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Abstract. While several researchers have applied case-based reasoning 
techniques to games, only Ponsen and Spronck (2004) have addressed the 
challenging problem of learning to win real-time games. Focusing on WARGUS, 
they report good results for a genetic algorithm that searches in plan space, and 
for a weighting algorithm (dynamic scripting) that biases subplan retrieval. 
However, both approaches assume a static opponent, and were not designed to 
transfer their learned knowledge to opponents with substantially different 
strategies. We introduce a plan retrieval algorithm that, by using three key 
sources of domain knowledge, removes the assumption of a static opponent. 
Our experiments show that its implementation in the Case-based Tactician 
(CAT) significantly outperforms the best among a set of genetically evolved 
plans when tested against random WARGUS opponents. CAT communicates 
with WARGUS through TIELT, a testbed for integrating and evaluating decision 
systems with simulators. This is the first application of TIELT. We describe this 
application, our lessons learned, and our motivations for future work.  

1 Introduction 

Research on artificial intelligence (AI) and games has an extraordinary history that 
dates from 1950. Several luminaries have contributed to this field, and automated 
game-playing programs now exist that outperform world champions in classic games 
such as checkers, Othello, and Scrabble (Schaeffer, 2001). These efforts brought 
about significant advancements in search algorithms, machine learning techniques, 
and computer hardware. As a barometer of continued strong interest, several 
conferences (e.g., International Game-On Conference on Computer Games: AI, 
Design and Education, AI and Interactive Digital Entertainment) and journals (e.g., 
Journal of Intelligent Games and Simulation, Journal of Game Development) are 
devoted to AI and games.  

In recent years, AI researchers (e.g., Laird & van Lent, 2001; Buro, 2003) have 
begun focusing on complex strategy simulation games that offer a variety of 
challenges, including partially observable environments that contain adversaries who 
modify the game state asynchronously, and whose decision models are unknown. 
Among these, games that simulate the evolution of civilizations are particularly 



 
 
 

 
 

 

intriguing due to their enormous state spaces, large decision spaces with varying 
abstraction levels, multiple decision threads (e.g., economy, combat), and their need 
for resource management processes.  

Although many studies exist on learning to win classical board games and other 
games with comparatively smaller search spaces, few studies exist on learning to win 
complex strategy games. Some argue that agents require sophisticated representations 
and reasoning capabilities to perform competently in these environments, and that 
these representations are challenging to construct (e.g., Forbus et al., 2001). 
Fortunately, sufficiently good representations exist for a small number of gaming 
environments. In particular, Ponsen and Spronck (2004) developed a lattice for 
representing and relating abstract states in WARGUS, a moderately complex real-time 
strategy game. They also sharply reduced the decision space by employing a high-
level language for game agent actions. Together, these constrain the search space of 
useful plans and state-specific subplans (i.e., tactics). This allowed them to focus on 
an ambitious performance task: winning real-time strategy games. They reported 
good results for a genetic algorithm that learns complete plans, and for a weight-
learning algorithm (dynamic scripting) that learn policies for selecting tactics that 
combine into successful plans. However, both approaches assume a fixed adversary, 
and were not designed to transfer learned knowledge so as to defeat opponents that 
use dissimilar strategies. 

In this paper, we relax the assumption of a fixed adversary, and develop a case-
based approach that learns to select which tactic to use at each state. We implemented 
this approach in the Case-based Tactician (CAT), and report learning curves that 
demonstrate its performance quickly improves with training even though the 
adversary is randomly chosen for each WARGUS game. CAT is the first case-based 
system designed to win against random opponents in a real-time strategy game. 

We briefly review case-based approaches in games research and introduce 
WARGUS in Section 2. We detail our approach and CAT in Section 3. We review our 
empirical methodology and CAT’s results in Section 4, and close with a discussion in 
Section 5 that mentions several future research objectives.  

2 Background 

2.1 Case-based Reasoning Research in Games 

Many taxonomies exist for distinguishing computer games.  For example, Laird and 
van Lent (2001) distinguish game genres into action (e.g., WOLFENSTEIN™), 
adventure, role-playing (e.g., BALDUR’S GATE™), strategy, god (e.g., SIMCITY™), 
team sports (e.g., MADDEN NFL FOOTBALL™) and individual sports games. 
Fairclough et al.’s (2001) taxonomy differs slightly, in that they classify god games as 
a sub-type of strategy games, and place THE SIMS™ in a different category. We 
instead adopt a taxonomy that is biased by our reading of case-based reasoning (CBR) 
research in games. In particular, we add categories that reflect more traditional games, 
ignore some that have not attracted strong CBR interest (e.g., action games), and 
refine categories of real-time games.  

Many researchers have published work on CBR in games. We distinguish a subset 
of this research according to task characteristics (i.e., game genre, state and decision 



 
 
 

 
 

 

space complexity, adversarial presence, timing constraints, performance task) and 
CBR approach. Table 1 summarizes some of this work.  

Several researchers have addressed classic board games, beginning with Arthur 
Samuel’s (1959) rote learning approach for playing checkers. De Jong and Schultz’s 
(1988) GINA instead memorized a partial game tree for playing Othello. Chess has 
been a popular topic. For example, Kerner (1995) described a method for learning to 
evaluate abstract patterns. More recently, Powell et al.’s (2004) CHEBR learned to 
play checkers given only a paucity of domain knowledge. While these efforts focused 
on adversarial games, they are turn-based rather than real-time, and have 
comparatively small decision complexities (see Section 2.2).  

 Case-based approaches have rarely been used in adventure games. However, this 
genre may become a rich focus for automated story plot generation. For example, 
Fairclough and Cunningham (2004) described OPIATE, which uses a case-based 
planner and constraint satisfaction to provide moves for a story director agent so as to 
ensure that characters act according to a coherent plot. Also, Díaz-Agudo et al. (2004) 
described a knowledge-intensive approach that extracts constraints from a user’s 
interactively-provided specification, uses them to guide case retrieval and adaptation, 
and then creates a readable plot using natural language generation techniques. These 
projects extend earlier CBR work on story generation (e.g., Meehan, 1981).    

ROBOCUP SOCCER is a popular CBR focus. Wendler and Lenz (1998) described an 
approach for identifying where simulated agents should move, while Wendler et al. 
(2001) reported strategies for learning to pass. Gabel and Veloso (2001) instead used 
a CBR approach to select (heterogeneous) members for a team. Karol et al. (2003) 
proposed a case-based action selection algorithm for the 4-legged league. While these 
real-time environments are challenging strategically, they do not involve complicating 
dimensions common to strategy games, such as economies, research, and warfare.  

Some researchers have addressed real-time individual games. Goodman (1994) 
applied a projective visualization approach for BILESTOAD, a personal combat game, 
to predict actions that would inflict damage on the adversary and/or minimize damage 

Table 1: A partial summary on applying CBR to games. 
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to oneself. Fagan and Cunningham (2003) instead focused on a plan recognition task; 
they acquire cases (state-action planning sequences) for predicting the next action of a 
human playing SPACE INVADERS™. In contrast, CAT does not perform projective 
modeling, and does not learn to recognize adversarial plans. Instead, it acquires cases 
concerning the application of a subplan in a given state, learns to select subplans for a 
given state, and executes them in a more complex gaming environment. 

Fasciano’s (1996) MAYOR learns from planning failures in SIMCITY™, a real-time 
city management game with no traditional adversaries. MAYOR monitors planning 
expectations and employs a causal model to learn how to prevent failure repetitions, 
where the goal is to improve the ratio of successful plan executions. In contrast, CAT 
does not employ plan monitoring or causal goal models, and does not adapt retrieved 
plans. Rather, it simply selects, at each state, a good tactic (i.e., subplan) to retrieve. 
Also, our gaming environment includes explicit adversaries.  

Ulam et al. (2004) described a meta-cognitive approach that performs failure-
driven plan adaptation for FREECIV, a complex turn-based strategy game. While they 
employed substantial domain knowledge in the form of task models, it was only 
enough to address a simple sub-task (defending a city). In contrast, CAT performs no 
adaptation during reuse, but does perform case acquisition. Also, CAT focuses on 
winning a game rather than on performing a subtask.  

2.2 Reducing the Decision Complexity of WARGUS: A Real-Time Strategy Game 

In this paper, we focus on WARGUS (Figure 1), a real-time strategy (RTS) game that is 
a clone of the popular commercial game WARCRAFT II™.  WARGUS uses STRATAGUS, 
an open-source engine for building RTS games. WARGUS is an excellent environment 
for AI research because its fairly mature code can be modified for experimentation.  

RTS games usually focus on military combat (versus one or more adversaries), 
although they also include decision dimensions concerning tasks such as exploration, 

 

Figure 1: A screen shot of a WARGUS game.



 
 
 

 
 

 

economic development, research advancement, and limited diplomacy. For example, 
WARCRAFT™, AGE OF EMPIRES™, and EMPIRE EARTH™ require players to control 
armies (of multiple unit types) and defeat all opponents in real-time.  

Humans and adversaries can use any available action to form their game strategy, 
which is a plan. Typical actions include selecting a building to construct, researching 
a specific new technology, setting a destination for a selected group, and assigning a 
task to a group (e.g., construct a building). Humans are limited to executing a single 
new action at any one moment, while existing actions continue to execute 
simultaneously. Typically, RTS games provide users with a varying set of opponent 
strategies, each encoded as a script. A subplan in these scripts is called a tactic.  

In addition to having relatively a large state space (e.g., we experiment with a 
128x128 map that can involve dozens of units and buildings), WARGUS’ decision 
space is comparatively large. An analysis of this complexity requires some 
understanding of the game. Winning (i.e., by destroying all the enemy units and 
buildings) requires managing three key resources: buildings, the workforce, and an 
army. Spending too little time on the army can lead to a crushing defeat at the hands 
of a strong neighbor, while spending too much time will cause a lag in research 
accomplishments, which prevent you from creating army units that are as strong as 
your neighbors. A balance must be maintained among these three resources. To do 
this, successful WARGUS players execute orders in one location, hurry to another, and 
try to return attention to the first location before its orders have terminated.  

The decision space is the set of possible actions that can be executed at a particular 
moment. We estimate this as O(2W(A*P) +2T(D+S) + B(R+C)), where W is the 
current number of workers, A is the number of assignments workers can perform 
(e.g., create a building, gather gold), P is the average number of workplaces, T is the 
number of troops (fighters plus workers), D is the average number of directions that a 
unit can move, S is the choice of troop’s stance (i.e., stand, patrol, attack), B is the 
number of buildings, R is the average choice of research objectives at a building, and 
C is the average choice of units to create at a building. For the simple early game 
scenario shown in Figure 1 (which includes some off-screen troops and an off-screen 
building), this estimate yields a decision complexity 1.5 x 103, which is substantially 
higher than the average number of possible moves in many board games (e.g., for 
chess, this is approximately 30).  

Standard domain knowledge (e.g., cannot attack now, need more wood for 
building) could reduce the number of sensible choices for a WARGUS player in Figure 
1’s scenario to roughly ten.  However, acquiring, encoding, and using this knowledge 
is challenging. Thus, existing research efforts on RTS games often focus on simpler 
tasks. For example, Guestrin et al. (2003) applied relational Markov decision process 
models for some limited WARGUS scenarios (e.g., 3x3 combat). They did not address 
more complex scenarios because their planner’s complexity grows exponentially with 
the number of units. Similarly, Cheng and Thawonmas (2004) proposed a case-based 
plan recognition approach for assisting WARGUS players, but only for low-level 
management tasks. Their state representation is comprehensive and incorporates 
multiple abstraction levels. In contrast, CAT employs a simple case representation yet 
focuses on the complete task of winning the game.  

To do this, CAT employs three significant sources of domain knowledge, the first 
two of which were developed by Ponsen and Spronck (2004), who used dynamic 
scripting to learn to win WARGUS games against a static opponent from a fixed initial 



 
 
 

 
 

 

Figure 2: A building-specific state lattice for 
WARGUS, where nodes represent states (defined 
by a set of completed buildings), and state 
transitions involve constructing a specific 
building. Also displayed are the evolved counter-
strategies (a-h) that pass through each state.  
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state. The first source, a state 
lattice, is an abstraction of the state 
space, while the second source, a 
set of tactics for each state, is an 
abstraction of the decision space.   

Figure 2 displays their building 
state lattice. Consisting of 20 states, 
it defines sequences of building 
constructions that can occur during 
a WARGUS game, where each state 
corresponds to the types of 
constructed buildings, which in 
turn determine the unit types that 
can be trained and technologies that 
can be researched. State changes 
occur when a tactic creates a new 
building. For example, starting with 
a Town Hall and a Barracks, the 
next building choices are a Lumber 
Mill, a Blacksmith, and a Keep, 
which replaces the Town Hall. 
Building these cause transitions 
from State 1 to States 2, 3, and 5, 
respectively.  

Ponsen and Spronck (2004) 
manually designed their tactics and 
then improved them by searching 
the space of strategies using a 
genetic algorithm, where each 
chromosome is a complete plan 
(counter-strategy). Tactics were 
manually extracted from 
chromosomes. They used dynamic 
scripting to learn weights on 
tactics, and reported good learning 
performances versus four opponent 
strategies. In contrast, Ponsen et al. 
(2005) automatically acquired 
tactics by extracting them from the 
chromosomes based on the building 

states (i.e., all actions in a building state comprise one tactic). We used this same 
automatic approach for CAT. 

In this paper, we also rely on this state lattice and a set of state-specific tactics. 
However, we add a third knowledge source: cases that map game situations to tactics 
and their performance. We will use all three to test how well CAT can play in games 
against a single, randomly selected WARGUS opponent.  



 
 
 

 
 

 

3 Case-Based Strategy Selection 

Our case-based approach for selecting which subplan (tactic) to use in each state 
employs the state lattice and state-specific tactics libraries described in Section 2. By 
doing this, the decision space (i.e., the number of tactics per state) becomes small, and 
an attribute-value representation of game situations suffices to select tactics. We 
define a case C as a tuple of four objects: 

C = <BuildingState, Description, Tactic, Performance> 
where BuildingState is an integer node index in the state lattice, Description is a set of 
features of the current situation (see Section 3.1), Tactic is a counter-strategy’s 
sequence of actions for that BuildingState, and Performance is a value in [0,1] that 
reflects the utility of choosing that tactic for that BuildingState, where higher values 
indicate higher performance (see Section 3.3). We next use Aamodt and Plaza’s 
(1994) task decomposition model to detail our approach.  

3.1 Retrieval 

CAT retrieves cases when a new state in the lattice is entered (i.e., at the game’s start, 
and when a transition building is finished). At those times, it records values for the 
eight features shown in Table 2, which we selected because they were available and 
are intuitively informative. They also balance information on recent game changes 
(i.e., the first two features), the opponent’s situation (e.g., Workerso), and the player’s 
situation (e.g., Workersp,i). When games begin, the value of the first two features is 0 
(i.e., because no units have yet been killed and no buildings have yet been razed), 
while the others have small values (e.g,. only a few workers exist at the game’s start, 
as exemplified in Figure 1). About 50 units are created, per side, in a short game, and 
a player’s limit is 200. In addition to the ten in the state lattice, buildings include 
farms, towers, and a few others that do not cause state transitions. 

Cases are grouped by BuildingState, and, after each game ends, at most one case is 
recorded per BuildingState. Our experiments involve repeated trials of only 100 
games. Therefore, CAT does not require a fast indexing strategy for our evaluation.  

CAT’s function for computing the similarity between a stored case C and the 
current game description S is defined as: 

Sim(C, S) = (CPerformance/dist(CDescription, S)) - dist(CDescription, S) 

Table 2: Features used in the case Descriptions. 

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus same for onself, in the preceding state∆Razingsi-1

Number of opponent combat & worker units killed minus the same for oneself, in the preceding state∆Killsi-1

DescriptionFeature

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus same for onself, in the preceding state∆Razingsi-1

Number of opponent combat & worker units killed minus the same for oneself, in the preceding state∆Killsi-1

DescriptionFeature



 
 
 

 
 

 

where dist() is the (unweighted, unnormalized) Euclidean distance among the eight 
features. This simple function emphasizes distance, and prefers higher-performing 
cases (i.e,. those whose Tactic has performed well when selected in previous games) 
among those whose distance to S is similar (i.e., if two cases are at approximately the 
same distance from S, then the higher performer among will have greater similarity). 
This function is particularly useful for BuildingState 1 (i.e., the game’s start), where 
case Descriptions are all identical, and thus equally distant to the game’s initial state. 
We will consider more elaborate similarity functions in future work.  

CAT uses a modified k-nearest neighbor function to select case Tactics for retrieval. 
Among the k most similar cases, it retrieves one with the highest Performance. 
However, to gain experience with all tactics in a state, case retrieval is not performed 
until each available tactic at that state is selected e times, where e is CAT’s 
exploration parameter. During exploration, CAT randomly retrieves one of the least 
frequently used tactics for reuse. Exploration also takes place whenever the highest 
Performance among the k-nearest neighbors is below 0.5.  

3.2 Reuse 

CAT’s reuse process is given the retrieved case Tactic. While adaptation takes place, 
it is not controlled by CAT, but is instead performed at the level of the action 
primitives in the context of the WARGUS game engine (e.g., if an action requests the 
creation of a building, the game engine decides its location and which workers will 
construct it, which can differ in each game situation).  

3.3 Revision 

Revision involves executing the reused tactic in WARGUS, and evaluating the results. 
No repairs are made to these tactics; they are treated as black boxes.  

Evaluation yields the Performance of a case’s Tactic, which is measured at both a 
local and global level. That is, CAT records the WARGUS game score for both the 
player and opponent at the start of each BuildingState and at the game’s end, which 
occurs when one player eliminates all of the other’s units and buildings, or when we 
terminate a game if no winner has emerged after ten minutes of clock time. 

We define the Performance for a Tactic t of case C with BuildingState b as a 
function of its “global” (∆Scorei) and “local” (∆Scorei,b) impact on the game score, 
where the former focuses on relative changes between the time that t begins executing 
in b and when the game ends, while the latter focuses only on changes during state b:  

CPerformance =∑i=1,n CPerformance,i /n 
CPerformance,i = ½(∆Scorei + ∆Scorei,b) 

∆Scorei = (Scorei,p-Scorei,p,b)/( (Scorei,p-Scorei,p,b) + (Scorei,o-Scorei,o,b)) 
∆Scorei,b = (Scorei,p,b+1-Scorei,p,b)/( (Scorei,p,b+1-Scorei,p,b) + (Scorei,o,b+1-Scorei,o,b)) 

where n is the number of games in which C was selected, Scorei,p is the player’s 
WARGUS score at the end of the ith game in which C is used, Scorei,p,b is player p’s 
score before C’s Tactic is executed in game i, and Scorei,p,b+1 is p’s score after C’s 
Tactic executes (and the next state begins). Similarly, Scorei,o is the opponent’s score 



 
 
 

 
 

 

at the end of the ith game in which C is used, etc. Thus, C’s performance is updated 
after each game in which it is used, and equal weight is given to how well the player 
performs during its state and throughout the rest of the game.  

3.4 Retention 

During a game, CAT records a Description when it enters each BuildingState, along 
with the score and Tactic selected.  It also records the scores of each side when the 
game ends, along with who won (neither player wins a tie). For each BuildingState 
traversed, CAT checks to see whether a case C exists with the same <Description, 
Tactic> pair. If so, it updates C’s Performance. Otherwise, CAT creates a new case C 
for that BuildingState, Description, Tactic, and Performance as computed in Section 
3.3 (this counts as C’s first application). Thus, while duplicate cases are not created, 
CAT liberally creates new ones, and does not employ any case deletion policy. 

4 Evaluation and Analysis 

Our evaluation focuses on examining the hypothesis that CAT’s method for selecting 
tactics significantly outperforms (1) a uniform selection strategy and (2) simply using 
the best counter-strategy. We report evidence that supports this hypothesis.  

4.1 Competitors: WARGUS Players 

Eight opponent scripts (see Table 3) were available for our experiments; some were 
publicly available and others we manually developed. For each opponent, we used 
Ponsen and Spronck’s genetic algorithm to evolve a set of counter-strategy scripts. 
We use the best-performing counter-strategies among these (i.e., one per opponent) as 
a source of tactics, which are sequences of actions within a single building state of a 
counter-strategy. The names of the counter-strategies are shown in the lower left of 
Figure 2, which indicates that, for example, the evolved_sc1 counter-strategy includes 
tactics for building states 1, 3, 4, and 8, among others.  

The first WARGUS competitor, Uniform, selects tactics at each BuildingState 
according to a uniform distribution. Uniform should perform poorly because its 
selection is not guided by performance feedback. Uniform performs identically to 
CAT during its early stages of an experiment when, due to exploration, it randomly 

Table 3: WARGUS opponents used in the experiments.  

The top 5 scripts created by students, based on a class tournament. 

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available. 

Soldier’s Rush: This attempts to overwhelm the opponent with 
cheap offensive units in an early state of the game. 

This balances offensive actions, defensive actions, and research. 

Description

SC1-SC5

KR

SR

LBLA

Opponent

The top 5 scripts created by students, based on a class tournament. 

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available. 

Soldier’s Rush: This attempts to overwhelm the opponent with 
cheap offensive units in an early state of the game. 

This balances offensive actions, defensive actions, and research. 

Description

SC1-SC5

KR

SR

LBLA

Opponent



 
 
 

 
 

 

selects a tactic to use at each building state. To compute its results, we ran Uniform 
48 times, six times per opponent script, and report its percentage of wins in Figure 4. 

The next eight competitors are the counter-strategies. At each building state, they 
must use the tactic that defines them. Because they were evolved from different 
manually-generated scripts, we expect their performance to vary. Also, they should 
outperform Uniform, at least against the opponent on which they were trained. We 
ran each counter-strategy 10 times per opponent script, recorded the percentage of 
games that each won among their 80 games, and report the best performer in Figure 4. 

The final competitor is CAT, which, after an initial exploration period during which 
it selects tactics using a uniform distribution, learns to intelligently select tactics at 
each building state. It should outperform Uniform because it learns to map game 
situations to a state’s tactics, where selected tactics have performed well under similar 
game situations. Again, the counter-strategies supply the tactics for CAT to select. 
Thus, it might always select tactics from the same (e.g., best-performing) counter-
strategy. Ideally, it should instead select tactics from different counter-strategies 
throughout a game, and across different games, to outperform the best performing 
counter-strategy. This is feasible: as shown in Figure 2, each counter-strategy 
traverses a unique sequence of building states. Thus, CAT may learn to select 
different tactics, for different game situations, from the same building state. 

4.2 TIELT Integration 

Integrating AI systems with gaming simulators can be a difficult and arduous task. 
Also, the resulting interface may not be reusable for similar integrations that a 
researcher may want to develop. Therefore, we used TIELT (Testbed for Integrating 
and Evaluating Learning Techniques) to perform this integration. TIELT (Aha & 
Molineaux, 2004) is a freely available middleware tool (http://nrlsat.ittid.com) that 
facilitates the integration of decision systems and simulators. It provides specific 
support for machine learning systems, and for complex gaming simulators. We 
actively support its users, and will use it in a few 2005 workshops and competitions. 

TIELT integrations require constructing or reusing five knowledge bases, as shown 
in Figure 3. The Game Model is a (usually partial) declarative representation of the 
game. The Game Interface and Decision System Interface Models define the format 
and content of messages passed between TIELT, the selected game engine, and the 
decision system. The Agent Description includes an executable task structure that 
distinguishes the responsibilities of the decision system from those of game engine 
components. Finally, the Experiment Methodology encodes how the user wants to test 
the decision system on selected game engine tasks. Our knowledge bases will be 
available at TIELT’S www site for others to use (e.g., in future comparison studies). 

We created a set of knowledge bases for integrating CAT with WARGUS using 
TIELT. This required several modifications of STRATAGUS so that it could provide 
access to subroutines that are germane to our investigation. Also, we increased the 
speed of WARGUS by a factor of 10 to run games more quickly. (A typical game still 
required an average of over 3-4 minutes to execute.) 

This integration introduced a degree of non-determinism; while Ponsen and 
Spronck’s (2004) earlier work involved updating WARGUS’ code directly, our TIELT 
integration of CAT involves multiple threads and subsequent communication 
latencies. Thus, although two WARGUS games may have the same initial state and 



 
 
 

 
 

 

decision system, their results may differ greatly. This is the same that we might 
expect of a human playing the game, or any external process giving commands.  

TIELT’S Game Model for this integration includes operators for key game tasks 
like building armies, researching technology advances, and attacking. Other operators 
obtain information about the game (e.g., the player’s score). It also contains 
information about key events such as when a building or unit is completed. This 
information is maintained by the Game Interface Model, which contains information 
about the interface format. Future research using STRATAGUS can reuse these models.  

The Agent Description links CAT to the abstractions of the Game Model. TIELT 
retrieves instructions from CAT and executes them using operators. When events 
recognized by the Game Model occur, it notifies CAT, using information from the 
Decision System Interface Model to communicate. For example, when a building is 
finished, WARGUS sends a message to TIELT. The Game Interface Model interprets 
this, and fires a Game Model event. The Agent Description, listening for this event, 
notifies CAT and asks for further instructions. This Agent Description would need to 
be rewritten to work with another decision system, but the abstractions available from 
the Game Model simplify this task. 

The Experiment Methodology defines the number of runs, when to stop the game, 
and resets CAT’s memory when experiments begin. Also, it records game data into an 
EXCEL file for post-experiment analyses. It permits us to repeat experiments 
overnight, and record any data passing from STRATAGUS to CAT, or vice versa. 

4.3 Empirical Methodology 

We compared CAT versus its competitors for its ability to win WARGUS games. We 
used a fixed initial scenario, on a 128x128 tile map, involving a single opponent. The 
opponent was controlled by one of the eight scripts listed in Table 3. With the 
exception of the student scripts, these were all used in (Ponsen & Spronck, 2004). 

Our only independent variable was the approach used to play against WARGUS 
opponents (i.e., Uniform, one of the eight counter-strategies, or CAT). We fixed 
CAT’s two parameters during the experiment. The value of k (the number of nearest 

Figure 3: TIELT’s functional integration architecture. 
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neighbors to consider when retrieving cases) was set to 3, as was the value of e (the 
exploration parameter, which determines the number of times that tactics in each state 
are used prior to permitting case reuse). We have not tuned either parameter setting. 

For dependent variables, we collected average statistics on the percentage of games 
won, lost, and tied, along with the average final game scores for both players. 

We ran Uniform on 48 games – six times for each of the eight opponents. We also 
tested each of the eight counter-strategies versus each opponent ten times. Averaging 
over multiple games helps to ameliorate the effects of non-deterministic game play. 

However, the non-determinism introduced by TIELT’s integration prevents testing 
the competitors on the same problems. Furthermore, it prevents us from periodically 
testing CAT on the same test set at different points during its training process. 
Therefore, we report CAT’s average results across a sliding window, corresponding to 
the preceding n games, during training. We set n to 25 in the experiments (i.e., the 
measure after 100 games is the percentage of wins in games 76-100), and tested CAT 
in five trials of 100 games each. (Time limitations prevented us from running 
additional studies.) Cases are acquired throughout each trial, and the opponent for 
each game was randomly selected from a uniform distribution on the eight available.  

4.4 Results 

Figure 4 summarizes our results. As expected, Uniform performs poorly, winning an 
average of 22.9% of its games. CAT begins at this level, and after 100 games its 
average winning percentage is 82.4%, while saving an average of 302.4 cases. The 
best performer among the counter-strategies is evolved_SC5, which won 72.5% of its 
games. We compared the results (i.e., whether the player had won) for evolved_SC5 
versus the final 25 games for CAT’s five trials. A one-tail t-Test (2-sample assuming 
unequal variances) does not quite reveal a significant difference (p=0.053). However, 

Figure 4: Comparison of average winning percentages of CAT (across 5 runs) vs. the non-
learning Uniform and best performing counter-strategy (Evolved SC5). Also shown is CAT’s 
average exploration percentage. CAT’S  plots are across a window of the 25 preceding games. 
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there is a significant performance difference (p=0.00004) for the same test when 
examining the ratios of the final game scores (i.e., player_score/(player_score + 
opponent_score)), where CAT’s average ratio was 0.65 while evolved_SC5’s was 
0.59. Also, CAT shows signs of overtraining, having peaked at 87.2%. Thus, CAT 
clearly outperforms the best individual counter-strategy, and correcting for 
overtraining should further increase its performance. 

Also shown in Figure 4 is the average percentage of explorations performed by 
CAT. This starts at 100% through 24 games and quickly drops to 1%. With this 
setting for e, CAT relies almost exclusively on cases after 100 games.  

5 Discussion 

The results described in Section 4.4, although encouraging, are somewhat premature. 
We have not analyzed whether correlations among the eight features motivate using a 
more structured and informative case representation, such as the ones proposed in 
(Muñoz-Avila & Aha, 2004). Perhaps features should be differentially weighted, or 
normalized in distance computations. Also, CAT cheats; we will replace the three 
opponent-focused features (Table 2) with ones that a human player can observe (e.g., 
opponent score, observed opponent buildings) to determine whether CAT required 
them to obtain its good performance. 

We have not yet tuned CAT’s parameters, and it probably needs a management 
policy (e.g., for case filtering, deletion) to prevent overfitting, which may be the cause 
of CAT’s final dip in performance in Figure 4. Moreover, CAT does not yet perform 
plan adaptation, which, given an appropriate domain model, may substantially 
improve performance. Finally, opponent modeling or plan recognition techniques 
could also prove useful (e.g., they may increase CAT’s learning rate).  

Our empirical methodology could be improved by training on a subset of opponent 
scripts and testing on the remainder, thus better assessing for generalization and 
transfer. A larger set of opponent scripts (e.g., created using Ponsen and Spronck’s 
(2004) genetic algorithm) would be handy for this type of evaluation.  

Ponsen and Spronck’s (2004) dynamic scripting algorithm also learns to select 
which tactic to use at each building state. Its results could be compared with CAT’s, 
for a specific opponent, but this requires that they use the same set of tactics. In their 
experiments, dynamic scripting selected from an average of 40 tactics per building 
state level, while in our experiments CAT needed to select among eight per building 
state level (in the lattice). We will compare these approaches in our future work. 

CAT builds on Ponsen and Spronck’s (2004) work by relaxing the need to train 
separately for each opponent. However, we have not tested its ability to work with 
random initial states, or multiple simultaneous opponents. Also, CAT’S knowledge 
sources provide no opportunity for online learning, which requires a topology of 
abstract game states that can recur within a game play, and a means for recognizing 
them. Thus, we will consider such state topologies for WARGUS and other games. 

Dynamic scripting learns weight settings for plans in a plan retrieval process. Like 
CAT, it exploits plan performance data. However, it does not identify game situations 
in which those plans should be selected. We expect that dynamic scripting could be 
enhanced by providing it with game situation information, which may help it to 
increase its learning rate, and allow it to train on multiple opponents simultaneously.   



 
 
 

 
 

 

6 Conclusion 

We introduced an approach for case acquisition and tactic (subplan) selection, and its 
implementation in CAT (Case-based Tactician). We described its application to 
winning games against WARGUS opponents. CAT is the first case-based reasoning 
system designed to win real-time strategy (RTS) games against randomly selected 
opponents. Using Ponsen and Spronck’s (2004) state lattice, CAT selects a tactic for 
each state transition, where the tactics were automatically extracted from a set of 
genetically evolved counter-strategies. Our experiments showed that CAT learns to 
perform significantly better than the best performing counter-strategy against 
WARGUS opponents. In particular, after 100 games, it wins over 80% of its games.  

This is the first significant application of TIELT, a tool that assists with integrating 
decision systems (e.g., CAT) with simulators (e.g., WARGUS). Our experience 
provided us with key lessons for its continued development (e.g., on how to integrate 
RTS games, and the evaluation methodologies it should support).  

CAT’s algorithm has not yet been tailored for this application; its performance can 
probably be further improved. Also, many interesting research issues require further 
attention, such as how to enhance dynamic scripting, CAT’s applicability to online 
learning tasks, and learning to win in other gaming engines. 
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