Using Stable Communities for Modularity Maximization

Sanjukta Bhowmick and Sriram Srinivasan
University of Nebraska at Omaha
Feb 13 2012
Networks are models of systems of interacting/interdependent entities

- Vertices ↔ Entities, Edges ↔ Relations

Analysis Objective: Find communities—groups of vertices that have denser connections within groups and sparser connections across groups.

Modularity: $Q = \sum_i (C(i,i) - a(i)^2)$

- Fraction of within community edges – expected edges for random connections
Higher modularity indicates better community –"height of a peak is a measure of the strength of the community division” [Newman Girvan 2003]

Optimization Problem: Find Q_{max}-- the maximum modularity of a given network.

The decision the problem is NP-hard [Brandes et. al. 2007]
Agglomerative methods – greedy heuristics for increasing modularity

Value of modularity is affected by the order in which the vertices are processed

The community membership also changes

We use the CNM agglomerative method introduced by Clauset Newman and Moore (2004).
Agglomerative Clustering

Max Q
Effect of Vertex Perturbation

Jazz

Football
Stable Communities

- **Stable communities**: groups of vertices that are always allocated to the same community independent of ordering or algorithm.

- How do we identify groups of stable communities without executing first executing a community detection algorithm?

- Define stable communities in terms of internal and external connections.
First Approach

Connections within the group \geq Connections outside the group

$Q_{\text{max}} = -0.06$
Second Approach

- Connections within each subset of vertices in the group \(\geq \) Connections outside the group

Very difficult to find any groups that satisfy this condition
Third Approach

Connections within each subset of vertices \(\geq \) (Connections to any individual external group)/groups

\[Q_{\text{max}} = -0.02 \]

\[Q_{\text{max}} = 0.02 \]
Stable Communities of Strength K

- For each unallocated vertex v_i
- Create subset S of v_i and neighbors
- For all neighbors n_j
 - $x_j =$ number of internal connections in S
 - $y_j =$ number of external connections in S where external neighbors are within distance k
- If $x_j > y_j$ for all n_j then S is a stable community
- Merge stable communities

$K=1; \ x_j=3,2 \ y_j=2$

$K=0; \ x_j=3,2 \ y_j=2 \ (1+1),2 \ (1+1)$
We observed that the modularity value increases if stable communities are identified as a preprocessing step

- Find stable communities
- Combine them into communities
- Execute agglomerative method for modularity maximization
Modularity Using Stable Communities

Polbooks

Powergrid

C. Elegans
Neural Network

Dolphin
Modularity Using Stable Communities

- Jazz: 10 stable communities. Size 4-2
- Football: 1 stable community. Size 6
- Delaunay: No stable community
Execution time depends on the size and connectivity of the network.

Also on the value of k—diameter of external communities.

For bad examples execution time can get doubled without any benefit.

Currently cannot handle > 5000 vertices.
Practical Issues

- Quality of stable communities depends on
 - Value of k
 - Minimum size of community

- False positives can distort the results

- Currently is a preprocessing step for only agglomerative methods

- Final results depends on the underlying algorithm
Measure the invariance of networks under ordering

Improves the modularity if used as preprocessing

Research Questions

- How well does this address resolution limit, degeneracy of solutions?
- Can this be used to identify perturbation in networks?
- Faster and more accurate stable community detection
Extensible Scalable Software for Evolving Networks
Acknowledgements

- College of IST, University of Nebraska at Omaha
- FIRE, University of Nebraska at Omaha Sponsored Program Office