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Query Processing Framework

·  (See attached page)

· Readings:

· Ozsu 7.5 (pages 198-201) - This section provides also a good overview of the query processing framework. Although this framework is for distributed query processing, the section provides good overall explanation for query processing in general.

· Example:

· The examples for this presentation are listed in a separated page.

Query Pre-Processing

· Scanning, parsing, and validating the query expression

· Typically, a query is expressed in SQL, which is based on relational calculus (a declarative language)

· SQL does not indicate how the query should be executed, but only what should be the answer for the query.

· Translation of SQL into a sequence of relational algebra operations: the operator tree (see Figure 1 in Example page).

· For a given SQL query there are many equivalent and yet correct operator trees, which can be generated through algebraic rewriting rules (see Figure 2 in Example page)

(The list of rewriting rules can be found in Navathe Chapter 18, pages 611-612.)

Search Space Generation

· In order to reduce the size of search space, three restrictions are usually applied to the search space generation:

· R1:Process selections as base relations are accessed for the first time, and process projections as the results of other operators are generated

· R2: Consider only such joins that do not result in Cartesian products between relations, unless the query itself asks for them.

· R3: Consider only joins which inner operand is a base relation, never an intermediate result.

(See Figure 3 in Example page)

· Why is left-deep tree preferred?

· “Having original database relations as inners increases the use of any pre-existing indices.

· Having intermediate relations as outers allows sequences of nested loops joins to be executed in a pipelined fashion.” [Y. E. Ionnaidis. “Query Optimization” (Unpublished. Another survey on Query Optimization. Year?) - Available at our web-site under ‘New List’ as suggested reading]

Optimized Execution Plan Generation (Search Strategies)

· Best Order Selection

· Identify the best order to execute the query

· Implementation Decision

· Select best access paths (e.g., indices) for each base relation and best implementation (e.g., hash join or merge join) for each algebra operator.

· Readings:

· P. Selinger et al. Access Path Selection in a Relational Database Management System. In Proc. ACM SIGMOD, 1979.

· Y. Ioannidis, Y. Kang. Randomized Algorithms for Optimizing Large Join Queries. In Proc. ACM SIGMOD, 1990.

· G. Graefe. Query Evaluation Techniques for Large Databases, ACM Computing Surveys, 25(2), 1993.

Cost Model

· Cost function

· Database Statistics

· number of tuples

· size of attributes

· domain cardinality of an attribute

· Estimation Formulas

· join selectivity

· selection selectivity

· Readings:

· Navathe 18.4 (pages 615-624)

· Ozsu 9.1.3 (pages 233-238) - Although this book is aimed at distributed databases, this section provides good explanation for the cost model.

Query Optimization: Compile time versus Runtime

· A query can be optimized:

· completely at compile time, and then run until its completion

· partially at compile time, and partially at ‘start-up’ time

· totally at runtime

· Reading:

· R. Cole and G. Graefe. Optimization of Dynamic Query Evaluation Plans. In Proc. ACM SIGMOD, 1994.
Query Processing Framework
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