
High Quality Graph Partitioning ?

Peter Sanders, Christian Schulz

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{sanders, christian.schulz}@kit.edu

Abstract. We present an overview over our graph partitioners KaFFPa (Karl-
sruhe Fast Flow Partitioner) and KaFFPaE (KaFFPa Evolutionary). KaFFPa is
a multilevel graph partitioning algorithm which on the one hand uses novel lo-
cal improvement algorithms based on max-flow and min-cut computations and
more localized FM searches and on the other hand uses more sophisticated global
search strategies transferred from multi-grid linear solvers. KaFFPaE is a dis-
tributed evolutionary algorithm to solve the Graph Partitioning Problem. KaFF-
PaE uses KaFFPa which provides new effective crossover and mutation operators.
By combining these with a scalable communication protocol we obtain a system
that is able to improve the best known partitioning results for many inputs.

1 Introduction

Problems of graph partitioning arise in various areas of computer science, engineer-
ing, and related fields. For example in route planning, community detection in social
networks and high performance computing. In many of these applications large graphs
need to be partitioned such that there are few edges between blocks (the elements of
the partition). For example, when you process a graph in parallel on k processors you
often want to partition the graph into k blocks of about equal size so that there is as
little interaction as possible between the blocks. In this paper we focus on a version
of the problem that constrains the maximum block size to (1 + ε) times the average
block size and tries to minimize the total cut size, i.e., the number of edges that run be-
tween blocks. It is well known that this problem is NP-complete [5] and that there is no
approximation algorithm with a constant ratio factor for general graphs [5]. Therefore
mostly heuristic algorithms are used in practice.

A successful heuristic for partitioning large graphs is the multilevel graph partition-
ing (MGP) approach depicted in Figure 1 where the graph is recursively contracted to
achieve smaller graphs which should reflect the same basic structure as the input graph.
After applying an initial partitioning algorithm to the smallest graph, the contraction is
undone and, at each level, a local refinement method is used to improve the partitioning
induced by the coarser level.

Although several successful multilevel partitioners have been developed in the last
13 years, we had the impression that certain aspects of the method are not well under-
stood. We therefore have built our own graph partitioner KaPPa [14] (Karlsruhe Parallel
Partitioner) with focus on scalable parallelization. Somewhat astonishingly, we also ob-
tained improved partitioning quality through rather simple methods. This motivated us
? Partially supported by DFG SA 933/10-1.

to make a fresh start putting all aspects of MGP on trial. This paper gives an overview
over our most recent work, KaFFPa [23] and KaFFPaE [22]. KaFFPa is a classical
matching based graph partitioning algorithm with focus on local improvement meth-
ods and overall search strategies. It is a system that can be configured to either achieve
the best known partitions for many standard benchmark instances or to be the fastest
available system for large graphs while still improving partitioning quality compared to
the previous fastest system. KaFFPaE is a technique which integrates an evolutionary
search algorithm with our multilevel graph partitioner KaFFPa and its scalable paral-
lelization. It uses novel mutation and combine operators which in contrast to previous
evolutionary methods that use a graph partitioner [24, 8] do not need random pertur-
bations of edge weights. The combine operators enable us to combine individuals of
different kinds (see Section 5 for more details). Due to the parallelization our system is
able to compute partitions that have quality comparable or better than previous entries
in Walshaw’s well known partitioning benchmark within a few minutes for graphs of
moderate size. Previous methods of Soper et. al [24] required runtimes of up to one
week for graphs of that size. We therefore believe that in contrast to previous methods,
our method is very valuable in the area of high performance computing.

input
graph

... ...

initial

c
o
n
tra

c
tio

n
 p

h
a
s
e

re
fi
n
e
m

e
n
t
p
h
a
s
e

local improvement

uncontract

partitioning

contract

match

output
partition

Fig. 1. Multilevel graph partitioning.

The paper is organized as follows. We be-
gin in Section 2 by introducing basic con-
cepts which is followed by related work
in Section 3. In Section 4 we present the
techniques used in the multilevel graph
partitioner KaFFPa. We continue describ-
ing the main components of our evolu-
tionary algorithm KaFFPaE in Section 5.
A summary of extensive experiments to
evaluate the performance of the algorithm is presented in Section 6. We have imple-
mented these techniques in the graph partitioner KaFFPaE (Karlsruhe Fast Flow Parti-
tioner Evolutionary) which is written in C++. Experiments reported in Section 6 indi-
cate that KaFFPaE is able to compute partitions of very high quality and scales well to
large networks and machines.

2 Preliminaries

2.1 Basic concepts

Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E → R>0,
node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets, i.e.,
c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). Γ (v) := {u : {v, u} ∈ E} denotes

the neighbors of v. We are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e.,
V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. The balancing constraint demands that
∀i ∈ {1..k} : c(Vi) ≤ Lmax := (1 + ε)c(V)/k + maxv∈V c(v) for some parameter
ε. The last term in this equation arises because each node is atomic and therefore a
deviation of the heaviest node has to be allowed. The objective is to minimize the total
cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. A clustering is also

a partition of the nodes, however k is usually not given in advance and the balance

2

constraint is removed. A vertex v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a boundary
vertex. An abstract view of the partitioned graph is the so called quotient graph, where
vertices represent blocks and edges are induced by connectivity between blocks. Given
two clusterings C1 and C2 the overlay clustering is the clustering where each block
corresponds to a connected component of the graph GE = (V,E\E) where E is the
union of the cut edges of C1 and C2, i.e. all edges that run between blocks in C1 or C2.
We will need the of overlay clustering to define a combine operation on partitions in
Section 5. By default, our initial inputs will have unit edge and node weights. However,
even those will be translated into weighted problems in the course of the algorithm.

A matching M ⊆ E is a set of edges that do not share any common nodes, i.e.,
the graph (V,M) has maximum degree one. Contracting an edge {u, v} means to re-
place the nodes u and v by a new node x connected to the former neighbors of u
and v. We set c(x) = c(u) + c(v) so the weight of a node at each level is the num-
ber of nodes it is representing in the original graph. If replacing edges of the form
{u,w},{v, w} would generate two parallel edges {x,w}, we insert a single edge with
ω({x,w}) = ω({u,w}) + ω({v, w}). Uncontracting an edge e undoes its contraction.
In order to avoid tedious notation, G will denote the current state of the graph before
and after a (un)contraction unless we explicitly want to refer to different states of the
graph. The multilevel approach to graph partitioning consists of three main phases. In
the contraction (coarsening) phase, we iteratively identify matchings M ⊆ E and con-
tract the edges in M . Contraction should quickly reduce the size of the input and each
computed level should reflect the global structure of the input network. Contraction
is stopped when the graph is small enough to be directly partitioned using some ex-
pensive other algorithm. In the refinement (or uncoarsening) phase, the matchings are
iteratively uncontracted. After uncontracting a matching, a refinement algorithm moves
nodes between blocks in order to improve the cut size or balance.

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the
reader to [12, 27] for more material on multilevel graph partitioning and to [16] for more
material on genetic approaches for graph partitioning. All general purpose methods
that are able to obtain good partitions for large real world graphs are based on the
multilevel principle outlined in Section 2. Well known software packages based on
this approach include, Jostle [27], Metis [15], and Scotch [21]. KaSPar [20] is a graph
partitioner based on the central idea to (un)contract only a single edge between two
levels. KaPPa [14] is a ”classical” matching based MGP algorithm designed for scalable
parallel execution.

MQI [17] and Improve [1] are flow-based methods for improving graph cuts when
cut quality is measured by quotient-style metrics such as expansion or conductance.
This approach is only feasible for k = 2. Improve uses several minimum cut computa-
tions to improve the quotient cut score of a proposed partition.

Soper et al. [24] provided the first algorithm that combined an evolutionary search
algorithm with a multilevel graph partitioner. Here crossover and mutation operators
have been used to compute edge biases, which yield hints for the underlying multilevel

3

graph partitioner. Benlic et al. [4] provided a multilevel memetic algorithm for balanced
graph partitioning. This approach is able to compute many entries in Walshaw’s Bench-
mark Archive [24] for the case ε = 0. PROBE [6] is a meta-heuristic which can be
viewed as a genetic algorithm without selection. It outperforms other metaheuristics,
but it is restricted to the case k = 2 and ε = 0.

Very recently an algorithm called PUNCH [8] has been introduced. This approach
is not based on the multilevel principle. However, it creates a coarse version of the
graph based on the notion of natural cuts. Natural cuts are relatively sparse cuts close to
denser areas. They are discovered by finding minimum cuts between carefully chosen
regions of the graph. They introduced an evolutionary algorithm which is similar to
Soper et al. [24], i.e. using a combine operator that computes edge biases yielding hints
for the underlying graph partitioner. Experiments indicate that the algorithm computes
very good partitions for road networks. For instances without a natural structure natural
cuts are not very helpful.

4 Karlsruhe Fast Flow Partitioner

The aim of this section is to provide an overview over the techniques used in KaFFPa
which is used by KaFFPaE as a base case partitioner. KaFFPa [23] is a classical match-
ing based multilevel graph partitioner. Recall that a multilevel graph partitioner basi-
cally has three phases: coarsening, initial partitioning and uncoarsening.

Coarsening. KaFFPa makes contraction more systematic by separating two issues: A
rating function indicates how much sense it makes to contract an edge based on lo-
cal information. A matching algorithm tries to maximize the sum of the ratings of the
contracted edges looking at the global structure of the graph. While the rating func-
tion allows a flexible characterization of what a “good” contracted graph is, the simple,
standard definition of the matching problem allows to reuse previously developed al-
gorithms for weighted matching. Matchings are contracted until the graph is “small
enough”. In [14] we have observed that the rating function expansion∗2({u, v}) :=
ω({u,v})2
c(u)c(v) works best among other edge rating functions, so that this rating function is

also used in KaFFPa.
KaFFPa employs the Global Path Algorithm (GPA) as a matching algorithm. It was

proposed in [18] as a synthesis of the Greedy algorithm and the Path Growing Algo-
rithm [10]. This algorithm achieves a half-approximation in the worst case, but em-
pirically, GPA gives considerably better results than Sorted Heavy Edge Matching and
Greedy (for more details see [14]). GPA scans the edges in order of decreasing weight
but rather than immediately building a matching, it first constructs a collection of paths
and even cycles. Afterwards, optimal solutions are computed for each of these paths
and cycles using dynamic programming.

Initial Partitioning. The contraction is stopped when the number of remaining nodes
is below the threshold max (60k, n/(60k)). The graph is then small enough to be par-
titioned by some initial partitioning algorithm. KaFFPa employs Scotch as an initial
partitioner since it empirically performs better than Metis.

4

Uncoarsening. Recall that the refinement phase iteratively uncontracts the matchings
contracted during the contraction phase. After a matching is uncontracted, local search
based refinement algorithms move nodes between block boundaries in order to reduce
the cut while maintaining the balancing constraint. Local improvement algorithms are
usually variants of the FM-algorithm [11]. Our variant of the algorithm is organized in
rounds. In each round, a priority queue P is used which is initialized with all vertices
that are incident to more than one block, in a random order. The priority is based on
the gain g(v) = maxP gP (v) where gP (v) is the decrease in edge cut when moving
v to block P . Ties are broken randomly if there is more than one block that yields the
maximum gain when moving v to it. Local search then repeatedly looks for the highest
gain node v. Each node is moved at most once within a round. After a node is moved
its unmoved neighbors become eligible, i.e. its unmoved neighbors are inserted into the
priority queue. When a stopping criterion is reached all movements to the best found cut
that occurred within the balance constraint are undone. This process is repeated several
times until no improvement is found.

Max-Flow Min-Cut Local Improvement. During the uncoarsening phase KaFFPa addi-
tionally uses more advanced refinement algorithms. The first method is based on max-
flow min-cut computations between pairs of blocks, i.e., a method to improve a given
bipartition. Roughly speaking, this improvement method is applied between all pairs
of blocks that share a non-empty boundary. The algorithm basically constructs a flow
problem by growing an area around the given boundary vertices of a pair of blocks such
that each min cut in this area yields a feasible bipartition of the original graph within the
balance constraint. We explain how flows can be employed to improve a partition of two
blocks V1, V2 without violating the balance constraint. That yields a local improvement
algorithm. First we introduce a few notations. Given a set of nodesB ⊂ V we define its

V1
V2B

G
s t

∂1B ∂2B

G
s t

BV1
V2

Fig. 2. The construction of a feasible
flow problem G′ is shown on the top
and an improved cut within the balance
constraint inG is shown on the bottom.

border ∂B := {u ∈ B | ∃(u, v) ∈ E : v 6∈ B}.
The set ∂1B := ∂B ∩ V1 is called left border of
B and the set ∂2B := ∂B∩V2 is called right bor-
der of B. A B induced subgraph G′ is the node
induced subgraph G[B] plus two nodes s, t that
are connected to the border of B. More precisely
s is connected to all left border nodes ∂1B and all
right border nodes ∂2B are connected to t. All of
these new edges get the edge weight∞. Note that
the additional edges are directed. G′ has the cut
property if each (s,t)-min-cut induces a cut within
the balance constraint in G.
The basic idea is to construct a B induced sub-
graph G′ having the cut property. Each min-cut
will then yield a feasible improved cut within
the balance constraint in G. By performing two

Breadth First Searches (BFS) we can find such a set B. Each node touched during
these searches belongs to B. The first BFS is done in the subgraph of G induced
by V1. It is initialized with the boundary nodes of V1. As soon as the weight of the
area found by this BFS would exceed (1 + ε)c(V)/2 − c(V1), we stop the BFS.

5

The second BFS is done for V2 in an analogous fashion. The constructed subgraph
G′ has the cut property since the worst case new weight of V2 is lower or equal to
c(V2) + (1 + ε)c(V)/2− c(V2) = (1 + ε)c(V)/2. Indeed the same holds for the worst
case new weight of V1. There are multiple ways to improve this method, i.e. iteratively
applying the method, searching in larger areas for feasible cuts and applying most bal-
anced minimum cut heuristics. For more details we refer the reader to [23].

Multi-try FM. The second novel method for improving a given partition is called multi-
try FM. This local improvement method moves nodes between blocks in order to de-
crease the cut. Previous k-way methods were initialized with all boundary nodes, i.e.,
all boundary nodes are eligible for movement at the beginning. Our method is repeat-
edly initialized with a single boundary node, thus achieving a more localized search.
More details about k-way methods can be found in [23].

Multi-try FM is organized in rounds. In each round we put all boundary nodes of
the current block pair into a todo list T . Subsequently, we begin a k-way local search
starting with a single random node v of T if it is still a boundary node. Note that the
difference to the global k-way search is in the initialisation of the search. The local
search is only started from v if it was not touched by a previous localized k-way search
in this round. Either way, the node is removed from the todo list. A localized k-way
search is not allowed to move a node that has been touched in a previous run. This
assures that at most n nodes are touched during a round of the algorithm. The algorithm
uses the adaptive stopping criterion from KaSPar [20].

Global Search. KaFFPa extended the concept of iterated multilevel algorithms which
was introduced by [25]. The main idea is to iterate the coarsening and uncoarsening
phase. Once the graph is partitioned, edges that are between two blocks are not con-
tracted. An F-cycle works as follows: on each level we perform at most two recursive
calls using different random seeds during contraction and local search. A second re-
cursive call is only made the second time that the algorithm reaches a particular level.
Figure 3 illustrates a F-cycle. As soon as the graph is partitioned, edges that are between
blocks are not contracted. This ensures nondecreasing quality of the partition since our
refinement algorithms guarantee no worsening and break ties randomly. These so called
global search strategies are more effective than plain restarts of the algorithm. Extend-
ing this idea will yield the combine and mutation operators described in Section 5.

U
n

co
arsen

in
gC

o
ar

se
n

in
g

Graph not partitioned

Graph partitioned

Fig. 3. An F-cycle for the graph partitioning problem.

6

5 KaFFPa Evolutionary

We now describe the techniques used in KaFFPaE. The general idea behind evolu-
tionary algorithms (EA) is to use mechanisms which are highly inspired by biological
evolution such as selection, mutation, recombination and survival of the fittest. An EA
starts with a population of individuals (in our case partitions of the graph) and evolves
the population into different populations over several rounds. In each round, the EA
uses a selection rule based on the fitness of the individuals (in our case the edge cut)
of the population to select good individuals and combine them to obtain improved off-
spring [13]. Note that we can use the cut as a fitness function since our partitioner
almost always generates partitions that are within the given balance constraint. Our al-
gorithm generates only one offspring per generation. Such an evolutionary algorithm is
called steady-state [7]. A typical structure of an evolutionary algorithm is depicted in
Algorithm 1.

For an evolutionary algorithm it is of major importance to keep the diversity in the
population high [2], i.e. the individuals should not become too similar, in order to avoid
a premature convergence of the algorithm. In classical evolutionary algorithms, this is
done using a mutation operator. It is also important to have operators that introduce
unexplored search space to the population. Through a new kind of crossover and mu-
tation operators, introduced in Section 5.1, we introduce more elaborate diversification
strategies which allow us to search the search space more effectively.

Algorithm 1 A classic general steady-state evolutionary algorithm.
procedure steady-state-EA

create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P
combine p1 with p2 to create offspring o
mutate offspring o
evict individual in population using o

return the fittest individual that occurred

5.1 Combine Operators

We now describe the general combine operator framework. This is followed by three
instantiations of this framework. In contrast to previous methods that use a multilevel
framework our combine operators do not need perturbations of edge weights since we
integrate the operators into our partitioner and do not use it as a complete black box.
Furthermore all of our combine operators assure that the offspring has a partition qual-
ity at least as good as the best of both parents. Roughly speaking, the combine operator
framework combines an individual/partition P = V P1 , ..., V

P
k (which has to fulfill a

balance constraint) with a clustering C = V C1 , ..., V
C
k′ . Note that the clustering does

not necessarily has to fulfill a balance constraint and k′ is not necessarily given in ad-
vance. All instantiations of this framework use a different kind of clustering or partition.
The partition and the clustering are both used as input for our multi-level graph parti-
tioner KaFFPa in the following sense. Let E be the set of edges that are cut edges, i.e.
edges that run between two blocks, in P or C. All edges in E are blocked during the
coarsening phase, i.e. they are not contracted during the coarsening phase. In other

7

match

contract

Fig. 4. On the top a graphGwith
two partitions, the dark and the
light line, are shown. Cut edges
are not eligible for the matching
algorithm. Contraction is done
until no matchable edge is left.
The best of the two given parti-
tions is used as initial partition.

words these edges are not eligible for the matching al-
gorithm used during the coarsening phase and therefore
are not part of any matching computed. An illustration
of this can be found in Figure 4.

The stopping criterion for the multi-level partitioner
is modified such that it stops when no contractable edge
is left. Note that the coarsest graph is now exactly the
same as the quotient graph Q′ of the overlay cluster-
ing of P and C of G (see Figure 5). Hence vertices of
the coarsest graph correspond to the connected compo-
nents of GE = (V,E\E) and the weight of the edges
between vertices corresponds to the sum of the edge
weights running between those connected components
in G. As soon as the coarsening phase is stopped, we
apply the partition P to the coarsest graph and use this
as initial partitioning. This is possible since we did not
contract any cut edge of P . Note that due to the special-
ized coarsening phase and this specialized initial par-
titioning we obtain a high quality initial solution on a
very coarse graph which is usually not discovered by conventional partitioning algo-
rithms. Since our refinement algorithms guarantee no worsening of the input partition
and use random tie breaking we can assure nondecreasing partition quality. Note that
the refinement algorithms can effectively exchange good parts of the solution on the
coarse levels by moving only a few vertices. Figure 5 gives an example.

When the offspring is generated we have to decide which solution should be evicted
from the current population. We evict the solution that is most similar to the offspring
among those individuals in the population that have a cut worse or equal than the off-
spring itself. The difference of two individuals is defined as the size of the symmetric
difference between their sets of cut edges. This ensures some diversity in the population
and hence makes the evolutionary algorithm more effective.

Classical Combine using Tournament Selection. This instantiation of the combine
framework corresponds to a classical evolutionary combine operator C1. That means
it takes two individuals P1, P2 of the population and performs the combine step de-
scribed above. In this case P corresponds to the partition having the smaller cut and C
corresponds to the partition having the larger cut. Random tie breaking is used if both
parents have the same cut. The selection process is based on the tournament selection
rule [19], i.e. P1 is the fittest out of two random individualsR1, R2 from the population.
The same is done to select P2. Note that in contrast to previous methods the generated
offspring will have a cut smaller or equal to the cut of P . Due to the fact that our multi-
level algorithms are randomized, a combine operation performed twice using the same
parents can yield different offspring.

Cross Combine / (Transduction). In this instantiation of the combine framework
C2, the clustering C corresponds to a partition of G. But instead of choosing an in-
dividual from the population we create a new individual in the following way. We

8

G

v1

v2

v3

v4

G

v1

v2

v3

v4

Fig. 5. A graphG and two bipartitions; the dotted and the dashed line (left). Curved lines represent
a large cut. The four vertices correspond to the coarsest graph in the multilevel procedure. Local
search algorithms can effectively exchange v2 or v4 to obtain the better partition depicted on the
right hand side (dashed line).

choose k′ uniformly at random in [k/4, 4k] and ε′ uniformly at random in [ε, 4ε].
We then use KaFFPa to create a k′-partition of G fulfilling the balance constraint
max c(Vi) ≤ (1+ ε′)c(V)/k′. In general larger imbalances reduce the cut of a partition
which then yields good clusterings for our crossover. To the best of our knowledge there
has been no genetic algorithm that performs combine operations combining individuals
from different search spaces.

Natural Cuts. Delling et al. [8] introduced the notion of natural cuts as a prepro-
cessing technique for the partitioning of road networks. The preprocessing technique
is able to find relatively sparse cuts close to denser areas. We use the computation of
natural cuts to provide another combine operator, i.e. combining a k-partition with a
clustering generated by the computation of natural cuts. We closely follow their de-
scription: The computation of natural cuts works in rounds. Each round picks a center
vertex v and grows a breadth-first search (BFS) tree. The BFS is stopped as soon as

v

Fig. 6. On the top we see the compu-
tation of a natural cut. A BFS Tree
which starts from v is grown. The gray
area is the core. The dashed line is the
natural cut. It is the minimum cut be-
tween the contracted versions of the
core and the ring (shown as the solid
line). During the computation several
natural cuts are detected in the input
graph (bottom).

the weight of the tree, i.e. the sum of the vertex
weights of the tree, reaches αU , for some param-
eters α and U . The set of the neighbors of T in
V \T is called the ring of v. The core of v is the
union of all vertices added to T before its size
reached αU/f where f > 1 is another parameter.
The core is then temporarily contracted to a sin-
gle vertex s and the ring into a single vertex t to
compute the minimum s-t-cut between them us-
ing the given edge weights as capacities. To assure
that every vertex eventually belongs to at least one
core, and therefore is inside at least one cut, the
vertices v are picked uniformly at random among
all vertices that have not yet been part of any core
in any round. The process is stopped when there
are no such vertices left.

In the original work [8] each connected com-
ponent of the graph GC = (V,E\C), where C is
the union of all edges cut by the process above, is
contracted to a single vertex. Since we do not use

9

natural cuts as a preprocessing technique at this place we don’t contract these compo-
nents. Instead we build a clustering C of G such that each connected component of GC

is a block.
This technique yields the third instantiation of the combine framework C3 which is

divided into two stages, i.e. the clustering used for this combine step is dependent on
the stage we are currently in. In both stages the partition P used for the combine step
is selected from the population using tournament selection. During the first stage we
choose f uniformly at random in [5, 20], α uniformly at random in [0.75, 1.25] and we
set U = |V |/3k. Using these parameters we obtain a clustering C of the graph which
is then used in the combine framework described above. This kind of clustering is used
until we reach an upper bound of ten calls to this combine step. When the upper bound
is reached we switch to the second stage. In this stage we use the clusterings computed
during the first stage, i.e. we extract elementary natural cuts and use them to quickly
compute new clusterings. An elementary natural cut (ENC) consists of a set of cut
edges and the set of nodes in its core. Moreover, for each node v in the graph, we store
the set of ENCs N(v) that contain v in their core. With these data structures its easy to
pick a new clustering C (see Algorithm 2) which is then used in the combine framework
described above.

Algorithm 2 computeNaturalCutClustering (second stage)
1: unmark all nodes in V
2: for each v ∈ V in random order do
3: if v is not marked then
4: pick a random ENC C in N(v)
5: output C
6: mark all nodes in C’s core

5.2 Mutation Operators

We define two mutation operators, an ordinary and a modified F-cycle. Both muta-
tion operators use a random individual from the current population. The main idea is
to iterate coarsening and refinement several times using different seeds for random tie
breaking. The first mutation operator M1 can assure that the quality of the input parti-
tion does not decrease. It is basically an ordinary F-cycle which is an algorithm used in
KaFFPa. Edges between blocks are not contracted. The given partition is then used as
initial partition of the coarsest graph. In contrast to KaFFPa, we now can use the parti-
tion as input to the partition in the very beginning. This ensures nondecreasing quality
since our refinement algorithms guarantee no worsening. The second mutation operator
M2 works quite similar with the small difference that the input partition is not used as
initial partition of the coarsest graph. That means we obtain very good coarse graphs but
we cannot assure that the final individual has a higher quality than the input individual.
In both cases the resulting offspring is inserted into the population using the eviction
strategy described in Section 5.1.

5.3 Putting Things Together and Parallelization

We now explain the parallelization and describe how everything is put together. Each
processing element (PE) basically performs the same operations using different random

10

seeds (see Algorithm 3). First we estimate the population size S: each PE performs a
partitioning step and measures the time t spent for partitioning. We then choose S such
that the time for creating S partitions is approximately ttotal/f where the fraction f is a
tuning parameter and ttotal is the total running time that the algorithm is given to produce
a partition of the graph. Each PE then builds its own population, i.e. KaFFPa is called
several times to create S individuals/partitions. Afterwards the algorithm proceeds in
rounds as long as time is left. With corresponding probabilities, mutation or combine
operations are performed and the new offspring is inserted into the population.

We choose a parallelization/communication protocol that is quite similar to random-
ized rumor spreading [9]. Let p denote the number of PEs used. A communication step
is organized in rounds. In each round, a PE chooses a communication partner and sends
her the currently best partition P of the local population. The selection of the communi-
cation partner is done uniformly at random among those PEs to which P not already has
been sent to. Afterwards, a PE checks if there are incoming individuals and if so inserts
them into the local population using the eviction strategy described above. If P is im-
proved, all PEs are again eligible. This is repeated log p times. Note that the algorithm
is implemented completely asynchronously, i.e. there is no need for a global synchro-
nisation. The process of creating individuals is parallelized as follows: Each PE makes
s′ = |S|/p calls to KaFFPa using different seeds to create s′ individuals. Afterwards
we do the following S − s′ times: The root PE computes a random cyclic permutation
of all PEs and broadcasts it to all PEs. Each PE then sends a random individual to its
successor in the cyclic permutation and receives a individual from its predecessor in the
cyclic permutation which is then inserted into the local population. When this particular
part of the algorithm (quick start) is finished, each PE has |S| partitions.

After some experiments we fixed the ratio of mutation to crossover operations to
1 : 9, the ratio of the mutation operators M1 : M2 to 4 : 1 and the ratio of the combine
operators C1 : C2 : C3 to 3 : 1 : 1.

Note that the communication step in the last line of the algorithm could also be per-
formed only every x iterations (where x is a tuning parameter) to save communication
time. Since the communication network of our test system is very fast (see Section 6),
we perform the communication step in each iteration.

Algorithm 3 All PEs perform the same operations using different random seeds.
procedure locallyEvolve

estimate population size S
while time left

if elapsed time < ttotal/f then create individual and insert into local population
else

flip coin c with corresponding probabilities
if c shows head then

perform a mutation operation
else

perform a combine operation
insert offspring into population if possible

communicate according to communication protocol

11

6 Experiments
graph n m

Random Geometric Graphs
rgg16 216 ≈342 K
rgg17 217 ≈ 729 K

Delaunay
delaunay16 216 ≈ 197 K
delaunay17 217 ≈ 393 K

Kronecker G500
kron simple 16 216 ≈ 2 M
kron simple 17 217 ≈ 5 M

Numerical
adaptive ≈6 M ≈14 M
channel ≈5 M ≈42 M
venturi ≈4 M ≈8 M
packing ≈2 M ≈17 M

2D Frames
hugetrace-00000 ≈5 M ≈7 M
hugetric-00000 ≈6 M ≈9 M

Sparse Matrices
af shell9 ≈500 K ≈9 M
thermal2 ≈1 M ≈4 M

Coauthor Networks
coAutCiteseer ≈227 K ≈814 K
coAutDBLP ≈299 K ≈978 K

Social Networks
cnr ≈326 K ≈3 M
caidaRouterLvl ≈192 K ≈609 K

Road Networks
luxembourg ≈144 K ≈120 K
belgium ≈1 M ≈2 M
netherlands ≈2 M ≈2 M
italy ≈7 M ≈7 M
great-britain ≈8 M ≈8 M
germany ≈12 M ≈12 M
asia ≈12 M ≈13 M
europe ≈51 M ≈54 M

Table 1. Basic properties of the
choosen graph subsets (except the
Walshaw Instances).

Implementation. We have implemented the algo-
rithm described above using C++. Overall, our
program (including KaFFPa) consists of about
22 500 lines of code. We use two base case par-
titioners, KaFFPaStrong and KaFFPaEco. KaFF-
PaEco is a good tradeoff between quality and
speed, and KaFFPaStrong is focused on quality
(see [23] for more details).

Systems. Experiments have been done on three
machines. Machine A is a cluster with 200 nodes
where each node is equipped with two Quad-core
Intel Xeon processors (X5355) which run at a
clock speed of 2.667 GHz. Each node has 2x4 MB
of level 2 cache each and run Suse Linux Enter-
prise 10 SP 1. All nodes are attached to an Infini-
Band 4X DDR interconnect which is character-
ized by its very low latency of below 2 microsec-
onds and a point to point bandwidth between two
nodes of more than 1300 MB/s. Machine B has
four Quad-core Opteron 8350 (2.0GHz), 64GB
RAM, running Ubuntu 10.04. Machine C has two
Intel Xeon X5550, 48GB RAM, running Ubuntu
10.04. Each CPU has 4 cores (8 cores when hy-
perthreading is active) running at 2.67 GHz. Ex-
periments in Section 6.1 were conducted on ma-
chine A. Shortly after these experiments were
conducted the machine had a file system crash and
was not available for two weeks (and after that the
machine was very full). Therefore we switched to
the much smaller machines B and C, focused on
a small subset of the challenge and restricted fur-
ther experiments to k = 8. Experiments in Sec-
tion 6.2 have been conducted on machine B, and
experiments in Section 6.3 have been conducted
on machine C. All programs were compiled using
GCC Version 4.4.3 and optimization level 3 using
OpenMPI 1.5.3. Henceforth, a PE is one core of a
machine.

Instances. We report experiments on a subset of the graphs of the 10th DIMACS Im-
plementation Challenge [3]. Experiments in Section 6.1 were done on all graphs of the
Walshaw Benchmark. Here we used k ∈ {2, 4, 8, 16, 32, 64} since they are the default
values in [26]. Experiments in Section 6.2 focus on the graph subset depicted in Table 1

12

(except the road networks). Section 6.3 has a closer look on all road networks of the
Challenge. Our default value for the allowed imbalance is 3% since this is one of the
values used in [26] and the default value in Metis. Our default number of PEs is 16.

6.1 Walshaw Benchmark

We now apply KaFFPaE to Walshaw’s benchmark archive [24] using the rules used
there, i.e., running time is not an issue but we want to achieve minimal cut values for k ∈
{2, 4, 8, 16, 32, 64} and balance parameters ε ∈ {0, 0.01, 0.03, 0.05}. We focus on ε ∈
{1%, 3%, 5%} since KaFFPaE (more precisely KaFFPa) is not made for the case ε = 0.
We run KaFFPaE with a time limit of two hours using 16 PEs (two nodes of the cluster)
per graph, k and ε and report the best results obtained in Appendix A. On the eight
largest graph of the archive we gave KaFFPaE eight hours per graph, k and ε. KaFFPaE
computed 300 partitions which are better than previous best partitions reported there:
91 for 1%, 103 for 3% and 106 for 5%. Moreover, it reproduced equally sized cuts
in 170 of the 312 remaining cases. When only considering the 15 largest graphs and
ε ∈ {1.03, 1.05} we are able to reproduce or improve the current result in 224 out of
240 cases. Overall our systems (including KaPPa, KaSPar, KaFFPa, KaFFPaE) now
improved or reproduced the entries in 550 out of 612 cases (for ε ∈ {0.01, 0.03, 0.05}).

6.2 Various DIMACS Graphs

In this Section we apply KaFFPaE (and on some graphs KaFFPa) to a meaningful subset
of the graphs of the DIMACS Challenge. Here we use all cores of machine B and give
KaFFPaE eight hours of time per graph to compute a partition into eight blocks. When
using KaFFPa to create a partition we use one core of this machine. The experiments
were repeated three times. A summary of the results can be found in Table 2.

graph best avg.
rgg16 1 067 1 067
rgg17 1 777 1 778
delaunay16 1 547 1 547
delaunay17 2 200 2 203
kron simple 16∗ 1 257 512 1 305 207
kron simple 17∗ 2 247 116 2 444 925
cnr 4 687 4 837
caidaRouterLevel 42 679 43 659
coAutCiteseer 42 875 43 295

graph best avg.
coAutDBLP 94 866 95 866
channel∗ 333 396 333 396
packing∗ 108 771 111 255
adaptive 8 482 8 482
venturi 5 780 5 788
hugetrace-00000 3 656 3 658
hugetric-00000 4 769 4 785
af shell9 40 775 40 791
thermal2 6 426 6 426

Table 2. Results achieved for k = 8 various graphs of the DIMACS Challenge. Results which
were computed by KaFFPa are indicated by *.

13

6.3 Road Networks

grp. algorithm/runtime t
Bbest Bavg tavg[m] Kbest Kavg tavg[m]

lux. 79 79 60.1 81 83 0.1
bel. 307 307 60.5 320 326 0.9
net. 191 193 60.6 207 217 1.2
ita. 200 200 64.3 205 210 3.9
gb. 363 365 63.0 381 395 6.5

ger. 473 475 65.3 482 499 11.3
asia. 47 47 67.6 52 55 6.4
eur. 526 527 131.5 550 590 76.1

Table 3. Results on road networks for k = 8:
average and best cut results of Buffoon (B) and
KaFFPa (K) as well as average runtime [m] (in-
cluding preprocessing) .

In this Section we focus on finding par-
titions of the street networks of the DI-
MACS Challenge. We implemented a
specialized algorithm, Buffoon, which is
similar to PUNCH [8] in the sense that
it also uses natural cuts as a preprocess-
ing technique to obtain a coarser graph
on which the graph partitioning problem
is solved. For more information on natu-
ral cuts, we refer the reader to [8]. Using
our (shared memory) parallelized version
of natural cut preprocessing we obtain a
coarse version of the graph. Note that our
preprocessing uses slightly different pa-
rameters than PUNCH (using the nota-
tion of [8], we use C = 2, U = (1 + ε) n

2k , f = 10, α = 1). Since partitions of the
coarse graph correspond to partitions of the original graph, we use KaFFPaE to parti-
tion the coarse version of the graph. After preprocessing, we gave KaFFPaE one hour of
time to compute a partition. In both cases we used all 16 cores (hyperthreading active)
of machine C for preprocessing and for KaFFPaE. We also used the strong configu-
ration of KaFFPa to partition the road networks. In both cases the experiments were
repeated ten times. Table 3 summarizes the results.

7 Conclusion and Future Work

We presented two approaches to the graph partitioning problem, KaFFPa and KaFF-
PaE. KaFFPa uses novel local improvement methods and more sophisticated global
search strategies to tackle the problem. KaFFPaE is an distributed evolutionary algo-
rithm which uses KaFFPa as a base case partitioner. Due to new crossover and mutation
operators as well as its scalable parallelization it is able to compute the best known
partitions for many standard benchmark instances in only a few minutes. We therefore
believe that KaFFPaE is still helpful in the area of high performance computing.

Regarding future work, we want look at more DIMACS Instances, more values
of k and more values of ε. In particular we want to have a closer look at the case
ε = 0. Furthermore we want to look at other objective functions such as communication
volume.

References

1. R. Andersen and K.J. Lang. An algorithm for improving graph partitions. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 651–660.
Society for Industrial and Applied Mathematics, 2008.

2. Thomas Bäck. Evolutionary algorithms in theory and practice : evolution strategies, evolu-
tionary programming, genetic algorithms. PhD thesis, 1996.

14

3. David Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 10th DIMACS
Implementation Challenge - Graph Partitioning and Graph Clustering, http://www.cc.
gatech.edu/dimacs10/.

4. Una Benlic and Jin-Kao Hao. A multilevel memtetic approach for improving graph k-
partitions. In 22nd Intl. Conf. Tools with Artificial Intelligence, pages 121–128, 2010.

5. Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge partitions is
NP-hard. Inf. Process. Lett., 42(3):153–159, 1992.

6. Pierre Chardaire, Musbah Barake, and Geoff P. McKeown. A probe-based heuristic for graph
partitioning. IEEE Trans. Computers, 56(12):1707–1720, 2007.

7. Kenneth Alan De Jong. Evolutionary computation : a unified approach. MIT Press, 2006.
8. Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph

Partitioning with Natural Cuts. In 25th IPDPS. IEEE Computer Society, 2011.
9. Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor spreading.

In ICALP (2), volume 6756 of LNCS, pages 502–513. Springer, 2011.
10. D. Drake and S. Hougardy. A simple approximation algorithm for the weighted matching

problem. Information Processing Letters, 85:211–213, 2003.
11. C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network

Partitions. In 19th Conference on Design Automation, pages 175–181, 1982.
12. P.O. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping Electronic Articles

in Computer and Information Science, 3(10), 1998.
13. David E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, 1989.
14. M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph Parti-

tioner. 24th IEEE International Parallal and Distributed Processing Symposium, 2010.
15. G. Karypis, V. Kumar, Army High Performance Computing Research Center, and University

of Minnesota. Parallel multilevel k-way partitioning scheme for irregular graphs. SIAM
Review, 41(2):278–300, 1999.

16. Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung Ro Moon. Genetic approaches for
graph partitioning: a survey. In GECCO, pages 473–480. ACM, 2011.

17. K. Lang and S. Rao. A flow-based method for improving the expansion or conductance of
graph cuts. Integer Programming and Combinatorial Optimization, pages 383–400, 2004.

18. J. Maue and P. Sanders. Engineering algorithms for approximate weighted matching. In 6th
Workshop on Exp. Alg. (WEA), volume 4525 of LNCS, pages 242–255. Springer, 2007.

19. Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selection, and the
effects of noise. Complex Systems, 9:193–212, 1995.

20. V. Osipov and P. Sanders. n-Level Graph Partitioning. 18th European Symposium on Algo-
rithms (see also arxiv preprint arXiv:1004.4024), 2010.

21. F. Pellegrini. Scotch home page. http://www.labri.fr/pelegrin/scotch.
22. P. Sanders and C. Schulz. Distributed Evolutionary Graph Partitioning (see ArXiv preprint

arXiv:1110.0477). Technical report, Karlsruhe Institute of Technology, 2011.
23. P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. 19th

European Symposium on Algorithms (see also arxiv preprint arXiv:1012.0006v3), 2011.
24. A.J. Soper, C. Walshaw, and M. Cross. A combined evol. search and multilevel optimisation

approach to graph-partitioning. Journal of Global Optimization, 29(2):225–241, 2004.
25. C. Walshaw. Multilevel refinement for combinatorial optimisation problems. Annals of

Operations Research, 131(1):325–372, 2004.
26. C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement Al-

gorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.
27. C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An

Overview. In F. Magoules, editor, Mesh Partitioning Techniques and Domain Decomposition
Techniques, pages 27–58. Civil-Comp Ltd., 2007. (Invited chapter).

15

A Detailed Walshaw Benchmark Results

Graph/k 2 4 8 16 32 64
add20 642 594 1 194 1 159 1 727 1 696 2 107 2 062 2 512 2 687 3 188 3 108
data 188 188 377 378 656 659 1 142 1 135 1 933 1 858 2 966 2 885
3elt 89 89 199 199 340 341 568 569 967 968 1 553 1 553
uk 19 19 40 40 80 82 144 146 251 256 417 419
add32 10 10 33 33 66 66 117 117 212 212 486 493
bcsstk33 10 096 10 097 21 390 21 508 34 174 34 178 55 327 54 763 78 199 77 964 109 811 108 467
whitaker3 126 126 380 380 654 655 1 091 1 091 1 678 1 697 2 532 2 552
crack 183 183 362 362 676 677 1 098 1 089 1 697 1 687 2 581 2 555
wing nodal 1 695 1 695 3 563 3 565 5 422 5 427 8 353 8 339 12 040 11 828 16 185 16 124
fe 4elt2 130 130 349 349 603 604 1 002 1 005 1 620 1 628 2 530 2 519
vibrobox 11 538 10 310 18 956 19 098 24 422 24 509 33 501 32 102 41 725 40 085 49 012 47 651
bcsstk29 2 818 2 818 8 029 8 029 13 904 13 950 22 618 21 768 35 654 34 841 57 712 57 031
4elt 138 138 320 320 532 533 932 934 1 551 1 547 2 574 2 579
fe sphere 386 386 766 766 1 152 1 152 1 709 1 709 2 494 2 488 3 599 3 584
cti 318 318 944 944 1 749 1 752 2 804 2 837 4 117 4 129 5 820 5 818
memplus 5 491 5 484 9 448 9 500 11 807 11 776 13 250 13 001 15 187 14 107 17 183 16 543
cs4 366 366 925 934 1 436 1 448 2 087 2 105 2 910 2 938 4 032 4 051
bcsstk30 6 335 6 335 16 596 16 622 34 577 34 604 70 945 70 604 116 128 113 788 176 099 172 929
bcsstk31 2 699 2 699 7 282 7 287 13 201 13 230 23 761 23 807 37 995 37 652 59 318 58 076
fe pwt 340 340 704 704 1 433 1 437 2 797 2 798 5 523 5 549 8 222 8 276
bcsstk32 4 667 4 667 9 195 9 208 20 204 20 323 35 936 36 399 61 533 60 776 94 523 91 863
fe body 262 262 598 598 1 026 1 048 1 714 1 779 2 796 2 935 4 825 4 879
t60k 75 75 208 208 454 454 805 815 1 320 1 352 2 079 2 123
wing 784 784 1 610 1 613 2 479 2 505 3 857 3 880 5 584 5 626 7 680 7 656
brack2 708 708 3 013 3 013 7 040 7 099 11 636 11 649 17 508 17 398 26 226 25 913
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe tooth 3 814 3 815 6 846 6 867 11 408 11 473 17 411 17 396 25 111 24 933 34 824 34 433
fe rotor 2 031 2 031 7 180 7 292 12 726 12 813 20 555 20 438 31 428 31 233 46 372 45 911
598a 2 388 2 388 7 948 7 952 15 956 15 924 25 741 25 789 39 423 38 627 57 497 56 179
fe ocean 387 387 1 816 1 824 4 091 4 134 7 846 7 771 12 711 12 811 20 301 19 989
144 6 478 6 478 15 152 15 140 25 273 25 279 37 896 38 212 56 550 56 868 79 198 80 406
wave 8 658 8 665 16 780 16 875 28 979 29 115 42 516 42 929 61 104 62 551 85 589 86 086
m14b 3 826 3 826 12 973 12 981 25 690 25 852 42 523 42 351 65 835 67 423 98 211 99 655
auto 9 949 9 954 26 614 26 649 45 557 45 470 77 097 77 005 121 032 121 608 172 167 174 482

Table 4. Computing partitions from scratch ε = 1%. In each k-column the results computed by
KaFFPaE are on the left and the current Walshaw cuts are presented on the right side.

16

Graph/k 2 4 8 16 32 64
add20 623 576 1 180 1 158 1 696 1 689 2 075 2 062 2 422 2 387 2 963 3 021
data 185 185 369 369 638 638 1 111 1 118 1 815 1 801 2 905 2 809
3elt 87 87 198 198 334 335 561 562 950 950 1 537 1 532
uk 18 18 39 39 78 78 140 141 240 245 406 411
add32 10 10 33 33 66 66 117 117 212 212 486 490
bcsstk33 10 064 10 064 20 767 20 854 34 068 34 078 54 772 54 455 77 549 77 353 108 645 107 011
whitaker3 126 126 378 378 650 651 1 084 1 086 1 662 1 673 2 498 2 499
crack 182 182 360 360 671 673 1 077 1 077 1 676 1 666 2 534 2 529
wing nodal 1 678 1 678 3 538 3 542 5 361 5 368 8 272 8 310 11 939 11 828 15 967 15 874
fe 4elt2 130 130 342 342 595 596 991 994 1 599 1 613 2 485 2 503
vibrobox 11 538 10 310 18 736 18 778 24 204 24 170 33 065 31 514 41 312 39 512 48 184 47 651
bcsstk29 2 818 2 818 7 971 7 983 13 717 13 816 22 000 21 410 34 535 34 400 55 544 55 302
4elt 137 137 319 319 522 523 906 908 1 523 1 524 2 543 2 565
fe sphere 384 384 764 764 1 152 1 152 1 698 1 704 2 474 2 471 3 552 3 530
cti 318 318 916 916 1 714 1 714 2 746 2 758 3 994 4 011 5 579 5 675
memplus 5 353 5 353 9 375 9 362 11 662 11 624 13 088 13 001 14 617 14 107 16 997 16 259
cs4 360 360 917 926 1 424 1 434 2 055 2 087 2 892 2 925 4 016 4 051
bcsstk30 6 251 6 251 16 399 16 497 34 137 34 275 69 592 69 763 113 888 113 788 173 290 171 727
bcsstk31 2 676 2 676 7 150 7 150 12 985 13 003 23 299 23 232 37 109 37 228 58 143 57 953
fe pwt 340 340 700 700 1 410 1 411 2 773 2 776 5 460 5 488 8 124 8 205
bcsstk32 4 667 4 667 8 725 8 733 19 956 19 962 35 140 35 486 59 716 58 966 91 544 91 715
fe body 262 262 598 598 1 018 1 016 1 708 1 734 2 738 2 810 4 643 4 799
t60k 71 71 203 203 449 449 793 802 1 304 1 333 2 039 2 098
wing 773 773 1 593 1 602 2 451 2 463 3 807 3 852 5 559 5 626 7 561 7 656
brack2 684 684 2 834 2 834 6 800 6 861 11 402 11 444 17 167 17 194 25 658 25 913
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe tooth 3 788 3 788 6 764 6 795 11 287 11 274 17 176 17 310 24 752 24 933 34 230 34 433
fe rotor 1 959 1 959 7 118 7 126 12 445 12 472 20 076 20 112 30 664 31 233 45 053 45 911
598a 2 367 2 367 7 816 7 838 15 613 15 722 25 563 25 686 38 346 38 627 56 153 56 179
fe ocean 311 311 1 693 1 696 3 920 3 921 7 657 7 631 12 437 12 539 19 521 19 989
144 6 434 6 438 15 203 15 078 25 092 25 109 37 730 37 762 55 941 56 356 78 636 78 559
wave 8 591 8 594 16 665 16 668 28 506 28 495 42 259 42 295 60 731 61 722 84 533 85 185
m14b 3 823 3 823 12 948 12 948 25 390 25 520 41 778 41 997 65 359 65 180 96 519 96 802
auto 9 673 9 683 25 789 25 836 44 785 44 832 75 719 75 778 119 157 120 086 170 989 171 535

Table 5. Computing partitions from scratch ε = 3%. In each k-column the results computed by
KaFFPaE are on the left and the current Walshaw cuts are presented on the right side.

17

Graph/k 2 4 8 16 32 64
add20 598 546 1 169 1 149 1 689 1 675 2 061 2 062 2 411 2 387 2 963 3 021
data 182 181 363 363 628 628 1 088 1 084 1 786 1 776 2 832 2 798
3elt 87 87 197 197 329 330 557 558 944 942 1 509 1 519
uk 18 18 39 39 75 76 137 139 237 242 395 400
add32 10 10 33 33 63 63 117 117 212 212 483 486
bcsstk33 9 914 9 914 20 167 20 179 33 919 33 922 54 333 54 296 77 457 77 101 106 903 106 827
whitaker3 126 126 377 378 644 644 1 073 1 079 1 650 1 667 2 477 2 498
crack 182 182 360 360 666 667 1 065 1 076 1 661 1 655 2 505 2 516
wing nodal 1 669 1 668 3 521 3 522 5 341 5 345 8 241 8 264 11 793 11 828 15 892 15 813
fe 4elt2 130 130 335 335 578 580 983 984 1 575 1 592 2 461 2 482
vibrobox 11 254 10 310 18 690 18 696 23 924 23 930 32 615 31 234 40 816 39 183 47 624 47 361
bcsstk29 2 818 2 818 7 925 7 936 13 540 13 575 21 459 20 924 33 851 33 817 55 029 54 895
4elt 137 137 315 315 515 515 888 895 1 504 1 516 2 514 2 546
fe sphere 384 384 762 762 1 152 1 152 1 681 1 683 2 434 2 465 3 528 3 522
cti 318 318 889 889 1 684 1 684 2 719 2 721 3 927 3 920 5 512 5 594
memplus 5 281 5 267 9 292 9 297 11 624 11 543 13 095 13 001 14 537 14 107 16 650 16 044
cs4 353 353 909 912 1 420 1 431 2 043 2 079 2 866 2 919 3 973 4 012
bcsstk30 6 251 6 251 16 189 16 186 34 071 34 146 69 337 69 288 112 159 113 321 170 321 170 591
bcsstk31 2 669 2 670 7 086 7 088 12 853 12 865 22 871 23 104 36 502 37 228 57 502 56 674
fe pwt 340 340 700 700 1 405 1 405 2 743 2 745 5 399 5 423 7 985 8 119
bcsstk32 4 622 4 622 8 441 8 441 19 411 19 601 34 481 35 014 58 395 58 966 90 586 89 897
fe body 262 262 588 588 1 013 1 014 1 684 1 697 2 696 2 787 4 512 4 642
t60k 65 65 195 195 443 445 788 796 1 299 1 329 2 021 2 089
wing 770 770 1 590 1 593 2 440 2 452 3 775 3 832 5 538 5 564 7 567 7 611
brack2 660 660 2 731 2 731 6 592 6 611 11 193 11 232 16 919 17 112 25 598 25 805
finan512 162 162 324 324 648 648 1 296 1 296 2 592 2 592 10 560 10 560
fe tooth 3 773 3 773 6 688 6 714 11 154 11 185 17 070 17 215 24 733 24 933 34 320 34 433
fe rotor 1 940 1 940 6 899 6 940 12 309 12 347 19 680 19 932 30 356 30 974 45 131 45 911
598a 2 336 2 336 7 728 7 735 15 414 15 483 25 450 25 533 38 476 38 550 56 377 56 179
fe ocean 311 311 1 686 1 686 3 893 3 902 7 385 7 412 12 211 12 362 19 400 19 727
144 6 357 6 359 15 004 14 982 25 030 24 767 37 419 37 122 55 460 55 984 77 430 78 069
wave 8 524 8 533 16 558 16 533 28 489 28 492 42 084 42 134 60 537 61 280 83 413 84 236
m14b 3 802 3 802 12 945 12 945 25 154 25 143 41 465 41 536 65 237 65 077 96 257 96 559
auto 9 450 9 450 25 271 25 301 44 206 44 346 74 636 74 561 119 294 119 111 169 835 171 329

Table 6. Computing partitions from scratch ε = 5%. In each k-column the results computed by
KaFFPaE are on the left and the current Walshaw cuts are presented on the right side.

18

