Texture Optimization for Example-based Synthesis

Vivek Kwatra, Irfan Essa, Aaron Bobick, Nipun Kwatra
Computational Perception Laboratory, GVU Center
College of Computing, Georgia Tech
http://www.cc.gatech.edu/cpl/projects/textureoptimization/

Goals
- Optimization-based approach for texture synthesis: Energy Minimization using a simple iterative algorithm
- Explicit improvement of texture quality
- Controllable synthesis: Flow-guided texture animation

Texture Energy
Texture Energy measures quality of the synthesized texture w.r.t. a given input sample

1. Define Energy for a single neighborhood
2. Total Energy = Sum over single neighborhood energies

Synthesis Algorithm
Alternate between X and \(\{Z_p\} \) as optimization variables
1. Initialize output texture X randomly
2. Find input neighborhoods \(\{Z_p\} \) nearest to output neighborhoods \(\{X_p\} \)
3. Minimize \(\sum ||X_p - Z_p||^2 \) w.r.t X (linear solve)
4. Repeat until convergence

Flow-guided Texture Animation
Animated texture sequence: Texture appears to follow given flow field. Sub-goals:
1. Flow Consistency: Perceived motion should be similar to flow
2. Texture Similarity: Shape, size, orientation of texture elements should be similar to input texture

Results
Multi-resolution synthesis: Full, Half, Quarter scales 32x32, 16x16, 8x8 nbd sizes
3-5 iterations per level
7-10 min. for 256x256 textures

Flow Energy and Optimization
Optimize Total Energy = Flow Energy + Texture Energy

Flow Energy
\[\text{Flow Energy} = ||X_1 - W_0||^2 \]

Results
Each frame synthesized at single resolution
20-60 seconds per frame