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ABSTRACT
Because today’s software is increasingly dynamic and runs
in heterogeneous environments, it is difficult to assess soft-
ware systems outside the actual context in which they ex-
ecute. Therefore, the results of in-house quality-assurance
activities, such as testing, are often not representative of
the way the software will behave in the field. To help ad-
dressing this problem, we present a technique for capturing
and replaying partial executions of deployed software. Given
an application, the technique allows for selecting a subsys-
tem, capturing the dynamic interactions between such sub-
system and the rest of the application, and replaying the
recorded interactions on the subsystem in isolation. Our
technique is designed to be efficient, in that we only cap-
ture relevant dynamic information and disregard all data
that, although flowing through the boundary of the subsys-
tem of interest, do not affect the execution. After describing
our technique, we discuss several possible applications of the
approach, including generation of test cases from users’ ex-
ecutions and post-mortem dynamic analysis. In the paper,
we also present scarpe, a prototype tool that implements
our technique for Java programs. Finally, we present an em-
pirical evaluation of the technique performed using scarpe.
The results of the studies show the feasibility of the ap-
proach.

1. INTRODUCTION
The way in which we build software has changed consider-
ably in the last decade. Software is increasingly dynamic,
and its complexity is growing, together with the complexity
of the environments in which it executes. Because mod-
ern software can behave very differently in different envi-
ronments and configurations, it is difficult to assess its per-
formance and reliability outside the actual time and context
in which it executes. Therefore, the results of traditional
quality-assurance activities—performed in-house, on devel-
opers’ platforms, and using developer’s provided inputs—are
often not representative of how the software will behave in
the field. In fact, the examples of incidents experienced by
users because of untested behavior are countless.

To help addressing this problem, several researchers have
proposed the collection of data from fielded systems and the

∗An early version of this work is described by one of the
authors in a paper presented at WODA 2005 [14]. In this
paper, we extend the capture-replay technique, describe the
tool that implements the technique, discuss possible appli-
cations of the approach, and present a more extensive em-
pirical study.

use of such data to augment in-house software engineering
activities [2, 3, 7, 9, 11, 12, 16, 24]. Field data can provide
unprecedented insight on the software’s actual performance
after deployment. In previous work, we collected data that
supports this claim and provides evidence that, at least for
the cases considered, executions in the field manifest a quite
different behavior than in-house executions [12].

As a step towards addressing the limitations of purely in-
house approaches, we present a technique and a technology
for capturing and replaying user executions of deployed soft-
ware. Overall, our technique works by (1) letting the user
specify a subsystem of interest, (2) automatically identify-
ing the boundary between such subsystem and the rest of
the application, (3) efficiently capturing at runtime all of
the interactions across this boundary, and (4) replaying the
recorded interactions on the subsystem in isolation. Our
technique is efficient because, for each execution, it disre-
gards all data that, although flowing through the boundary
of the subsystem of interest, do not affect its execution. In-
tuitively, the technique captures only the minimal subset
of the application’s state and environment required to re-
play the execution considered on the selected subsystem.
Moreover, our technique can be straightforwardly applied
to deployed software: it can either automatically generate a
modified version of the software with the capture function-
ality built-in or be packaged together with the software and
modify the code on the fly to enable the capture. The tech-
nique can be useful for many software-engineering tasks. In
testing, for instance, the ability to capture and replay exe-
cutions can allow for automatically getting test cases from
users. Given a deployed program, we could capture execu-
tions in the field, collect and group them into test suites,
and then use such test suites for validating the program in
the way it is used. For another example, capture and replay
would also allow for performing dynamic analyses that im-
pose a high overhead on the execution time. In this case, we
could capture executions of the un-instrumented program
and then perform the expensive analyses off-line, while re-
playing.

1.1 State of the Art
Most existing capture-replay techniques and tools (e.g., Win-
Runner: http://www.mercury.com/us/products/quality-
center/functional-testing/winrunner/) are defined to be
used in-house, typically during testing. These techniques
cannot be used in the field, where many additional con-
straints apply. First, all traditional techniques capture com-
plete executions, which is generally infeasible in the field
because it may require to record (and transfer) a huge vol-
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Figure 1: Example application.

ume of data for each execution. Second, existing techniques
are typically based on capturing inputs to an application,
which can be difficult and may require ad-hoc mechanisms,
depending on the way the application interacts with its envi-
ronment (e.g., via a network, through a GUI). In fact, these
technique are typically focused on a specific domain (e.g.,
GUI-based applications) and require a complex infrastruc-
ture and setup to be used. Third, there are issues related to
side effects. If a captured execution has side effects on the
system on which it runs, which is typically the case, replay-
ing it may corrupt the system. Furthermore, the environ-
ment may have changed between capture and replay time,
and there is no guarantee that the system will behave in the
same way during replay. Fourth, existing techniques are not
concerned with efficiency because they are not designed to
be used on-line or on any kind of deployed software. There-
fore, these techniques typically impose a considerable over-
head during capture. Finally, capture-replay techniques that
are designed to be used in-house do not take into account
privacy issues. When capturing executions in the field, the
data captured could contain confidential information that
users may not want to be collected.

To the best of our knowledge, the only technique that
addresses some of theses issues is the one by Saff and col-
leagues [19], which aims to create mock objects for regression
testing. However, these technique is also not designed to be
used on deployed software and, thus, has different trade-
offs and is not immediately applicable in this context (as
discussed in Section 6).

To better illustrate the above issues, Figure 1 shows a soft-
ware system, written in Java, that will be used as an exam-
ple in the rest of the paper. The figure shows a networked,
multi-user application that receives inputs from users and
performs read and write accesses to both a database and
the filesystem. The example is representative of situations
in which capturing all of the information required to replay
a whole execution would involve technical challenges (e.g.,
collecting the data that flow from the users to the applica-
tion and vice versa), storage problems (e.g., the technique
may have to record consistent portions of the database), and
privacy issues (e.g., the information provided by the users
may be confidential). Using this kind of application as an
example allows for stressing that many systems are complex
and operate in a varied and complicated environment. How-
ever, the above issues would arise, to different extents, for
most applications (e.g., mail clients, word processors, web
servers).

1.2 Advantages of our Approach
Defining a technique for capture and replay of fielded ex-

ecutions that accounts for practicality, privacy, and safety
issues involves a set of challenges. Our technique is based
on the concept of selective capture and replay of executions,
is specifically designed to be used on deployed software, and
addresses the issues with existing capture-replay techniques
through a combination of novel technical solutions and care-
ful engineering.

When practicality is concerned, the technique allows for
limiting the volume of data that we need to record by suit-
ably selecting the subset of the application for which we
capture information.

Also, the technique addresses the problems represented by
complex execution environments because it always captures
(and replays) at the boundary between parts of the applica-
tion. Therefore, no custom capture mechanism is required
when different types of applications are considered.

When safety is concerned, our technique eliminates all side
effects because it replays the subsystem in a sandbox—all
interactions with the rest of the application and with the
environment are only simulated during replay.

Our technique can mitigate efficiency issues because it
captures executions of subsystems and, most importantly,
because it captures only the minimal amount of information
required to replay, as explained above.

When privacy is concerned, the use of our technique can
help in two ways. First, it allows for excluding from the sub-
system of interest those parts of the application that handle
confidential information. Second, when this is not possi-
ble, our technique can be used to perform the replay on the
users’ machines instead of retrieving the captured execution
and replaying in-house. For example, if the technique is
used to perform expensive dynamic analyses on part of the
application, it could capture executions for that part while
users are running the application, replay them on an instru-
mented version when free cycles are available, and collect
only sanitized results of the analysis.

1.3 Paper Organization and Contribution
In previous work, we presented an initial definition of our
technique for selective capture and replay [13, 14]. The main
contributions of this paper are:

• an extended and further detailed definition of our tech-
nique (Section 2),

• a discussion of a set of possible applications for the
technique (Section 3),

• a description of scarpe, our publicly available tool
that implements the technique (Section 4), and

• an empirical study that shows the feasibility of our
approach (Section 5).



2. CAPTURE AND REPLAY TECHNIQUE
In this section, we define our technique. For the sake of the
presentation’s clarity, we limit the discussion in this section
to the main technical characteristics of the work. We discuss
several additional details separately, in Section 2.5.

2.1 Characteristics of the Technique
As discussed in the Introduction, defining a technique for

capture and replay of fielded executions involves a set of
challenges and issues of practicality, privacy, and safety. Our
technique allows for overcoming these issues by providing a
flexible and efficient way to capture and replay executions.
More precisely, our technique has three main characteristics.

First, our technique captures and replays executions se-
lectively. Users can specify the subset of the application that
they are interested in capturing and replaying, and the tech-
nique only captures execution data for such subsystem. For
example, considering Figure 1, we could specify that we are
interested in capturing only the parts of the execution that
involve the highlighted application subset (i.e., the parts of
the executions that involve classes DB, Node, and Compute).

Second, our technique captures and replays executions in
terms of events. During capture, the technique records every
relevant interaction between the selected application subset
and the rest of the system as an event with a set of at-
tributes. During replay, the technique reads the recorded
set of events and replays the corresponding interactions.
For instance, in our example, each occurrence of the call
to it.hasNext() in method getRatio would be recorded as a
call event whose attributes contain information about object
it and the called method.

Third, when recording events, our technique does not cap-
ture all the information that traverses the boundary between
the selected application subset and the rest of the system.
Instead, it captures only partial data and disregards the rest,
which is of fundamental importance for the practicality of
the technique. To illustrate, consider method getRatio of
our example, which takes a parameter of type HugeTree, ht.
Capturing complete information would require to store, for
each call, a copy of object ht, which would result in an un-
acceptable space and time overhead (see Section 5). Opti-
mizations of this process are possible, such as storing ht only
when it changes between calls or adding HugeTree to the ob-
served set, but they all have drawbacks. Detecting changes
to ht imposes too much overhead and still requires several
copies of the data structure to be stored. Conversely, adding
HugeTree to the observed set may result in the set to become
too large—in many cases, this approach would involve per-
forming a transitive closure on the parameters types and
including all the classes in the closure in the observed set.

2.2 Overview of the Approach
Because the characteristics of the programming language
targeted by the technique considerably affect its definition,
we define our technique for a specific language: Java. Al-
though Java is our reference language, the technique should
be generally applicable or adaptable to any object-oriented
language that has the same features of Java (in particular,
exception handling and multi-threading) or a subset thereof.

Terminology. In the paper, we refer to the selected appli-
cation subsystem as the observed set and to the classes in
the observed set as the observed classes (or code). Observed

methods and observed fields are methods and fields of ob-
served classes. We define in an analogous way the terms
unobserved set, unobserved classes, unobserved code, unob-
served methods, and unobserved fields. The term external
code indicates unobserved and library code together. The
term unmodifiable classes denotes classes whose code cannot
be modified (e.g., some system classes, such as java.lang.Class)
due to constraints imposed by Java Virtual Machines. and
the term modifiable classes refers to all other classes.

Our technique is divided in two main phases: capture and
replay. Figure 2 informally depicts the two phases. In the
rest of the section, we first provide an overview of the two
phases and then discuss them in detail.

The capture phase takes place while the application is
running (e.g., in the field or during testing). Before the ap-
plication starts, based on the user-provided list of observed
classes, the technique identifies the boundaries of the ob-
served set and suitably modifies the application to be able
to capture interactions between the observed set and the
rest of the system. The application is modified by inserting
probes (i.e., instructions added to the code through instru-
mentation) into the code and by adding proxy methods for
each observed method that can be invoked by external code.
When the modified application runs, the probes in the code
suitably generate events for the interactions between the ob-
served classes and the external code. The events, together
with their attributes, are recorded in an event log.

In the replay phase, the technique automatically provides
a replay scaffolding. The replay scaffolding inputs the event
log produced during capture and replays each event in the
log by acting as both a driver and a stub. Replaying an event
corresponds to either performing an action on the observed
set (e.g., writing an observed field) or consuming an action
from the observed set (e.g., receiving a method invocation
originally targeted to external code). Based on the event
log, the replay scaffolding is able to generate and consume
appropriate actions, so that during replay the right classes
are created and the interactions among these classes are re-
produced. The replay phase inputs the application, the list
of classes in the observed set, and the event log. Based on
the events in the log, it then (1) provides the right stimuli
to the observed classes to replay the part of the execution
that involves them, and (2) checks that the external events
generated by the observed classes match the logged events.
We now discuss the two phases in detail.

2.3 Capture Phase
As stated above, the capture phase works by (1) identify-
ing all the interactions between observed and external code,
(2) suitably instrumenting the application code, and (3) ef-
ficiently capturing interactions at runtime.

Before discussing the details of this phase, we need to in-
troduce the concept of object ID. In the context of our tech-
nique, an object ID is a positive numeric ID that uniquely
identifies a class instance. To generate such IDs, our tech-
nique uses a numeric global ID that is initialized to zero
when capture starts. For modifiable classes, the object ID
is generated by adding a numeric field to the classes and by
adding a probe to the classes’ constructors. The probe in-
crements the global ID and stores the resulting value in the
numeric field of the object being created. Therefore, given
an instance of a modifiable class, the technique can retrieve
its object ID by simply accessing the ID field in the instance.
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Figure 2: Overview of the capture-replay technique.

For unmodifiable classes, we associate IDs to instances
using a reference map. The reference map contains informa-
tion about how to map an object to its ID and is populated
incrementally. Every time the technique needs an object ID
for an instance of an unmodifiable class, it checks whether
there is an entry in the reference map for that instance. If
so, the technique gets from the map the corresponding ID.
Otherwise, it increments the global ID and creates a new
entry in the map for that instance with the current value of
the global ID.

In the rest of the section, we first discuss how our tech-
nique can efficiently capture interactions by minimizing the
amount of information to be recorded. Then, we discuss the
different kinds of interactions identified by our technique,
the corresponding events captured, and the approach used
to capture them.

2.3.1 Capturing Partial Information
When capturing data flowing through the boundary of a
subsystem (e.g., values assigned to a field), the types of
such data range from simple scalar values to complex and
composite objects. Whereas capturing scalar values can be
done inexpensively, collecting object values is computation-
ally and space expensive. A straightforward approach that
captures all values through the system (e.g., by serializing
objects passed as parameters) would incur in a tremendous
overhead and would render the approach impractical. In
preliminary work, we measured several orders of magnitude
increases in the execution time for a technique based on ob-
ject serialization. Our key intuition to address this problem
is that (1) we only need to capture the subsets of those
objects that affect the computation, and (2) we can con-
servatively approximate such subset by capturing it incre-
mentally and on demand, without the need for sophisticated
static analyses.

Consider again method getRatio in Figure 1 and assume
that, for a given call, the first node whose value is greater
than zero is the fifth node returned by the iterator. For that
call, even if ht contains millions of nodes, we only need to
store the five nodes accessed within the loop. We can push
this approach even further: in general, we do not need to
capture objects at all. Ultimately, what affects the computa-
tion are the scalar values stored in those objects or returned
by methods of those objects. Therefore, as long as we can
automatically identify and intercept accesses to those val-
ues, we can disregard the objects’ state. For instance, in
the example considered, the only data we need to store to
replay the considered call are the boolean values returned

by the calls to the iterator’s method hasNext, which deter-
mine the value of the while predicate, and the double values
associated with the five nodes accessed.

Although it is in general not possible to identify in advance
which subset of the information being passed to a method is
relevant for a given call, we can conservatively approximate
such subset by collecting it incrementally. To this end, we
leverage our object-ID mechanism to record only minimal
information about the objects involved in the computation.
When logging data that cross the boundaries of the observed
set (e.g., parameters and exceptions), we record the actual
value of the data only for scalar values. For objects, we
only record their object ID and type. (We need to record
the type to be able to recreate the object during replay, as
explained in Section 2.4.) With this approach, object IDs,
types, and scalar values are the only information required to
replay executions, which can dramatically reduce the cost of
the capture phase.

2.3.2 Interactions Observed–External Code

Method Calls. The most common way for two parts of
an application to interact is through method calls. In our
case, we must account for both calls from the unobserved
to the observed code (incalls) and calls from the observed
to the unobserved code (outcalls). Note that the technique
does not need to record calls among observed methods be-
cause such calls occur naturally during replay. Our tech-
nique records four kinds of events related to method calls:

OUTCALL events, for calls from observed to unobserved
code.

INCALL events, for calls from unobserved to observed code.

OUTCALLRET events, for returns from outcalls.

INCALLRET events, for returns from incalls.

OUTCALL and INCALL events have the following attributes:

Receiver: Fully qualified type and object ID of the receiver
object. For static calls, the object ID is set to −1.

Method called: Signature of the method being called.

Parameters: A list of elements, one for each parameter.
For scalar parameters, the list contains the actual value
of the parameters, whereas for object parameters, the
list contains the type of the parameter and the corre-
sponding object ID (or a zero value, if the parameter
is null).



OUTCALLRET and INCALLRET events contain only one
attribute: the value returned. Analogous to call parame-
ters, the attribute is the actual value in the case of scalar
values, whereas it consists of the type of the value and the
corresponding object ID if an object is returned.

To capture OUTCALL events, our technique modifies each
observed method by adding a probe before each call to an ex-
ternal method. The signature of the method called is known
statically, whereas the receiver’s type and object ID and the
information about the parameters is generally gathered at
runtime.

To capture INCALL and INCALLRET events, our tech-
nique performs two steps.

First, it replaces each public observed method m with a
proxy method and an actual method. The actual method has
the same body as m (modulo some instrumentation), but has
a different signature that takes an additional parameter of a
special type. The proxy method, conversely, has exactly the
same signature as m, but a different implementation. The
proxy method (1) creates and logs an appropriate INCALL
event, (2) calls the actual method by specifying the same pa-
rameters it received plus the parameter of the special type,
(3) collects the value returned by the actual method (if any)
and logs an INCALLRET event, and (4) returns to its caller
the collected value (if any). In this case, all the information
needed to log the events, except for the object ID and the
return value, can be computed statically.

Second, the technique modifies all calls from observed
methods to public observed methods by adding the addi-
tional parameter of the special type mentioned above. In
this way, we are guaranteed that calls that do not cross the
boundaries of the observed code invoke the actual (and not
the proxy) method and do not log any spurious INCALL or
INCALLRET event (these calls and returns occur naturally
during replay).

Finally, to capture OUTCALLRET events, our technique
again modifies the observed methods by instrumenting each
call to an external method. For each such call, the technique
adds a probe that stores the value returned by the call (if
any) and logs it. As for the previous case, if the called
method does not return any value, or the returned value is
ignored by the code, a special value is used.

Access to Fields. Interactions between different parts of an
application also occur through accesses to fields. To account
for these interactions, our technique records accesses to ob-
served fields from unobserved code and accesses from ob-
served code to unobserved fields and fields of library classes.
In the case of accesses from unobserved code to observed
fields, we only record write accesses—read accesses do not
affect the behavior of the observed classes and, thus, do not
provide any useful information for replay. Further, unlike
events generated in the observed code (e.g., OUTWRITE
and OUTCALL events), read accesses cannot be used as or-
acles because they are generated by code that is not going
to be executed at all during replay. Our technique records
three kinds of events for accesses to fields:

OUTREAD events, for read accesses from observed code
to unobserved or library fields.

OUTWRITE events, for write accesses from observed code
to unobserved or library fields.

INWRITE events, for modifications to an observed field
performed by external code.

OUTREAD, OUTWRITE, and INWRITE events have the
following attributes:

Receiver: Fully qualified type and object ID of the object
whose field is being read or modified. As before, value
−1 is used in the case of access to a static field.

Field Name: Name of the field being accessed.

Value: Value being either read from or assigned to the field.
Also in this case, the value corresponds to the actual
values for scalar fields and to an object ID or zero (for
null) otherwise.

To capture OUTREAD and OUTWRITE events, the tech-
nique first analyzes the observed code and identifies all the
accesses to fields of external classes. Then, the technique
adds a probe to each identified access: if the access is a read
access, the probe logs an OUTREAD event with the value
being read; if the access is a write access, the probe logs
an OUTWRITE event with the value being written. The
information about the field name is computed statically and
added to the probes, whereas the information about the type
and object ID is computed dynamically.

The method to capture INWRITE events is analogous to
the one we just described for OUTWRITE events. The only
difference is that the technique analyzes the modifiable ex-
ternal classes, instead of the observed ones, and instruments
accesses to observed fields.

Exceptions. Exceptions are a widely used mechanism to re-
port and handle erroneous situations. (A general description
of the exception-handling mechanisms for the Java language
can be found in Reference [10].) Exceptions too can cause
interactions between different parts of an application. More-
over, interactions due to exceptions occur through implicit
changes in the applications’ control flow and are typically
harder to identify than other types of interactions. For ex-
ample, for the code in Figure 1, if the call to ht.iterator()

in method getRatio terminated with an exception, the rest
of the code in the method would not be executed. Not
reproducing the exception during replay would result in a
complete execution of the method, which does not correctly
reproduce the recorded behavior. However, there is no point
in getRatio’s code in which the fact that an exception has
occurred is explicit.

To capture interactions that occur due to exceptions, our
technique records two types of events:

EXCIN events, for exceptions that propagate from exter-
nal to observed code.

EXCOUT events, for exceptions that propagate from ob-
served to external code.

EXCIN and EXCOUT events have only one attribute that
consists of the type and object ID of the corresponding
exception. To capture these events, our techniques uses
Java’s standard exception handling—it basically wraps rel-
evant methods in suitable try-catch block.

To collect EXCOUT events, our technique wraps each ob-
served method m with an exception handler that includes
the entire method’s body and handles exceptions of any
type. (In Java, this instrumentation is realized by adding a
try-catch block that includes the entire method and catches
exceptions of type java.lang.Throwable.) The handler’s code
checks, by inspecting the call stack, whether m’s caller is an



external method. If so, it records the type and object ID of
the exception, logs the corresponding EXCOUT event, and
re-throws the exception. Conversely, if m’s caller is an ob-
served method, the exception is still re-thrown, but is not
logged as an EXCOUT event because it does not propagate
to external code. (Note that the exception could still prop-
agate to external code, if not handled by m’s caller. In such
a case, however, the exception handler that wraps m’s caller
would record the event.)

Similarly, to collect EXCIN events, our technique instru-
ments all call sites in observed methods that call external
methods. The technique wraps each such call site with an
exception handler that also handles exception of any type.
In this case, the handler’s code gathers the type and object
ID of the exception, logs the corresponding EXCIN event,
and re-throws the exception. In this way, any exception
generated as a consequence of an outcall would be suitably
recorded.

Note that a single exception could result in multiple EX-
CIN and EXCOUT events, in the case in which it traverses
the boundary between the observed and the external code
multiple times.

2.4 Replay Phase
In the replay phase, our technique first performs two steps
analogous in nature to the first two steps of the capture
phase: it (1) identifies all the interactions between observed
and external code, and (2) suitably instruments the appli-
cation code. Then, the technique inputs an event log gen-
erated during capture and, for each event, either performs
some action on the observed code or consumes some action
coming from the observed code. In the rest of this section,
we discuss how the replay phase handles the different logged
events to correctly replay executions of the observed code.

2.4.1 Object Creation
In Section 2.3, we discussed how our technique associates
object IDs to objects during capture. We now describe how
object IDs are used in the replay phase, while generating and
consuming events. Although we use a global ID and a refer-
ence map, analogous to the capture phase, the handling of
IDs is different in this case. Unlike the capture phase, which
associates IDs to objects flowing across the boundaries of the
observed code, the replay phase extracts object IDs from the
events’ attributes and retrieves or creates the corresponding
objects. Another difference between the two phases is that,
during replay, all object IDs are stored in a reference map
(not only the ones for instances of unmodifiable classes).

Instances of External Classes. Every time the technique
processes an event whose attributes contain an object ID, it
looks for a corresponding entry in the reference map. (The
only exception is the case of object IDs with values zero
or −1, which correspond to null values and static accesses,
respectively.) If it finds an entry, it retrieves the object as-
sociated with that entry and uses it to reproduce the event.
Otherwise, the technique increments the global counter, cre-
ates a placeholder object of the appropriate type (object IDs
are always paired with a type in the events), and creates a
new entry in the map for that instance with the current value
of the global ID. A placeholder object is an object whose type
and identity are meaningful, but whose state (i.e., the ac-
tual value of its fields) is irrelevant. We need to preserve

objects’ identity and type during replay for the execution to
be type safe and to support some forms of reflection (e.g.,
instanceof). Our technique uses placeholder constructors to
build placeholder objects. For modifiable classes, the place-
holder constructor is a new constructor added by our tech-
nique. The constructor takes a parameter of a special type,
to make sure that its signature does not clash with any ex-
isting constructor, and contains only one statement—a call
to its superclass’s placeholder constructor.

For unmodifiable classes, our technique searches for a suit-
able constructor among the existing constructors for the
class. In our current implementation, for simplicity, we
hard-code the constructor to be used in these special cases
(e.g., java.lang.Class), but other approaches could be used.

Instances of Observed Classes. The case of observed
classes is simpler. When replaying the incall to a construc-
tor, the technique retrieves the object ID associated with the
INCALL event, creates the object by calling the construc-
tor (see Section 2.4.2), and adds an entry to the reference
map for that instance and object ID. Note that, because of
the way in which we replay events, instances will always be
created in the same order. Therefore, we can use object IDs
to correctly identify corresponding instances in the capture
and replay phases, and to correctly reproduce events during
replay.

2.4.2 Events Replaying
During replay, our technique acts as both a driver and a
stub. It provides the scaffolding that mimics the behavior
of the external code for executing the observed code in iso-
lation. The replay scaffolding processes the events in the
event log and passes the control to the observed code for
INCALL, OUTCALLRET, and EXCIN events. When con-
trol returns to the scaffolding (e.g., because an incall returns
or an exception is thrown), the scaffolding checks whether
the event received from the code matches the next event in
the log. If so, it reads the following event and continues the
replay. Otherwise, it reports the problem and waits for a
decision from the user, who can either stop the execution or
skip the unmatched event and continue. The case of events
that do not match (out-of-sync events) can occur only when
replaying events on a different version of the observed code
than the one used during capture (e.g., if the technique is
used for regression testing).

Note that, whereas recording INCALL, INWRITE, OUT-
CALLRET, and EXCIN events (incoming events) is neces-
sary to replay executions, the need for recording the events
generated in the observed code(outgoing events) depends on
the specific use of our technique. For example, if we use the
technique to generate unit or subsystem test cases for regres-
sion testing, outgoing events are useful because they can be
used as oracles. For another example, if we use the tech-
nique to compute def-use coverage off-line, we can disregard
outgoing events.

We now describe the handling of the different events dur-
ing replay.

INCALL Events. To replay INCALL events, our technique
first extracts from the event its three attributes: (1) receiver,
which consists of type and object ID, (2) method called, and
(3) parameters.

Second, it retrieves from the reference map the instance



corresponding to the receiver’s object ID. In this case, the
object is necessarily already in the map, unless the method
called is a constructor or the invoked method is static. If
the INCALL does correspond to a constructor, the technique
calls the constructor to create the object and associates it
with the object ID in the event. If the call is static, no
object is retrieved.

Third, the technique scans the list of parameters. For
each scalar parameter, it retrieves the value from the event.
Conversely, for each non-scalar parameter, it retrieves the
corresponding object using the object ID. This operation
can have one of four possible outcomes. The object ID may
be zero, in which case the value to be used is null. The ID
may be −1, in which case no object is needed because the
event corresponds to the invocation of a static method. The
ID may be greater than zero, but not be in the reference
map; in this case, the technique creates a placeholder object
of the right type and adds it to the map. Finally, if the
ID is in the map, the technique just gets the corresponding
object. This object is either a placeholder object, if its class
is not part of the observed set, or an actual object otherwise.

Finally, the technique calls the specified method on the
object (or on the class, in the case of static calls) using the
retrieved parameters. After the call, the control flows to the
observed code. Note that passing a placeholder object (i.e.,
an object with an undefined state) does not compromise the
replay because all interactions of the observed code with
external objects are suitably identified and intercepted by
our technique.

INCALLRET Events. INCALLRET events occur as a con-
sequence of an INCALL event and are consumed by the re-
play scaffolding. When the observed code returns after an
INCALL, the scaffolding stores the return value, if any, and
retrieves the next event from the event log. If the event is
of type INCALLRET, the associated value is retrieved in
the usual way (i.e., as a scalar value or as an object ID)
and compared to the value actually returned. If the values
match, the replay continues with the next event. Otherwise,
an error is reported and user intervention is required.

OUTCALL Events. OUTCALL events are also consumed
by the replay scaffolding. Our technique instruments all ob-
served classes so that each call to external classes is divided
into two parts: the invocation of a specific method of the
scaffolding (consumeCall), whose parameters contain infor-
mation about the call, and an assignment that stores the
value returned by consumeCall, if any, in the right variable
in the observed code. For example, for the code in Fig-
ure 1, statement “Iterator it = ht.iterator();” would be
replaced by the code (assuming that classes HugeTree and
Iterator are defined in package foo):1

Object tmp = scaffolding.consumeCall(‘‘foo/HugeTree’’,

< object ID for ht >,

‘‘iterator:()Lfoo/Iterator’’,

<

empty array of paramters >);

Iterator it = (Iterator)tmp;

Method consumeCall retrieves the next event from the event
log and checks whether the event is of type OUTCALL and
the parameters match the attributes of the event. If so, the

1Our technique actually operates at the bytecode level, and
this example is just for illustration purposes.

replay continues with the next event. Otherwise, if either
the event is of the wrong type or the parameters do not
match (e.g., the target of the call differs between capture
and replay or a parameter of the outcall does not match the
corresponding captured parameter), an error is reported to
the user.

OUTCALLRET Events. To replay OUTCALLRET events,
our technique extracts from the event the returned value,
by retrieving it in the usual way based on its type (scalar
or object), and simply returns that value. Because the han-
dling of OUTCALLRET events is performed from within
method consumeCall, and the technique modifies callsites in
the observed code as described in the previous paragraph,
the value returned, if any, is assigned to the right variable
in the observed method that performs the outcall.

OUTREAD and OUTWRITE Events. To handle OUT-
READ and OUTWRITE events, the replay phase instru-
ments all observed classes so that each access to fields of
external classes is replaced by a call to a specific method
of the scaffolding: consumeRead for OUTREAD events, and
consumeWrite for OUTWRITE events. For example, for the
code in Figure 1, statement “double res = n.val;” would be
replaced by the following code (assuming that class Node is
defined in package bar):

double res = scaffolding.consumeRead(‘‘bar/Node’’,

< objectIDforn >,

‘‘val’’);

Method consumeRead retrieves the next event from the event
log and checks whether the event is of the right type and
the parameters match the attributes of the event. If so, it
retrieves the value associated with the event and returns
it. Otherwise, it reports an error to the user. Method
consumeWrite behaves in an analogous way, but does not re-
turn any value because, in the case of OUTWRITE events,
no variable in the observed code is modified.

INWRITE Events. To replay an INWRITE event, our tech-
nique first retrieves from the event attributes (1) the receiver
object (if the accessed field is non-static), which represents
the object whose field is being modified, (2) the name of the
field being modified, and (3) the value to be assigned to the
field. As usual, the value can be an actual scalar value, an
actual object, a placeholder object, or null. Analogous to
INCALL events, if the field is non static, the receiver object
is necessarily already existent when the INWRITE event oc-
curs. After collecting the information, the technique simply
sets the value of the field in the identified object (or in the
class, in the case of static fields) to the appropriate value.

EXCIN Events. Our technique replays EXCIN events by
extracting from the event the object ID for the exception,
retrieving the corresponding object, and throwing it. Like
OUTCALLRET events, also the handling of EXCIN events
takes place within method consumeCall because exceptions
that propagate from external to observed code occur, di-
rectly or indirectly, during the execution of an outcall.

EXCOUT Events. The replay scaffolding consumes EX-
COUT events by providing an exception handler that catches



any exceptions that may propagate from the observed code.
The handler retrieves the next event from the event log and
checks whether the event is of type EXCOUT and the ex-
ception thrown matches the exception that was recorded. If
so, the replay continues with the next event. (In the case
of an uncaught exception that never reenters the observed
code and results in the termination of the program, there
would be no further events in the log, and the replay would
terminate.) Otherwise, an error is reported to the user.

2.5 Additional Technical Details
For space reasons, and to simplify the presentation, we pur-
posely glossed over some of the technical details of the ap-
proach. In this section, we concisely discuss the most rele-
vant ones.

2.5.1 Assumptions
Our technique works under some assumptions. First, we
assume that there is no direct access from an unmodifiable
class to a field of an observed class. Unmodifiable classes
are typically in system libraries, so we expect this assump-
tion to hold in most cases—libraries do not typically know
the structure of the application classes. Second, because our
current implementation does not instrument native code,
we also assume that there is no direct access from native
code to an observed field. Except for this case, our tech-
nique can handle native methods in external code like any
other method. Third, we assume that the interleaving due
to multi-threading does not affect the behavior of the ob-
served code because our technique does not order “internal
events” (e.g., calls between observed methods), which occur
naturally during replay. Finally, we assume that runtime
exceptions occur deterministically. The technique consumes
but does not replay exceptions generated in the observed
code, which are expected to simply occur during replay.

2.5.2 Special handling of specific language features
Polymorphism and Dynamic Binding. In some situ-
ations, whether an event (e.g., a call or a field access) is
internal or external depends on the dynamic type of the
event receiver. In such cases, our technique cannot stati-
cally decide the kind of instrumentation to use and must
insert in the code a runtime check that determines whether
the receiver of the event is an external or an internal class.
The runtime check uses primitive instanceof to check the
type of the receiver object and, based on the results, logs or
disregards the event. This kind of check can be necessary
for various types of events, such as OUTCALL, INCALL,
OUTREAD, and OUTWRITE.
Inheritance. Inheritance can introduce subtle interactions
between a class and its subclasses, due to polymorphism and
dynamic binding. If the observed set contains a class c, but
not all of c’s subclasses, creating dummy instances of any
of c’s subclasses would result in the creation of an instance
of c. Although it is possible to avoid this problem through
additional instrumentation, we decided to address the issue
by requiring, if a class c is added to the observed set, to add
also all subclasses of c. This solution lets us simplify the
instrumentation and has not been problematic or limiting
in our experience so far.
Reflection. Our technique can handle most uses of reflec-
tion. However, in some cases (e.g., when reflection is used
in external code to modify fields of observed classes), addi-

tional instrumentation is required. For instance, to capture
reflection-based field access events, the additional instru-
mentation intercepts calls to “getter” (e.g., getByte(java.-
lang.Object)) and “setter” (e.g., set-Boolean(java.lang.-
Object)) methods of class java.lang.-reflect.Field.
Access Modifiers. In some cases, the technique must
change access modifiers of class members to be able to replay
recorded executions (which can be done without affecting
the semantics of the observed code).
Garbage Collection. To account for garbage collection,
our technique must ensure that it does not keep references
to objects that would be otherwise garbage collected. For
example, the reference map must use weak references (i.e.,
references that do not prevent the referenced objects from
being garbage collected) to avoid memory leaks.
Finalize Because calls to finalize are non-deterministic
in Java, they can generate out-of-sync events during replay.
Therefore, we treat calls to finalize (and method calls orig-
inated within a finalize method) in a special way: If a
replay generates an out-of-sync event, before reporting an
error the tool checks if the event is a call to finalize. If
so, it consumes the first matching call to finalize in the
execution log and performs the call to the corresponding
finalize method.

3. POSSIBLE APPLICATIONS OF OUR CAP-
TURE-REPLAY TECHNIQUE

We discuss three applications of our technique: post-mortem
dynamic analysis of users’ executions, debugging of deployed
applications, and regression testing based on users execu-
tions.

3.1 Post-mortem Dynamic Analysis of Users’
Executions

The first application that we propose for our capture-replay
technique involves the use of the technique for selectively
capturing users’ executions and performing various dynamic
analyses while replaying these executions. Being able to per-
form dynamic analysis on the users platforms would provide
software producers with unprecedented insights on the way
their software is used in the field. A perfect example of
this situation is the identification of memory-related prob-
lems performed by tools like Valgrind [21]. These tools have
been used very successfully in-house to identify such prob-
lems, but may miss problems that occur only in some specific
configuration or for some specific runs. Unfortunately, the
overhead imposed by these runtime memory-checking tools
is too high for them to be usable on deployed software.

We define different scenarios for this application. A first
scenario involves the collection of the users’ executions to
replay them in-house. This scenario is ideal for the soft-
ware producer, who would be able to perform many kinds
of dynamic analysis, in house, on real (albeit partial) exe-
cutions. However, collecting executions for some parts of a
system may introduce serious privacy issues, and executions
of those parts may be necessary for the analysis considered
(e.g., it is likely that the detection of memory-related prob-
lems will require to capture executions of large subsystems).

To account for this problem, we define a second scenario,
in which executions are not collected in-house, but are in-
stead stored locally, on the users’ machines. In this scenario,
the replay and the dynamic analysis would occur on the



users’ platforms, by leveraging free cycles (e.g., at night).
The only data collected in-house would be the results of the
analysis, possibly further sanitized. This second scenario
would allow for addressing privacy concerns and also for
limiting the amount of data to be transfered over the net.

For both of the above scenarios, capturing all executions
performed in the field could make the approach impractical
if the amount of information to be stored, either in-house or
remotely, is too high. Therefore, we define a third scenario,
in which some criterion is used to decide which executions
to collect. There are several criteria that could be used to
this end, some of which may depend on the specific kind of
analysis the software producer is interested in performing.
For example, one criterion could be to collect only executions
that terminate with an exception (or a crash) and discard
normally-terminating runs. For another example, statistical
approaches could be used to sample the executions according
to some distribution. For yet another example, a technique
that classifies executions (e.g., [4, 6]) could be used to decide
which executions to collect.

3.2 Debugging of Deployed Applications
The second application of the capture-replay approach that
we propose is debugging of deployed application. Consider
again the example in Figure 1. The example contains the fol-
lowing fault. If (1) the integer passed to setup has the same
value as the integer returned by the call to db.getSomeInt

within setup, (2) the value of field norm is not redefined, (3)
method getRatio is called, and (4) predicate “res > 0” eval-
uates to true at least once, then the application generates a
division by zero and fails. An execution that terminates with
such failure could be arbitrarily long and involve a number
of interactions between users, application, and database/-
filesystem. However, capturing only the execution of class
Compute would provide enough information to locate and re-
move the fault.

In situations like the one of the example, our capture-
replay technique could be applied to capture executions that
can reproduce a failure in the field and send them to the
software developer. As a possible scenario for this appli-
cation, consider a program that is deployed in a number of
instances, and for each instance a different subsystem is cap-
tured (e.g., by partitioning the program in subsystems and
assigning the capturing of each subsystem to one or more
user sites). When a failure occurs at a given site, in a sub-
system that is being captured at that site, the corresponding
execution is saved for later debugging.

At this point, one possibility is to send the captured exe-
cution to the software producer’s site, where it can be used
for traditional debugging. Being able to debug failing execu-
tions collected in the field would be extremely useful in itself.
However, another possibility is to perform (semi)automated
debugging remotely, on the site(s) where the application fail.
To this end, our capture-replay technique could be combined
with an automated debugging technique (e.g., delta debug-
ging approach [25]) applied to captured executions. For ex-
ample, delta debugging could be used to find a minimal set
of interactions that lead to the failure and then send back
to the software producer only this minimized set.

3.3 Regression Testing based on Users Execu-
tions

Regression testing (e.g., [15, 17]) is performed on a modified

version of a program to provide confidence that the changed
parts behave as intended and the unchanged parts are not
adversely affected by the modifications. A typical way to
perform regression testing is to keep a regression test suite
(i.e., a set of test cases) and to rerun all or part of it on the
changed program. The effectiveness of regression testing,
like the effectiveness of testing in general, highly depends
on how well the regression test suite represents the way the
program is used in the field. The problem of unrepresenta-
tiveness of a test suite can actually be more serious for re-
gression testing than for testing of new applications: unlike
the release of a new application, the release of a new ver-
sion of an existing application is typically targeted to users
who are already familiar with the application. Differences
in behavior between the old and the new version are likely
to generate more user dissatisfaction than, for instance, the
lack of a feature in a new product.

Unfortunately, regression test suites often exercise the ap-
plication in a very different way than the actual users, as
shown by some of our previous work [12]. Our capture-
replay technique could address this problem by generating
regression subsystem and unit test cases from complete, real
user executions captured in the field. These test cases would
have the advantage of testing the software exactly in the way
it is used on the field. These subsystem and unit test cases
could be collected, for example, in the form of JUnit [5] test
cases, and could be used to test new versions of such sub-
systems and units. Test cases could be captured in the field
and sent back to the software producer, where they are col-
lected and used as a regular regression test suite. Test cases
could also be stored on the users’ machine and be run on the
new version of the program remotely, with only their out-
come collected at the software producer’s site. Like for the
previous application, this second approach would allow for
(1) eliminating privacy issues, and (2) reducing the amount
of information to be transfered over the network and to be
collected by the software developer.

4. THE TOOL: SCARPE
We implemented our technique in a tool called scarpe (Se-
lective Capture And Replay of Program Executions). scarpe
is written in Java and consists of three main modules:

• The Instrumentation Module adds probes to the pro-
gram being captured or replayed. It instruments at
the bytecode level, using the Byte Code Engineering
Library (BCEL – http://jakarta.apache.org/bcel/).

• The Capture Module is invoked at runtime by the probes
added by the instrumentation module. The module uses the
information provided by the probes and suitably generates
execution events.

• The Replay Module produces events for the observed code
according to the execution events in the execution log. It
also consumes events produced by the observed code.

Figures 3 and 4 provide a high-level view of how the tool
works during capture and replay, respectively. As Figure 3
shows, there are two modes in which scarpe can capture
executions: on-line instrumentation and off-line instrumen-
tation. In the on-line instrumentation mode, scarpe runs
the application being captured using a custom class loader.
When a new class c is loaded, the class loader passes c to
the instrumentation module, which checks whether c needs
to be instrumented (i.e., whether c belongs to the observed
set or accesses fields of classes on the observed set). If so,
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the instrumentation module adds probes to the class and re-
turns the instrumented class to the class loader. Otherwise,
it simply returns the original class.
In the off-line instrumentation mode, scarpe’s instrumen-
tation module inputs the program to be captured and the
observed set, instruments the classes in the observed set and
the classes that access fields of such classes, and produces
an instrumented version of the program that is ready to be
deployed.

The decision of which instrumentation mode to use de-
pends on the specific scenario in which scarpe is being
used. On-line instrumentation simplifies the capture phase
because there is no need to save additional, instrumented
versions of the program being captured or to use special
classpaths. Moreover, on-line instrumentation adds flexibil-
ity to the capture process because it allows for capturing
different subsets of the program by simply changing the file
that contains the list of observed classes. However, the addi-
tional flexibility comes at a price. On-line instrumentation
imposes an additional time overhead on the execution: the
time required to instrument the classes on the fly. There-
fore, especially when capturing users executions in the field,
off-line instrumentation may be a better option than instru-
mentation on the fly.

In both modes, while users interact with the program,
the probes added by the instrumentation module send raw
events to the capture module. Raw events contain enough
information for the module to build the actual execution
events that are then recorded into an execution log.

During replay, as shown in Figure 4, the replay module
inputs an execution log and suitably reproduces and con-
sumes execution events, as described in Section 2.2. It is
worth noting that scarpe needs to instrument the program
also during replay, to ensure that the program operates in a
sandbox. To this end, all interactions between the observed

and the external code are transformed, through bytecode
rewriting, into interactions between the observed code and
the replay module. The replay module acts as the replay
scaffolding, that is, it mimics the behavior of the part of the
system that is not being replayed (i.e., the external code).
Because replay is performed without involving the user (and
typically when free cycles are available), scarpe always per-
forms on-line instrumentation in this phase.

As discussed in Section 3, scarpe can be used in sev-
eral applications, such as regression testing, post-mortem
dynamic analysis of users’ executions, and remote debug-
ging. As an example, in Figure 4, we show the use of the
tool for post-mortem dynamic analysis. In this case, the
replay module could collect the results of the dynamic anal-
ysis and store them in a database, either locally or remotely,
from which they can later be retrieved.

5. EMPIRICAL EVALUATION
To assess first the feasibility, and then the effectiveness and
efficiency of our approach, we performed two empirical stud-
ies using scarpe on two software subjects and an example.
In the studies, we investigated two research questions:

• RQ1 – Feasibility: Can our technique correctly capture
and replay different subsets of an application?

• RQ2 – Efficiency: Can our technique be used to cap-
ture executions in the field without imposing too much
overhead on the fielded executions?

In the rest of this section, we present the studies that we
performed to address our research questions.

5.1 Study 1: RQ1 – Feasibility
The goal of this study is to assess how reliable is our tech-
nique in capturing and replaying partial executions. To



achieve this goal, we selected a software subject and cap-
tured and replayed a large number of executions, using scarpe
for different subsets of the application. Although we recog-
nize that this study can only provide limited guarantees of
the correctness of our approach, we consider this evaluation
an important first step towards more extensive assessments
of the soundness of the approach.

As a subject for this study, we used NanoXML, an XML
parser that consists of about 3,500 lines of code and 19
classes. We obtained NanoXML, along with a test suite
consisting of 216 test cases, from the Subject Infrastructure
Repository [23].

We performed the study in two parts. In the first part,
we captured executions for subsystems containing only one
class. For each class c in the application, we defined an
observed set consisting of c only and ran all test cases in the
test suite using scarpe. In this way, we recorded 216 event
logs (one for each test case in the test suite) for each of the
19 classes in the application, for a total of more than 4,000
logs. We then replayed, for each class, all of the recorded
executions for that class.

In the second part of the study, we captured executions
for observed sets of sizes two, three, four, and five. More
precisely, we randomly created 25 observed sets for each of
the sizes considered, so as to have a total number of 100
observed sets. Then, analogously to the first part of the
study, we ran all of NanoXML’s test cases for each of the
observed sets and later replayed the so collected execution
logs. Therefore, overall, we recorded and replayed more than
20,000 partial executions (5,400 for each of the sizes consid-
ered).

In the first instance of the study, scarpe failed for some
of the executions involving observed sets with more than
one class. Our investigation of the failures discovered that
the problems were due to two faults in our implementation
(and not to flaws in the technique). After we fixed these
faults, no more failures occurred and the study resulted in a
complete success: all executions were correctly captured and
replayed. We checked the correctness of the replay both by
making sure that all of the events generated by the observed
set were matching the logged events and by spot checking
some of the executions.

Although this is just a feasibility study, the successful
capture and replay of about 25,000 executions is a promising
result.

5.2 Study 2: RQ2 – Efficiency
The goal of Study 2 is to assess the efficiency of our ap-
proach. Several of the applications that we propose for our
capture-replay technique involve the use of the technique in
the field to capture real user executions. Therefore, it is very
important that the approach can be used without imposing
too much overhead on the fielded executions, which would
make the technique impractical.

Although NanoXML is an appropriate subject for Study
1, because its size let us check and verify scarpe’s results,
for this second study we used a larger and more realistic sub-
ject: jaba. jaba (Java Architecture for Bytecode Analysis
– http://www.cc.gatech.edu/aristotle/Tools/jaba.html) is a frame-
work for analyzing Java bytecode that performs complex
control-flow and data-flow analyses and consists of about
60,000 lines of code and 400 classes. jaba has an extensive
regression test suite that was created and used over the last

several years of the system’s evolution. Because jaba is an
analysis library, each test case consists of a driver that uses
jaba to perform one or more analyses on an input program.
The test suite that we used for the study contains 4 drivers
and 100 input programs, for a total of 400 test cases.

To measure the efficiency of our technique, we proceeded
as follows. First, we ran all 400 test cases and collected the
normal execution time for each test case. scarpe’s initial-
ization code takes around 1.5 seconds to run, and this fixed
cost does not depend on the specific test case or observed
set considered. Therefore, test cases with an execution time
of less than 1.5 seconds would necessarily show an overhead
over 100%. To eliminate this problem, we discarded execu-
tions that took less than a second to run, which led to the
elimination of 60 executions. (An overhead dominated by a
fixed cost, when the cost is in the order of a second, would
not provide meaningful information).

Second, for each driver, we identified nine classes in jaba
that were covered by the test cases involving that driver.
We considered a class covered by a test cases if the test
case executed at least one of the class’s methods (the actual
coverage was generally higher, and the called methods were
often called many of times). We selected classes in this way
to maximize the amount of data collected—capturing the
execution of a class against a test case that does not covered
it would result in an empty execution log.

Third, for each driver and each class c considered, we de-
fined c as the observed set and ran all 340 (400 − 60) test
cases using scarpe. In this way we captured 3060 (340 ∗ 9)
executions of jaba test drivers.
Fourth, we measured the overhead imposed by scarpe

in terms of percentage increase between the execution times
computed with and without scarpe.

To run the tests, we used scarpe in off-line instrumen-
tation mode. In this way, we were able to compute the
overhead due only to the collection of the events at runtime,
without considering the overhead due to the on-line instru-
mentation (that can be avoided). Together with the timing
data, we also collected the number of events captured for
each execution, which is simply the number of entries in the
execution log for that execution. We performed all exper-
iments on a dedicated Pentium III, with 2GB of memory,
running the GNU/Linux Operating System (2.6.16). We re-
peated all measures 10 times and averaged the results to
limit the risk of imprecision introduced by external effects,
such as caching.

Results and Discussion. Table 1 shows a summary of the
overhead measured in the study. For each driver (ACDG-
Driver, CFGDriver, DefUseDriver, and ICFGDriver) the ta-
ble shows the minimum, maximum, and average percentage
overhead (computed over all of the test cases for that driver).
The absolute minimum and maximum are highlighted using
a boldface font.

Table 1: Summary overhead results for the four
drivers.

ACDGDrv CFGDrv DefUseDrv ICFGDrv

Min Ovh 6% 3% 4% 4%
Max Ovh 494% 306% 877% 501%
Avg Ovh 104% 72% 145% 69%
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To provide a better idea of the distribution of the results
we also report, in Figure 5, the overhead information for
each captured class (for each of the four drivers). Also in
this case, the figure shows average, maximum, and minimum
overhead (measured, this time, over the executions involv-
ing a specific captured class and driver). As far as space
overhead is concerned, the average size of the execution logs
collected, in uncompressed and unoptimized format, is in
the order of 50KB per 1000 events (i.e., about 60MB for our
largest log, consisting of 114,953,200 events).

As the results show, scarpe’s overhead varies consider-
ably across drivers and observed classes, ranging from 3%
to 877%. A careful examination of the raw data collected
in the study revealed that the cost of collecting a single
event is similar across different types of events, and that
the overhead is by and large proportional to the number
of events collected per unit of time. For example, for driver
ACDGDriver, the execution with 6% overhead generates 470
events, takes 22 seconds for the uninstrumented code, and
takes about 23 seconds for the instrumented code. Consid-
ering the 1.5s fixed cost imposed by scarpe, we can see that
the overhead due to the 470 events is mostly negligible. For
another example, for the same driver, the execution with the
highest overhead (494%) produces 3,528,210 events, takes
about 9 seconds during normal execution, and takes about
53 seconds when the code is instrumented. In this case, the
high number of events per second is the cause of the consid-
erable overhead. (The execution that causes 877% overhead
has similar characteristics to this one). For yet another ex-
ample, the lowest overhead for driver CFGDriver (3%) cor-
responds to an execution that produces 114,458 events, a
fairly large number of events. However, in this case the exe-
cution takes about 87 seconds, that is, the number of events
per second is two orders of magnitude lower than for the
previous example.

Another observation that we can make, looking at the re-
sults shown in Figure 5, is that there are many cases in which
the overhead imposed by scarpe is on average between 30%
and 50%, in the worst case around 100%, and in the best
case in the single digits. Although 100% overhead is likely
to be problematic in many cases, we must consider that our
subject, jaba, is a processing intensive applications with no
interaction with the user. There may be cases in which even
a 100& overhead is not relevant for an application that runs
completely in batch mode (e.g., overnight). More impor-
tantly, we hypothesize that the same overhead may become
acceptable (or even negligible) for interactive applications,
such as word processors or Web browsers. For these appli-
cations, the user“thinking time” is likely to decrease consid-
erably the amount of events per second produced and also
provide free cycles that scarpe could leverage.

In fact, to get some initial evidence that could support
our hypothesis, we performed an informal study in which
both authors used a graph-drawing application while the
execution of one of the drawing classes was being captured.
Although we cannot claim any generality of the result, and
our assessment is likely to be subjective, we can report that
the slowdown in the drawing operations that involved the
instrumented class was barely noticeable.

In summary, we believe that our results are encouraging
and show that the approach we propose is feasible, espe-
cially considering that the optimization of scarpe is still
ongoing, and the performance of the tool can be further
improved. Nevertheless, there are cases in which the cur-
rent technique is likely to be too expensive to be used in
the field. To account for these cases, we are currently in-
vestigating variation of the approach in which the capture
stops after a given number of events or when the frequency
of events produced (measured using a buffer that is flushed
at regular intervals) is too high. We are also investigating



ways in which preliminary information, collected in-house,
could be used to identify problematic part of an application
(in terms of overhead) and exclude them from the capture.

6. RELATED WORK
The technique that is most related to ours is jRapture, by
Steven and colleagues [22], a technique and a tool for capture
and replay of executions of Java programs. The technique
replaces the standard Java API with a customized API that
records all inputs to the running program, such as the data
from a network socket or the keystrokes from the keyboard.
During replay, another customized API feeds the recorded
data back to the program. Although able to completely cap-
ture and replay executions, This technique incurs in many of
the problems that we mention in the Introduction because it
captures complete input/output information for each execu-
tion. Moreover, jRapture requires two customized versions
of the Java API for each Java version targeted.

The technique by Saff and Ernst for automated test factor-
ing [20, 19] is also closely related to ours. Although the two
techniques share some commonalities in terms of technical
approach, they have different goals and, partly because of
this, significant technical differences. Their technique aims
to improve the efficiency of testing by automatically building
mock objects for testing units in isolation, and is designed to
be used in-house. Our main goal is to capture partial user
executions for deployed software for later replay. Because
their technique is not constrained by the requirement of be-
ing usable in the field, it has different trade-offs than ours,
in particular in terms of complexity of the deployment and
overhead. For each class, their technique creates an inter-
face, modifies the class so that it implements this interface,
and replaces references to the class with references to the
interface. A capturing class is then introduced that records
the interaction between internal and external code and del-
egates the actual work to the original class. The Java API
classes are also massively instrumented in the same way,
off-line. In our technique, we only need to instrument Java
API classes that do not have a default constructor, to add
one. Moreover, this is just an implementation shortcut that
could be avoided. Also, their technique requires to replace
all field accesses with corresponding calls to getter and setter
methods, which can impose a considerable time overhead.
Finally, Saff and Ernst do not discuss how some aspects of
the Java language are handled (e.g., exceptions) and do not
report overhead data, so we cannot compare the two tech-
niques along these dimensions. Overall, we feel that the two
techniques, although related, are mostly complementary.

Other related techniques aim to reproduce the concur-
rent behavior of applications (e.g., [1, 8, 18]). In partic-
ular, Choi and colleagues present DejaVu, a platform for
analyzing multi-threaded Java program executions [1]. De-
jaVu supports debugging activities by performing a fully-
deterministic replay of non-deterministic executions and al-
lowing for inspecting the state of the program at any point
of the execution. DejaVu and our technique also have dif-
ferent goals and, thus, a different set of constraints. DejaVu
focuses on reproducing, giving the same inputs, the same
application behavior in terms of concurrency-related events,
has no need to store input and output values, and does not
have efficiency constraints (being targeted to debugging).
As discussed above, our technique is mostly concerned with

automatically capturing and replaying subsystems and has
efficiency as a priority.

A general difference between our technique and most other
existing techniques is that most existing techniques work at
the runtime-system level, by either modifying the Java Vir-
tual Machine or by using a customized version of the sys-
tem libraries, whereas our approach works at the application
level, through bytecode rewriting. Because our technique
does not require any runtime-system support, it can be used
on any platform that provides a standard implementation of
the Java Virtual Machine, which improves portability and
enables the use of the technique on users’ platforms.

7. CONCLUSION
In this paper, we have described a technique for partial
capture and replay of user executions. The technique al-
lows for efficiently capturing executions for a given subsys-
tem and replaying such executions on the subsystem in a
sandbox. We have also discussed three possible applications
of the technique and presented a tool, scarpe that imple-
ments the technique and that is currently available for down-
load (http://www.cc.gatech.edu/∼orso/software.html).
Finally, we have presented an empirical evaluation of the
technique that shows that, although there is room for im-
provement, the approach is feasible, and capture-replay of
executions can be performed efficiently in many cases.

Our immediate goal in future work is to improve the im-
plementation of scarpe in terms of performance, to allow
it to run efficiently also for executions that generate a large
number of events. This improvement will be performed in
parallel with additional experimentation on more subjects
and executions, to further refine and extend the approach.

Other future work involves the investigation of the three
applications proposed in the paper: post-mortem dynamic
analysis of users’ executions, debugging of deployed applica-
tions, and regression testing based on users executions. We
are currently working on the first and second applications.
We are investigating the use of post-mortem dynamic analy-
sis to collect expensive coverage measures, such as data-flow
coverage, in the field. We are also developing a tool that
combines scarpe and delta debugging [25].

Finally, another potential direction for future work is the
use of static analysis and, possibly, profiling information to
help users decide which classes should be included in the
observed set. Currently, the technique does not provide any
support for this task. Static analysis and profiling could
help identify classes that are tightly coupled and that, if
separated, may generate an impractical number of interac-
tions. Appropriate analyses could suggest the users ways to
improve the performance of the technique by either includ-
ing more classes in the observed set (e.g., classes that are
tightly coupled with classes already in the set) or by exclud-
ing some classes (e.g., classes tightly related with external
code and not cohesive with the observed set).
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