Fundamentals of Query Optimization

Database Reading Group

Henrique Paques

January 11, 2000

Query Processing Framework

· (See attached page)

· Readings:

· Ozsu 7.5 (pages 198-201) - This section provides also a good overview of the query processing framework. Although this framework is for distributed query processing, the section provides good overall explanation for query processing in general.

· Example:

· The examples for this presentation are listed in a separated page.

Query Pre-Processing

· Scanning, parsing, and validating the query expression

· Typically, a query is expressed in SQL, which is based on relational calculus (a declarative language)

· SQL does not indicate how the query should be executed, but only what should be the answer for the query.

· Translation of SQL into a sequence of relational algebra operations: the operator tree (see Figure 1 in Example page).

· For a given SQL query there are many equivalent and yet correct operator trees, which can be generated through algebraic rewriting rules (see Figure 2 in Example page)

(The list of rewriting rules can be found in Navathe Chapter 18, pages 611-612.)

Search Space Generation

· In order to reduce the size of search space, three restrictions are usually applied to the search space generation:

· R1:Process selections as base relations are accessed for the first time, and process projections as the results of other operators are generated

· R2: Consider only such joins that do not result in Cartesian products between relations, unless the query itself asks for them.

· R3: Consider only joins which inner operand is a base relation, never an intermediate result.

(See Figure 3 in Example page)

· Why is left-deep tree preferred?

· “Having original database relations as inners increases the use of any pre-existing indices.

· Having intermediate relations as outers allows sequences of nested loops joins to be executed in a pipelined fashion.” [Y. E. Ionnaidis. “Query Optimization” (Unpublished. Another survey on Query Optimization. Year?) - Available at our web-site under ‘New List’ as suggested reading]

Optimized Execution Plan Generation (Search Strategies)

· Best Order Selection

· Identify the best order to execute the query

· Implementation Decision

· Select best access paths (e.g., indices) for each base relation and best implementation (e.g., hash join or merge join) for each algebra operator.

· Readings:

· P. Selinger et al. Access Path Selection in a Relational Database Management System. In Proc. ACM SIGMOD, 1979.

· Y. Ioannidis, Y. Kang. Randomized Algorithms for Optimizing Large Join Queries. In Proc. ACM SIGMOD, 1990.

· G. Graefe. Query Evaluation Techniques for Large Databases, ACM Computing Surveys, 25(2), 1993.

Cost Model

· Cost function

· Database Statistics

· number of tuples

· size of attributes

· domain cardinality of an attribute

· Estimation Formulas

· join selectivity

· selection selectivity

· Readings:

· Navathe 18.4 (pages 615-624)

· Ozsu 9.1.3 (pages 233-238) - Although this book is aimed at distributed databases, this section provides good explanation for the cost model.

Query Optimization: Compile time versus Runtime

· A query can be optimized:

· completely at compile time, and then run until its completion

· partially at compile time, and partially at ‘start-up’ time

· totally at runtime

· Reading:

· R. Cole and G. Graefe. Optimization of Dynamic Query Evaluation Plans. In Proc. ACM SIGMOD, 1994.
Query Processing Framework

[image: image1.bmp]
Query

Result

Optimized Execution

Plan Generation

(Search Strategy)

Runtime

System

Operator Implementations

Access Paths

Cost Model

Transformation Rules

Restriction Rules

Optimized Query Execution Plan

Implementation

Decision

Optimized Ordering

Best Order

Selection

Restricted Search Space

Search Space

Generation

Query

Pre-Processing

User

Query

(SQL)

PAGE
3

