DBMS; rather, it is
designed to support a programming lan-
guage that encompasses data management
facilities based on a semantic model. This
language is described further in Section 4.2.
ADAPLEX is an experiment in efficiently
implementing a semantic database using
general-purpose operating system files and
in embedding a semantic database language
(DAPLEX) in the programming language

ACM Computing Surveys, Vol. 19, No. 3, September 1987

I IMPLEMENTATION SYSTEM ASSOCIATED SYSTEM
REFERENCES MODEL STRATEGY MACHINE/OS/IMPLEMENTATION LANG COMPONENTS I

TAXIS

I

fMBG861 TAXIS RELATIONAL FRONT- VAXIUNIXIPASCALR
END, TYPE PER
RELATION

FULL PROGRAMMING LANGUAGE
CAPABILITY [MEG861

EFDM

GEM

[AtK83,
Ku1831

FDM PERSISTENT ALGOL VAXIVMSIPERSISTENT ALGOL QUERY LANGUAGE [Shi811
FILE PER TYPE OR
SUBTYPE

[TsZ841 GEM RELATIONAL FRONT- BRITTON LEE UNIX
END; TYPE PER IDM 500
RELATION BACK-END TO

VAX 780 I I

RELATIONAL QUERY LANGUAGE IZan831
INTERFACE
LANGUAGE

ADAPLEX [CDF821

I I

FDM VMS FlLE PER TYPE VAX/VMS/ADA EMBEDDED IN HOST PROGRAMMING
OR SUBTYPE LANGUAGE [SF L81]

DISTRIBUTED IMPLEMENTATION
ICDF831

Sembase [KinB4, INSYDE EXTERNAL NON- SUN WORKSTATION
FKM851 UNIFORM RECORD UNIX/C

QUERY LANGUAGE [Kin841

PER OBJECT
VAX, PYRAMID / GRAPHIC INTERFACE IKiM

.

Figure20. Systems based on semantic models. Blanks indicate capability not supported to authors’ knowledge. Keys to references in this figure
precede entries in reference list.

Semantic Database Modeling l 249

relate. Thus, for example, travelers may be
grouped according to where they have been
and then localized near the appropriate site
information. In this way fragment groups
are used as the basis of distribution and
replication.

4.2 Dynamics

Until recently, most semantic modeling
research concentrated on specifying the
structural aspects of constructed types and
the relationships between them, not on the
behavioral components of semantic models.
In Section 2 we discussed the dynamic com-
ponents of semantic models for schema
specification and data manipulation at a
fundamental level. In this section we con-
sider the broader issue of providing facili-
ties for structuring database manipulation
primitives into transactions.

The work on semantic transaction spec-
ification stems from early work on the
design of programming languages with
embedded database access mechanisms
(e.g., [Rowe and Schoens 1979; Wasserman
19791) and the work of Abrial [1974] on
data semantics in the context of the SBDM.
Two philosophies emerge in the four
models discussed here. TAXIS and Galileo
synthesize semantic modeling constructs
with control and typing mechanisms from
imperative programming languages. In con-
trast, SHM+ and INSYDE develop control
mechanisms that closely follow the struc-
ture of semantic schemas.

TAXIS [Mylopoulous et al. 19801 is typ-
ically viewed as a programming language
for data-intensive applications that incor-
porates several of the fundamental princi-
ples of data representation found in the
semantic database literature. In particular,
TAXIS is recognized as one of the first
systems to merge semantic data modeling
concepts, including attributes and ISA rela-
tionships, with more general programming
language facilities such as abstract data
types and exception handling. TAXIS pro-
vides tools for modularizing the specifica-
tion of database transactions and can
support a wide class of interactive data
management applications.

To support the semantic data modeling
concepts, TAXIS uses an extended form

of the relational model (see Section 3).
TAXIS incorporates most of the semantics
associated with data in the specification of
the operations associated with those data.

A more recently developed language,
Galileo [Albano et al. 19851, is similar to
TAXIS in that it incorporates semantic
data model mechanisms within a strongly
typed programming language. Galileo
introduces a general family of type con-
structors for both database and nondata-
base types and then uses them to support
aggregation, attributes, and ISA relation-
ships between database types. An interest-
ing contribution of Galileo is the concept
of environments, which are used as an
abstraction mechanism in the support of
modularization. Environments allow data
operations to be incorporated into the data-
base schema. Also, environments allow
schemas to be built incrementally by giving
the database user a mechanism for speci-
fying, in a controlled fashion, exactly how
new operators and schema components
should interact with the existing schema.

The Extended Semantic Hierarchy Model
(SHM+) [Brodie and Ridjanovic 19841 has
highly structured static and dynamic com-
ponents. The model for static data repre-
sentation used in SHM+ is based on
aggregation, grouping, and subtypes and
represents attribute relationships using
aggregation and keys. Static schemas in the
model have a very hierarchical and modular
flavor. In SHM+, behavioral components
form an integral part of the structural
building blocks. For example, a primitive
for iterative application of an operation is
directly associated with the grouping con-
struct. As a result, it is very easy to specify
involved database updates as highly struc-
tured transactions [Brodie and Ridjanovic
19841. A comprehensive methodology for
incremental design of the static and
dynamic components of schemas is devel-
oped in Brodie and Ridjanovic [19841.

The INSYDE Model [King and McLeod
1985a], which is derived from the Event
Model [King and McLeod 1982, 19841 is a
semantic database model that combines
static as well as dynamic primitives at a
fundamental level. The static portion of the
model is essentially a rich subset of SDM,
and the dynamic component includes

ACM Computing Surveys, Vol. 19, No. 3, September 1987

250 . R. Hull and R. King

language constructs to support data manip-
ulation as well as schema design and
evolution. The INSYDE Model provides a
unified support system for the entire life
cycle of a database, providing tools and
abstraction mechanisms for the design of
the static schema, the design of database
transactions, and the support of schema
evolution within an integrated framework.
In particular, it includes a prescriptive,
stepwise methodology for logical database
design, the purpose of which is to guide a
designer through both the specification and
maintenance of a semantically expressive
schema. This methodology gives a primary
role to transactions: The expected trans-
actions are a fundamental part of the initial
functional specification of a system and
are used to drive much of the refinement
and implementation process. Use of the
INSYDE Model is particularly appropriate
in the design of Office Information Systems
[King and McLeod 1985a].

4.3 Graphical Interfaces

Several graphical interfaces to databases
based on semantic models have been devel-
oped. This is due largely to the fact that
semantic models are conducive to visual
representations. In fact, as we have seen,
the data definition languages of some
semantic models are already graphical in
nature. The development of these inter-
faces has also been encouraged by the
advent of workstation technology, which
provides relatively inexpensive bit-mapped
displays and pointing devices (such as
mice). Semantic models are an obvious
choice for capitalizing on the ability of bit-
mapped workstations to display two-
dimensional images. In this section we
examine a few noteworthy attempts at
using a semantic model as the basis of an
interactive database interface.

Figure 21 surveys six experimental data-
base interfaces based on semantic models.
In Figure 21 we construct a taxonomy of
these systems along three central axes:
functionality, implementation environ-
ment, and the extent to which graphics are
used. With each system, we also list the
data model the interface supports. The six

systems are listed chronologically, in terms
of their presentation in the literature. We
see that they tend to support more and
more complex data models. GUIDE and
LID support the ER Model; DDEW is
based on an ER Model extended to provide
subtyping. SKI and ISIS support models
that are functionally very similar to
restricted subsets of SDM. SNAP supports
a subset of the IF0 model.

As indicated by the functionality area of
the chart, all of the systems except LID
concentrate on schema management, pro-
viding capabilities for schema definition,
schema browsing, and query formulation.
The ISIS and SNAP systems also provide
some limited facilities for convenient rep-
resentation and perusal of printed data.
And, in contrast to the other five systems,
LID is oriented entirely toward data brows-
ing and allows the user, given a particular
object in the database, to traverse schema
relationships to find related objects. In LID
there is no capability of viewing sets of
objects, only individual ones. Therefore, if
the user wishes, say, to view all travelers
who have been to Japan, the locations vis-
ited by each traveler would have to be
examined individually. The system will not
perform the search and return the result as
one conceptual entity.

With respect to the implementations of
these six systems, Figure 21 indicates that
all but DDEW are experimental research
prototypes and DDEW and SKI are the
only ones that interface with actual, disk-
based databases. DDEW may be used to
specify and browse schemas; SKI may also
be used to formulate a query on an existing
semantic database. Clearly, however, the
lack of actual DBMSs underneath these
systems does not detract from the signifi-
cance of their research contributions. Any
issues concerning the speed of disk accesses
while examining data are largely irrelevant.
Finally, we note that these systems indicate
a historical trend toward workstation envi-
ronments.

The final axis in the chart refers to the
use of graphics in the six example systems
and indicates a progression from fairly sim-
ple graph- (or network-) based representa-
tions of schemas to richer visual (but still

ACM Computing Surveys, Vol. 19, No. 3, September 1987

GUIDE

LID

DDEW

SYSTEM PARADIGM PARADIGM
DATA INTERFACE EOUIP/OS/IMPL VISUAL REP OF SCHEMA OF SCHEMA QUERY

REFERENCES MODEL INTERFACE TO DBMS LANG OF SCHEMA DEFINITION VIEWING SPECIFICATION

[WOKBZ] ER J J PROTOTYPE VAXIVMSIC FIXED ER NA DIRECT DIRECT
DIAGRAM MANIPULATION MANIPULATION

OF SCHEMA OF SCHEMA

IFog ER GRAPHICAL PROTOTYPE IN MEMORY ? ONLY LOCAL NA NA TRIPLE-LEVEL
STRUCTURE NAVIGATION

IRBB841 ERt J J PRODUCTION- GENERATES JUPITER lZ/UNIX/C ER+ TEXT-BASED DIRECT NA
QUALITY RELATIONAL, DIAGRAMS MANIPULATION

NETWORK: OF SCHEMA
HIERARCHICAL
SCHEMAS

SKI [KiM84]

ISIS LGG K851

SNAP [6r~861

FUNCTIONALITY IMPLEMENTATION USE OF GRAPHICS

INSYDE J J J PROTOTYPE SEMBASE SUN FORMATTED GRAPHICAL SEMANTICALLY- SPECIFICATION
SUBSET DBMS WORKSTATION/ TYPE/ DRIVEN OF DERIVED

UNIX/C SUBTYPE/ OPERATORS DATA
ATTRIBUTE
DIAGRAMS

SDM J J J TEXT- PROTOTYPE IN MEMORY APOLLO/UNIX/C TYPE/ GRAPHICAL MODE- SPECIFICATION
SUBSET BASED SUBTYPE/ ORIENTED OF DERIVED

ATTRIBUTE DATA
DIAGRAMS

IF0 J J J PROTOTYPE SYMBOLICS 3600/ IF0 GRAPHICAL DIRECT DIRECT
SUBSET ZETA LISP DIAGRAMS MANIPULATION MANIPULATION

OF SCHEMA OF SCHEMA

Figure 21. Graphics-based interfaces based on semantic models. Blanks indicate capability not supported to authors’ knowledge. Key to references in this figure precedes entries in
reference list.

252 . R. Hull and R. King

graphlike) representations. Correspond-
ingly, there has been a development in
terms of the naturalness with which these
systems allow the user to interact with the
schema while browsing and specifying
queries. In Foley and Dam [1982] the
authors differentiate three sorts of feed-
back that an interactive system can give:
lexical (such as the echoing of typed char-
acters), syntactic (such as highlighting a
selected menu item), and semantic. Seman-
tic feedback is the most sophisticated sort
of feedback and might, for example, indi-
cate in an obvious fashion that a user-
requested operation has been performed
(e.g., that a subtype has been added to the
schema). In general, the six selected inter-
active systems provide good semantic feed-
back, with the visual representation of
schemas being dynamically modified as
they are manipulated. The trend has been
toward richer semantic feedback.

All six systems represent the schema
using graph structures. GUIDE and DDEW
do this essentially using ER diagrams. In
GUIDE the schema is statically structured
and is not altered by the user. In DDEW
the system suggests an appropriate schema
representation, but the user may alter it. In
ISIS and SNAP the user directly defines
the visual representation of the schema.
SKI completely controls the visual struc-
ture of the schema for the user. (Of course,
LID, since it only supports the browsing of
individual data items, does not provide vis-
ual access to the entire schema.) All these
systems (except LID) allow users to pan
and zoom, and hide irrelevant portions of
the schema. SKI, ISIS, and SNAP are now
discussed in more detail.

In the SKI system there is no notion of
a statically defined graphical layout of the
underlying schema. Instead, a graphical
representation of the relevant subschema
is created dynamically as the user specifies
that various connections be displayed. The
subschema is placed on a formated screen;
the screen is broken into stripes, each con-
taining components with different seman-
tic significance (e.g., one for object types,
another for attributes defined on these
types). The philosophy behind this is to
remove from the user the burden of having

to manage a large, complex graph that rep-
resents a schema and to automatically for-
mat subschemas according to their content.
Of course, this approach does not allow the
user to return easily to familiar visual rep-
resentations during a lengthy session.

ISIS and SNAP both take the approach
of providing more permanent representa-
tions of schemas. In both systems the user
creates much of the original visual repre-
sentation of a schema; this is saved by the
system and provides the basis for the dis-
play of both the schema and portions of it.
Both systems also permit users to modify
the representation of schemas.

With respect to the manner in which the
user peruses the schema while browsing, all
of the systems (except for LID) provide
mechanisms for massaging the visual rep-
resentation directly in order to focus on
specific areas of interest within the schema.
The user follows semantic connections
(e.g., attributes and type/subtype relation-
ships) in order to isolate various sorts of
data that relate to each other. This is much
more effective than forcing the user to
peruse the schema only by navigating up
and down, and right and left over a schema
that is too large to fit on a screen. Thus,
the user may hide levels of detail and/or
annotate the schema while browsing.
Schneiderman [19801 has coined the phrase
direct manipulation to characterize this
style of interaction, where the user has the
feeling of manipulating a real-world object
while interfacing with the system. This pro-
vides very rich and effective semantic feed-
back for the user. These systems vary
somewhat in their approach to direct
manipulation during browsing. ISIS sup-
ports operators for maneuvering between
its diagram for representing ISA relation-
ships and its diagrams for representing
attribute relationships. Also, SKI provides
several high-level operators that may be
used to make very dramatic shifts in focus,
such as requesting to view all areas of the
schema that would be affected if a partic-
ular data operation was performed.

The six systems also vary in how they
support query specification, with a growing
tendency toward more graphics-based
methods of specifying an entire query.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 253

basis for theoretical investigations of these
issues. In this section we briefly survey the
work in these various areas. A more com-
prehensive survey of work on theoretical
research on constructed types may be found
in Hull [19871. Also, we note that some of
the theoretical work on the IF0 [Abiteboul
and Hull 19871 and IRIS [Lyngbaek
and Vianu 19871 models is discussed in
Section 3.2.

Surprisingly, a significant amount of the
research on access languages for con-
structed types has been performed using an
offshoot of the relational model called non-
first-normal-form relations [Abiteboul and
Bidoit 1986; Fischer and Thomas 1983;
Jaeschke and Schek 1982; Makinouchi
19771. These are relations where some col-
umns may hold relations instead of atomic
values; nesting of relations in this way is
permitted to arbitrary depths. The struc-
ture of such a non-first-normal-form rela-
tion may be viewed as a constructed type
formed using alternating layers of aggre-
gation and grouping. Calculus-based and
algebraic languages for non-first-normal-
form relations have been developed
[Fischer and Thomas 1983; Jaeschke and
Schek 19821 and shown to have equivalent
expressive power [Abiteboul and Beeri
1987; Kuper and Vardi 19841.

Another model of constructed types is
the Format Model [Hull and Yap 19841.
Formats are built hierarchically from three
constructs: aggregation, grouping, and
marked or disjoint union. The third con-
struct is used to model types that result
from generalizations involving two or more
disparate types. Original work on the For-
mat Model focused on comparing the data
capacity of formats [Hull and Yap 1984;
O’Dunlaing and Yap 19821. A more recent
paper [Abiteboul and Hull 19861 proposes
a query language for formats that is based
on a rewrite operator.

The Logical Data Model (LDM) [Kuper
and Vardi 1984, 1985; Kuper 19851 can be
viewed as a further extension of con-
structed types. LDM was introduced pri-
marily to provide a logic-based model lying
between the record-oriented models (rela-
tional, network, hierarchical) and actual
physical implementation, but issues studied

GUIDE supports selection-like queries; to
specify them, the user graphically identifies
relevant portions of the schema, and a text-
based query is constructed in parallel by
the system. SKI was the first system to
embody the concept of expressing queries
through the iterative specification of
derived data, thus making a query essen-
tially an extension of the schema. The user
may traverse the schema to find the general
type of data of interest and then repeatedly
refine this type by specifying subtype pred-
icates. These predicates are defined tex-
tually. SKI provides a series of pop-up
menus that support an editor that displays
the syntax permitted in subtype defini-
tions. ISIS uses a similar paradigm but
provides a much more sophisticated editor
that allows the user to specify a query in
an almost entirely mouse-based fashion.
SNAP uses a different approach in which
copies of schema components are directly
manipulated to form queries. Intuitively,
SNAP queries can be viewed as a generali-
zation of Zloof’s Query-by-Example [Zloof
19871 to a graphics-based model.

A commercial implementation of a
graphics interface based on a semantic
model has recently been developed. It is
similar in structure and function to SKI,
ISIS, and SNAP and includes a schema
design tool and a data browser [Rogers and
Cattell 19871.

4.4 Theory

Over recent years, there has been increas-
ing interest in the application of theoretical
techniques to investigating concepts and
problems raised by semantic database
models. Considerable work has been per-
formed on constructed types considered in
isolation, with a primary focus on data
access and manipulation languages for
them. Another important topic considers
ISA networks in isolation and studies the
inference of various properties in them.
Other important topics include comparing
the data capacity of constructed types
and characterizing update propagation in
semantic schemas. These topics have been
studied using a variety of different models;
no one model has emerged as the common

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

254 . R. Hull and R. King

with the LDM are also important from the
point of view of semantic models.

As with the Format Model, LDM sche-
mas are built from basic types and type
constructors for aggregation, grouping, and
marked union. (In Kuper and Vardi [1984,
19851 marked union is not included.)
Unlike the constructed types of GSM and
the Format Model, however, schemas of the
LDM are directed graphs rather than trees.
Instances of LDM schemas are defined
using the complementary notions of l- and
r-values from the theory underlying
programming language assignment state-
ments. This formalism captures the object-
oriented nature of semantic models in a
novel manner: l-values correspond to object
identities, while r-values correspond to
their values. In Kuper and Vardi [1984,
19851 calculus-based and algebraic manip-
ulation languages are introduced for LDM
and shown to have equivalent expressive
power. In Kuper and Vardi [1985], the rel-
ative data capacity of LDM schemas is
studied.

We now turn to research focused primar-
ily on ISA relationships. Two recent papers
study the interplay of ISA relationships
in connection with integrity constraints
[Atzeni and Parker 1986; Lenzerini 19871.
Both of these works use a simple abstract
semantic model based on abstract types and
ISA relationships. In Atzeni and Parker
[1986] the interaction of ISA relationships
and disjointness constraints is studied, and
a sound and complete set of inference rules
for these properties is presented. Also, it is
shown that various problems are decidable
in polynomial time. One such problem is
the satisfiubility problem, which concerns
whether a node in a schema is nonempty in
at least one instance. In Lenzerini [1987],
covering constraints are studied in addition
to disjointness constraints. In this case
many problems are NP-complete, including
the satisfiability problem.

We now turn to the problem of determin-
ing how atomic updates propagate in
semantic schemas. This is of particular
interest because it considers the various
constructs of semantic models taken
together rather than in isolation. As a sim-
ple example of update propagation, suppose
that in the World Traveler Database Pam

is both a person and a tourist. If Pam is
deleted from PERSON, she should also be
deleted from TOURIST. Update propaga-
tion relative to the basic structural com-
ponents of semantic models has been
studied in the context of both FDM [Hecht
and Kerschberg 19811 and IF0 [Abiteboul
and Hull 1985, 19871. In both papers the
semantics of update propagation is broken
into two logical pieces: one concerned with
the impact of updates on the local con-
structs of a schema and the other with the
global impact implied by their combination.
The overall impact of an update at a given
node is essentially defined to be the sum of
the impacts implied by the local update
semantics. In both models, acyclicity con-
ditions on ISA relationships ensure that
each node need be visited at most once
during this computation.

5. CONCLUDING REMARKS

In this paper we have surveyed a wide area
of research, all of it centered around seman-
tic database modeling. We have taken an
in-depth look at the fundamental motiva-
tions and aspects of semantic models and
examined a number of specific models. Fur-
ther, several research directions that are
based on semantic models have been dis-
cussed, including semantic data access lan-
guages, graphical database interfaces based
on semantic models, physical implementa-
tions of semantic DBMSs, and theoretical
investigations of semantic models.

Clearly, there are many more research
issues relating to semantic models that
could be investigated, such as the integra-
tion of temporal reasoning into semantic
models, the optimization of semantic data-
base queries, the development of semantic
database machines, and the construction of
expert database systems that use semantic
models (such databases would be capable
of making inferences about complex,
semantic data). However, although some
research is currently being conducted in
these areas, it has not reached the level of
maturity appropriate for a survey paper.

We would, however, like to conclude this
paper by mentioning a rapidly growing area
of database research that is related to
semantic modeling. Recently, a number of

ACM Computing Surveys, Vol. 19: No. 3, September 1987

Semantic Database Modeling l 255

designed for such applications as engineer-
ing, is Probe [Manola and Dayal 19861. The
GENESIS project [Batory et al. 19881
focuses on the rapid development of cus-
tomized database management systems.

Speaking broadly, semantic modeling has
concentrated largely on building complex
data via mechanisms like attributes, aggre-
gation, and generalization, which are widely
viewed to be adequate for most business
and commercial applications. In contrast,
object-oriented models are oriented toward
novel applications that must support com-
plex domains such as software design [Hud-
son and King 19871, VLSI and printed
circuit board design, and CAD/CAM
[Andrews and Harris 1987; Su et al. 19881.
These applications are generally interactive
and require highly dynamic database sys-
tems where the user may control local
behavior and dynamically modify the type
structure. Software specifications, text, and
engineering designs are also much larger
objects than typical business objects. Other
novel research issues also arise in the con-
text of object-oriented databases, including
very long transactions (to support interac-
tive design), nested transactions (to sup-
port complex design functions), and
mechanisms for obtaining multiple blocks
of data from a mass storage device quickly
(to allow the efficient retrieval of large
objects). Research on these and related top-
ics will be crucial in expanding the useful-
ness of database systems to nontraditional,
nonbusiness applications.

ACKNOWLEDGMENTS

We would like to acknowledge the anonymous referees
and Salvatore March for their very helpful comments
concerning previous versions of this survey. Richard
Hull was supported in part by the National Science
Foundation under grants IST-83-06517 and IST-85-
11541. Roger King was supported in part by the Office
of Naval Research under contract number N00014-
86-K-0054 and by the National Science Foundation
under grant DMC-8505164.

REFERENCES

[AbB87] ABITEBOUL, S., AND BEERI, C. 1987. On
the power of languages for the manipulation of
complex objects (extended abstract). In Proceed-
ings of International Workshop on Nested Relu-
tions and Complex Objects. (Darmstadt, Germany,
Apr.). INRIA, Roquencourt, France.

research projects have focused on the devel-
opment of data models that are more
expressive than conventional models but
use techniques different from those of
semantic models. Experimental systems
based on these object-oriented models are
typically centered around the concepts of
large objects and extensible type structures,
such as arise in engineering design appli-
cations, and the concept of local behavior
stemming from object-oriented program-
ming languages.

Object-oriented database models are fun-
damentally different from semantic models
in that they support forms of local behavior
in a manner similar to object-oriented pro-
gramming languages. This means that a
database entity may locally encapsulate a
complex procedure or function for specify-
ing the calculation of a data operation. This
gives the database user the capability of
expressing, in an elegant fashion, a wider
class of derived information than can be
expressed in semantic models. For example,
in the system Postgres [Stonebraker and
Rowe 19861 a data item may have an attrib-
ute that is a database query or an applica-
tion program. This project is an experiment
in extending already-developed relational
techniques to the handling of complex data.
In the system Cactis [Hudson and King
19861, an object may have attribute values
that are computed by arbitrary computable
functions. This project focuses on the
design of formalisms that may be used to
implement complex derived data efficiently
and uses attributed graphs as an underlying
physical construct. The Gemstone [Maier
et al. 19861 project focuses on providing
database users with message-passing mech-
anisms similar to those of Smalltalk. Thus,
generalized methods may be defined for
specifying how an object should react to
messages from another object.

On another dimension, object-oriented
models are similar to semantic models in
that they provide mechanisms for con-
structing complex data by interrelating
objects. The Exodus [Carey et al. 19861
system attempts to support the storage and
access of very large objects. The Exodus
project also provides the capability of
allowing the user to easily extend the type
structure. Another extensible system,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

256 . R. Hull and R. King

[AbB84] ABITEBOUL, S., AND BIDOIT, N. 1986.
Nonfirst normal form relations: An algebra allow-
ing data restructuring. J. Comput. Syst. Sci. 33,
361-393.

[AbH85] ABITEBOUL, S., AND HULL, R. 1985.
Update propagation in the IF0 database model.
In Proceedings of the International Conferenee on
Foundations of Data Orpanization. Oraanizina
Committee of .the International Confer&ce on
Foundations of Data Organization, c/o S. P.
Ghosh, IBM Research, Almaden, Calif., pp. 243-
251.

[AbHSG] ABITEBOUL, S. AND HULL, R. 1986.
Restructuring of complex database objects and
office forms. In Proceedings of the International
Conference on Database Theory (Rome, Sept.).

[AbH87] ABITEBOUL, S., AND HULL, R. 1987. IFO:
A formal semantic database model. ACM Trans.
Database Syst. 12,4 (Dec.), 525-565.

[Abr74] ABRIAL, J. R. 1974. Data semantics. Data
Base Management. North-Holland, Amsterdam,
pp. l-59.

[AfM84] AFSARMANESH, H., AND MCLEOD, D.
1984. A framework for semantic database
models. In Proceedings of the NYU Symposium
on New Directions for Database Systems (New
York, May 16-18). New York Univ., New York.

[Aik85] AIKENS, J. 1985. A representation scheme
using both frames and rules. In R&-Based
Expert Systems, B. Buchanan and E. Shortliffe,
Eds. Addison-Wesley, Reading, Mass., pp. 424-
440.

[AC0851 ALBANO, A., CARDELLI, L., AND ORSINI, R.
1985. Galileo: A strongly-typed, interactive con-
ceptual language. ACM Trans. Database Syst. 10,
2 (June), 230-260.

IA00851 ALBANO, A., OCCHIUTO, M. E., AND
OR~INI, R. 1985. Galileo Reference Manual,
VAX/UNIX Version 1.0. Tech. Rep. Diparti-
mento di Informatica, Univ. di Pisa, Pisa, Italy.

[AnH87] ANDREWS, T., AND HARRIS, C. 1987.
Combining language and database advances in an
object-oriented development environment. In
Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and
Applications (Oct.), pp. 430-440.

[Bac78] BACKUS, J. 1978. Can programming be lib-
erated from the Von Neumann style? A func-
tional style and its algebra of programs. Commun.
ACM 21, 8 (Aug.), 613-641.

[BLN86] BATINI, C., LENZERINI, M., AND NAVATHE,
S. B. 1986. A comparative analysis of method-
ologies for Database schema integration. ACM
Comput. Sure. f8, 4 (Dec.), 323-364.

[BaK85] BATORY, D. S., AND KIM, W. 1985.
Modeling concepts for VLSI CAD objects. ACM
Trans. Database Syst. 10, 3 (Sept.), 322-346.

lBBG1 BATORY, D. S., BARNETT, J. R., GARZA, F. F.,
SeMITH, K.-P., TSUKAUDA, K., TWICHELL,.B. C.,
AND WISE. T. E. 1988. GENESIS: A reconfi-
gurable database management system. IEEE
Trans. Sofiw. Eng. to appear.

[BKK86] BOBROW, D., KAHN, K., KICZALES, G.,
MASINTER, L., STEFIK, M., AND ZDYBEL, F.
1986. CommonLoops: Merging Lisp and object-
oriented programming. In Proceedings of the
ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications
(Mar.). ACM, New York, pp. 17-29.

[Bor85] BORGIDA, A. 1985. Features of languages for
the development of information systems at the
conceptual level. IEEE Software 2, 1 (Jan.),
63-72.

[BPP76] BRACCHI, G., PAOLINI, P., AND PELAGAITI,
G. 1976. Binary logical associations in data
modelling. In MoaWling in Data Base Manage-
ment Systems. North Holland, Amsterdam,
pp. 125-148.

[BrS85] BRACHMAN, R. J., AND SCHMOLZE, J. G.
1985. An overview of the KL-ONE knowledge
representation system. Cognitive Sci. 9 (1985),
171-216.

[Bro84] BRODIE, M. L. 1984. On the development of
data models. In On Conceptual Modelling, M. L.
Brodie, J. Mylopoulos, and J. W. Schmidt, Eds.
Springer-Verlag, New York, pp. 19-48.

[BrR84] BRODIE, M. L., AND RIDJANOVIC, D.
1984. On the design and specification of data-
base transactions. In On Concept& Modelling.
Springer-Verlag, New York, pp. 277-306.

[BMS84] BRODIE, M. L., MYLOPOULOS, J., AND
SCHMIDT, J. W. Eds. 1984. On Conceptual Mod-

[AtB87] ATKINSON, M. P., AND BUNEMAN, 0. P. elling. Springer-Verlag, New York. -

1987. Database programming languages, ACM [BrP83] BROWN, R., AND PARKER, D. S. 1983.
Comput. Suru. 19,2 (June), 105-190. LAURA: A formal data model and her logical

[AtK83] ATKINSON, M. P., AND KULKARNI, K. G. design methodology. In Proceedings of the 9th

1983. Experimenting with the functional data Zntemationul Conference on Very Large Data

model. Tech. Rep. Persistent Programming Bases. Very Large Database Endowment, Sara-

Research Rep. 5, Univ. of Edinburgh, Edinburgh, toga, Calif., pp. 206-218.

Scotland. [BFNSP] BUNEMAN, P., FRANKEL, R. E., AND NIKHIL,

[AtP86] ATZENI, P., AND PARKER, D. S. 1986. R. -1982. A~ ’ An impiementation wcnnque ror

Formal properties of net-based Ir----‘--‘-- ----- i‘l”wNxlge rey~~- database q luery languages. ACM Trans. Database
sent&ion schemes. In P-----A ~“L.-i?gs of the 2nd Syst. 7, 2 (June), 164-186.

IEEE Znternationnl Con, ference on Data Enpi-
-

ICDR.861 CAREY. M. J.. DEWIIT. D. J.. RICHARDSON.
- neering. IEEE, New York, pp. 700-706. J. E., AND SHEKITA, E. J. 1986. ‘Object and file

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling 257

[FiK85] FIKES, R., AND KEHLER, T. 1985. The role
of frame-based representation in reasoning. Com-
mun. ACM 2&S (Sept.), 904-920.

[Fin791 FINDLER, N., Ed. 1979. Associative Net-
works. Academic Press, New York.

[FIT831 FISCHER, P., AND THOMAS, S. 1982.
Operators for non-first-normal-form relations. In
Proceedings of the 7th International Computer
Software Applications Conference (Chicago,
Nov.). IEEE, New York, pp. 464-475.

[Fog&l] FOGG, D. 1984. Lesson from a “Living in a
database” graphical query interface. In Proceed-
ings of the ACM SZGMOD Znternatianal Confer-
ence on the Management of Data (Boston, Mass.).
ACM, New York, pp. 100-106.

[FoD82] FOLEY, J. D., AND VAN DAM, A. 1982.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Mass.

[GoR83] GOLDBERG, A., AND ROBSON, D. 1983.
Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley, Reading, Mass.

management in the EXODUS extensible data-
base system. In Proceedings of the 12th Znterna-
tianal Conference on Very Large Databases (Aug.).
Very Large Database Endowment, Saratoga,
Calif., pp. 91-100.

[CGT75] CHAMBERLIN, D. D., GRAY, J. N., AND
TF~AIGER, I. L. 1975. Views, authorization and
locking in a relational database system. In Pro-
ceedings of AFIPS National Computer Confer-
ence, vol. 44. AFIPS Press, Reston, VA., pp.
425-430.

[CDF83] CHAN, A., DAYAL, U., Fox, S., AND RIES, D.
1983. Supporting a semantic data model in a
distributed database system. In Proceedings of the
9th Znternatianal Conference on Very Large Data
Bases. Very Large Database Endowment, Sara-
toga, Calif., pp. 354-363.

[CDF82] CHAN, A., DANBERG, S., Fox, S. LIN, W. T.
K., NORI, A., AND RIES, D. 1982. Storage and
access structures to support a semantic data
model. In Proceedings of the 8th International
Conference on Very Large Data Bases. Very
Large Database Endowment, Saratoga, Calif.,
pp. 122-130.

[Che76] CHEN, P. P. 1976. The entity-relationship
model-Toward a unified view of data. ACM
Trans. Database Syst. 1, 1 (Mar.), S-36.

[Cod791 CODD, E. F. 1979. Extending the database
relational model to capture more meaning. ACM
Trans. Database Syst. 4, 4 (Dec.), 397-434.

[Cop841 COSMADAKIS, S. S., AND PAPADIMITRIOU,
C. H. 1984. Updates of relational views. J. ACM
31, 4 (Oct.), 743-760.

[DDGSS] DARDAILLER, P., DELOBEL, C., AND GIRAU-
DIN, J. P. 1985. Modelisation progressive dune
base de donnees. Tech. Rep. 493, Laboratoire de
Genie Informatique.

[Datsl] DATE, C. J. 1981. An Introduction to Data-
base Systems, vol 1. Addison-Wesley, Reading,
Mass.

[DaH84] DAYAL, U., AND HWANG, H. Y. 1984. View
definition and generalization for database inte-
gration in a multidatabase system. IEEE Trans.
Softw. Eng. SE-IO, 6, 628-644.

[DHP74] DEHENEFFE, C., HENNEBERT, H., AND
PAULUS, W. 1974. Relational model for a
data base. In Proceedings of the ZFIP Congress,
pp. 1022-1025.

[DKL85] DERRETT, N., KENT, W., AND LYNGBAEK,
P. 1985. Some aspects of operations in an
object-oriented database. IEEE Database Eng.
Bull. 8, 4 (Dec.).

[Fag771 FAGIN, R. 1977. Multivalued dependen- _ -
ties and a new normal form for relation data-
bases. ACM Trans. Database Syst. 2, 3 (Sept.),
262-278.

[FKM85] FARMER, D. B., KING, R., AND MYERS, D.
A. 1985. The semantic database constructor.
IEEE Tran Softw. Eng. SE-II, 7, 583-591.

[GGK85] GOLDMAN, K. J., GOLDMAN, S. A., KANEL-
LAKIS, P. C., AND ZDONIK, S. B. 1985. ISIS:
Interface for a semantic information system. In
Proceedings of the ACM SIGMOD International
Conference on the Management of Data. ACM,
New York, pp. 328-342.

[Gut771 GU~AG, J. 1977. Abstract data types and
the development of data structures. Commun.
ACM 20, 6 (June), 396-404.

[HaL74] HAINAUT, J. L., AND LECHARLIER, B.
1974. An extensible semantic model of database
and its data language. In Proceedings of the IFIP
Congress, pp. 1026-1030.

[Hal3801 HAMMER, M., AND BERKOWITZ, B.
1980. DIAL: A programming language for data
intensive annlications. In Proceedines of the ACM
SZGMOD international Conference-on. the Man-
agement of Data. ACM, New York, pp. 75-92.

IHaM HAMMER, M., AND MCLEOD, D. 1981.
Database description with SDM: A semantic
database model. ACM Trans. Database Syst. 6. 3
(Sept.), 351-386.

[HeK81] HECHT, M. S., AND KERSCHBERG, L.
1981. Update semantics for the functional data
model. Tech. Rep., Bell Laboratories, Holmdel,
N.J.

[HuK86] HUDSON, S. E., AND KING, R. 1986.
CACTIS: A database system for specifying func-
tionally-defined data. In Proceedings of the
Workshop on Object-Oriented Databases (Asilo-
mar, Pacific Grove, Calif., Sept.). IEEE, New
York.

[HuK87] HUDSON, S. E., AND KING, R. 1987.
Object-oriented database support for software
environments. In Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (San Francisco, Calif., May). ACM, New
York, pp. 491-503.

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

258 l R. Hull and R. King

[Hu187] HULL, R. 1987. A survey of theoretical
research on typed complex database objects. In
Databases, J. Paredaens, Ed. Academic Press,
London.

[HuY84] HULL, R., AND YAP, C. K. 1984. The for-
mat model: A theory of database organization.
J. ACM 31,3 (July), 518-537.

[IsB84] ISRAEL, D. J., AND BRACHMAN, R. J. 1984.
Some remarks on the semantics of representation
languages. In On Conceptual Modelling. Springer-
Verlag, New York, pp. 119-146.

[JaS82] JAESCHKE, B., AND SCHEK, H. J. 1982.
Remarks on the algebra of non first normal form
relations. In Proceedings of the ACM Symposium
on Principles of Database Systems. ACM, New
York.

[KeC83] KEHLER, T. P., AND CLEMENSON, G. D.
1983. An application development system for
expert systems. Syst. Softw. 3, 1 (Jan.), 212-223.

[Ken781 KENT, W. 1978. Data and Reality. North-
Holland, Amsterdam.

[Ken791 KENT, W. 1979. Limitations of record-
based information models. ACM Trans. Database
Syst. 4, 1 (Mar.), 107-131.

[KeP76] KERSCHBERG, L., AND PACHECO, J. E. S.
1976. A functional data base model. Tech. Rep.,
Pontificia Univ. Catolica do Rio de Janeiro, Rio
de Janeiro, Brazil.

[KKT76] KERSCHBERG, L., KLUG, A., AND TSI-
CHRITZIS, D. 1976. A taxonomy of data models.
In Systems for Large Data Bases. North-Holland,
Amsterdam, pp. 43-64.

[KhC86] KHOSHAFIAN, S. N., AND COPELAND, G. P.
1986. Object identity. In Proceedings of the Con-
ference on Object Oriented Programming Systems,
Languages and Applications (Portland, Oreg.,
Sept.). ACM, New York, pp. 406-416.

[Kin841 KING, R. 1984. Sembase: A semantic
DBMS. In Proceedings of the First International
Workshop on Expert Database Systems (Oct.).
Univ. of Southern Carolina, Columbia, S.C., pp.
151-171.

[KiM82] KING, R., AND MCLEOD, D. 1982. The
event database specification model. In Proceed-
ings of the 2nd International Conference on Data-
bases: Improving Usability and Responsiveness
(Jerusalem, Israel), pp. 299-321.

[KiM84] KING, R., AND MCLEOD, D. 1984. A unified
model and methodology for conceptual database
design. In On Conceptual Modelling. Springer-
Verlag, New York, pp. 313-331.

[KiM85a] KING, R., AND MCLEOD, D. 1985a. A
database design methodology and tool for infor-
mation systems. ACM Trans. Off. Znf. Syst. 3, 1
(Jan.), 2-21.

[KiM85b] KING, R., AND MCLEOD, D. 1985b.
Semantic database models. In Database Design.
Springer-Verlag, New York, pp. 115-150.

[Kup85] KUPER, G. M. 1985. The logical data model:
A new approach to database logic. Ph.D. disser-
tation, Computer Science Dept., Stanford Univ.

[KuV84] KUPER, G. M., AND VARDI, M. Y. 1984.
The logical data model. In Proceedings of ACM
SIGACT News-SIGMOD Symposium on Princi-
ples of Database Systems. ACM, New York, pp.
86-96.

[KuV85] KUPER, G. M., AND VARDI, M. Y. 1985. On
the expressive power of the logical data model
(extended abstract). In Proceedings of the ACM
SIGMOD International Conference on the Man-
agement of Data. ACM, New York.

[LaR82] LANDERS, T. A., AND ROSENBERG, R. L.
1982. An overview of multibase. Distributed
Databases. North-Holland, Amsterdam.

[Len871 LENZERINI, M. 1987. Covering and disjoint-
ness constraints in type networks. In Proceedings
of the IEEE Conference on Data Engineering (Los
Angeles, Calif.). IEEE, New York, pp. 386-393.

[LSA77] LISKOV, B., SNYDER, A., ATKINSON, R., AND
SCHAFFERT, C. 1977. Abstraction mechanisms
in CLU. Commun. ACM 20,8 (Aug.), 564-576.

[LyK86] LYNGBAEK, P., AND KENT, W. 1986. A data
modeling methodology for the design and imple-
mentation of information In Znternatzimal Worh-
shop on Object-Oriented Database Systems
(Asilomar, Pacific Grove, Calif., Sept.). IEEE,
New York.

[LyV87] LYNGBAEK, P., AND VIANU, V. 1987.
Mapping a semantic database model to the rela-
tional model. In Proceedings of the ACM SZG-
MOD Conference on Management of Data (San
Francisco, Calif., June). ACM, New York.

[Mac851 MACGREGOR, R. M. 1985. ARIEL-A
semantic front-end to relational DBMSs In Pro-
ceedings of the 11th International Conference on
Very Large Data Bases. Very Large Data Base
Foundation, Saratoga, Calif., pp. 305-315.

[MS0861 MAIER, D., STEIN, J., OTIS, A., AND PURDY,
A. 1986. Development of an object-oriented
DBMS. In Proceedings of the Conference on
Object-Oriented Programming Systems, Lan-
guages, and Applications (Sept. 29-Oct. 2). ACM,
New York, pp. 472-482.

[Mak77] MAKINOUCHI, A. 1977. A consideration on
normal form of not-necessarily-normalized rela-
tion in the relational data model. In Proceedings
of the 3rd International Conference on Very Large
Databases (Tokyo, Oct.), pp. 447-453.

[MaD86] MANOLA, F., AND DAYAL, U. 1986. PDM:
An object-oriented data model. In Proceedings of
the Workshop on Object-Oriented Databases
(Pacific Grove, Calif., Sept. 23-26). IEEE, New
York, pp. 18-25.

[MaP86] MARYANSKI, F., AND PECKHAM, J. 1986.
Semantic data models. Tech. Rep. CSTR 86-15,
Dept. of Computer Science and Engineering,
Univ. of Connecticut, Storrs, Conn.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Semantic Database Modeling l 259

[SchSO] SCHNEIDERMAN, B. 1980. Software Psychol-
ogy: Human Factors in Computer and Znforma-
tion Systems. Prentice-Hall, Englewood Cliffs,
N.J.

[Sen75] SENKO, M. E. 1975. Information systems:
Records, relations, set, entities, and things. Znf.
syst. 1, 1, 3-13.

[Shi81] SHIPMAN, D. 1981. The functional data
model and the data language DAPLEX. ACM
Trans. Database Syst. 6, 1 (Mar.), 140-173.

[Sho82] SHOSHANI, A. 1982. Statistical databases:
Characteristics, problems, and some solutions. In
Proceedings of the 8th International Conference
on Very Large Data Bases (Mexico Citv). Verv
Large Data Base Endowment, Saratoga,’ Calif:,
pp. 208-222.

[Min84] MINSKY, M. L. 1984. A framework for rep-
resenting knowledge. In The Psychology of Com-
puter Vision, P. H. Winston, Ed. McGraw-Hill,
New York, pp. 211-277.

[Moo861 MOON, D. A. 1986. Object-oriented pro-
gramming with flavors. In Proceedings of ACM
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications. ACM, New
York, pp. l-8.

[My1801 MYLOPOULOS, J. 1980. An overview of
knowledge representation. In Workshop on Data
Abstract, Databases, and Conceptual Modelling
(Pingree Park, Colo.). ACM, New York, pp.
5-12.

[MBWSO] MYLOPOULOS, J., BERNSTEIN, P. A.,
AND WONG, H. K. T. 1980. A language facil-
ity for designing database-intensive applica-
tions. ACM Trans Database Syst. 5, 2 (June),
185-207.

[MBG86] MYLOPOULOS, J., BORGIDA, A., GREEN-
SPAN, S., MEGHINI, C., AND NIXON, B. 1986.
Knowledge representation in the software devel-
opment process: A case study. Tech. Rep., Univ.
of Toronto, Toronto, Canada.

[NEL86] NAVATHE, S., ELMASRI, R., AND LARSON, J.
1986. Integrating user views in database design.
IEEE Computer 19,1,50-62.

[Nik84] NIKHIL, R. 1984. An incremental, strongly
typed applicative programming system for data-
bases. Ph.D. dissertation, Dept. of Computer and
Information Sciences, Univ. of Pennsylvania,
Philadelphia.

[G’Y82] O’DUNLAING, C., AND YAP, C. K.
1982. Generic transformation of data struc-
tures. in Proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science.
IEEE, New York, pp. 186-195.

[Ris85] RISHE, N. 1985. Semantic modeling of data
using binary schemata. Tech. Rep. TRCS85-06,
Univ. of California, Santa Barbara, Calif.

[Ris86] RISHE, N. 1986. On representation of medi-
cal knowledge by a binary data model. In Pro-
ceedings of the 5th Znterrkxuzl Conference on
Mathematical Moaklling,X. J. R. Avula, G. Leit-
man, C. D. Mote, Jr., and E. Y. Rodin, Eds.
Pergamon Press, Elmsford, N.Y.

[RoC87] ROGERS, T. R., AND CATTELL, R. G. G.
1987. Entity-relationship database user inter-
faces. Tech. Rep. Sun Microsystems, Mountain
View, CaIif.

[SiK77] SIBLEY, E. H., AND KERSCHBERG, L.
1977. Data architecture and data model consid-
erations. In Proceedings of the National Com-
puter Conference. AFIPS Press, Reston, Va.,
pp. 85-96.

[SmS77] SMITH, J. M., AND SMITH, D. C. P.
1977. Database abstractions: Aggregation and
generalization. ACM Trans. Database Syst. 2, 2
(June), 105-133.

[SFLSl] SMITH, J. M., Fox, S., AND LANDERS, T.
1981. Reference manual for ADAPLEX. Tech.
Rep., Computer Corporation of America.

[SBDSl] SMITH, J. M., BERNSTEIN, P. A., DAYAL, U.,
GOODMAN, N., LANDERS, T., LIN, K. W. T., AND
WONG, E. 1981. Multibase-Integrating hetero-
geneous distributed database systems.-In Pro-
ceedings of AFZPS National Computer
Confer&ace. p AFIPS Press, Reston, Va.; pp.
487-499.

[SBMSB] STEFIK, M., BOBROW; D. G., MIITAL, S.,
AND CONWAY, L. 1983. Knowledge program-
ming in LOOPS: Report on an experimental
course. Artif. Zntell. 4, 3, 3-14.

[StR.86] STONEBRAKER, M., AND ROWE, L. A.
1986. The design of postgres. In Proceedings of
Zntemational Conference on the Management of
Data (May). ACM, New York, pp. 340-355.

[SWK76] STONEBRAKER, M. R., WONG, E., KREPS,
P., AND HELD, G. 1976. The design and imple-
mentation of INGRES. ACM Trans. Database
Syst. 1, 3 (Sept.), 189-222.

[Su83] SU, S. Y. W. 1983. SAM*: A semantic asso-
ciation model for corporate and scientific statis-
tical databases. Znf. Sci. 29, 151-199.

[Roy841 Rousso~ou~os, N., AND YEH, R. T. [SuSS] SU, S. Y. W. 1986. Modeling integrated man-
1984. An adaptable methodology for database ufacturing data with SAM*. IEEE Computer
design. IEEE Computer (May), 64-80. Magazine (Jan.), 34-49.

[RoS79] ROWE, L., AND SCHOENS, K. A. 1979. Data [SuSO] SU, S. Y. W., AND Lo, D. H. 1980. A semantic
abstractions, views, and updates in RIGEL. In association model for conceptual database design.
Proceedings of the ACM SZGMOD International In Entity-Relationship Approach to Systems
Conference on the Management of Data. ACM, Analysis and Design. North Holland, Amsterdam,
New York, pp. 71-81. pp. 147-171.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

260 l R. Hull and R. King

[SK881 Su, S. Y. W., KRISHNAMURTHY, V., AND LAM,
H. 1988. An object-oriented semantic associa-
tion model (OSAM*). In AZ in Industrial Engi-
neering and Manufacturing: Theoretical Is&s
and Applications, S. Kumara and R. L. Kashvau.
Eds. American Institute of Industrial Engineers;
Norcross, Ga.

[TYF86] TEOREY, T. J., YANG, D., AND FRY, J. P.
1986. A logical design methodology for rela-
tional databases using the extended entity-
relationship model. ACM Comput Suru. 18, 2
(June), 197-222.

[TsK77] TSICHRITZIS, D., AND KLUG, A. C. 1977.
American National Standards Znstitute/X3/
SPARC DBMS Framework: Report of the Study
Group on Database Management Systems. AFIPS
Press, Reston, Va.

[TsL82] TSICHRITZIS, D. C., AND LOCHOVSKY, F. H.
1982. Data Models. Prentice-Hall, Englewood
Cliffs, N.J.

[TsZ84] TSUR, S., AND ZANIOLO, C. 1984. An imple-
mentation of GEM-Supporting a semantic data
model on a relational back-end. In Proceedings of
the ACM SZGMOD International Conference on
the Management of Data. ACM, New York, pp.
286-295.

[U1182] ULLMAN, J. D. 1982. Principles of Database
Systems. 2nd ed. Computer Science Press, Rock-
ville, MD.

[U1187] ULLMAN, J. 1987. Database theory: Past and
future. In Proceedings of ACM SZGACT News-
SZGMOD-SIGART Principles of Database Sys-
tems. (San Diego, Calif., Mar.). ACM, New York.

[UrD86] URBAN, S. D., AND DELCAMBRE, L. M. L.
1986. An analysis of the structural, dynamic,
and temporal aspects of semantic data models. In

Proceedings of the 2nd IEEE International Con-
ference on Data Engineering (Feb.). IEEE, New
York, pp. 382-389.

[VeB82] VERHEIJEN, G., AND BEKKUM, J. V. 1982.
NIAM: An information analysis method. In
Information Systems Design Methodologies: A
Comparative Reuiew, T. Otte, H. Sol and A.
Verrijn-Stuart, Eds. IFIP.

[Via871 VIANU, V. 1987. Dynamic functional
dependencies and database aging. J. ACM 34, 1
(Jan.), 28-59.

[Was791 WASSERMAN, A. I. 1979. The data manage-
ment facilities of PLAIN. In Proceedings of the
ACM SZGMOD International Conference on the
Management of Data. ACM, New York.

[WiESO] WIEDERHOLD, G., AND EL-MASRI, R. 1980.
Structural model for database design. In Entity-
Relationship Approach to Systems Analysis and
Design. North Holland, Amsterdam.

[WoK82] WONG, H. K. T. AND Kou, I. 1982.
GUIDE: A graphical user interface for database
exploration. In Proceedings of 8th International
Conference on Very Large Data Bases. Very Large
Data Base Endowment, Saratoga, Calif., pp.
22-32.

ZANIOLO, C. 1976. Analysis and design of relational
schemata for database systems. Tech. Rep.
UCLA-Eng-7668, Dept. of Computer Science,
Univ. of California at Los Angeles.

ZANIOLO, C. 1983. The database language GEM. In
Proceedings of the ACM SIGMOD International
Conference on the Management of Data. ACM,
New York, pp. 207-217.

[Zlo77] ZLOOF, M. 1977. Query-by-example: A data
base language. IBM Syst. J. 16,324-343.

Received May 1986; final revision accepted December 1987.

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

